Publications

Refine Results

(Filters Applied) Clear All

Rapid Quantitative Analysis of Multiple Explosive Compound Classes on a Single Instrument via Flow-Injection Analysis Tandem Mass Spectrometry

Summary

A flow-injection analysis tandem mass spectrometry (FIA MSMS) method was developed for rapid quantitative analysis of 10 different inorganic and organic explosives. Performance is optimized by tailoring the ionization method (APCI/ESI), de-clustering potentials, and collision energies for each specific analyte. In doing so, a single instrument can be used to detect urea nitrate, potassium chlorate, 2,4,6-trinitrotoluene, 2,4,6-trinitrophenylmethylnitramine, triacetone triperoxide, hexamethylene triperoxide diamine, pentaerythritol tetranitrate, 1,3,5-trinitroperhydro-1,3,5-triazine, nitroglycerin, and octohy-dro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine with sensitivities all in the picogram per milliliter range. In conclusion, FIA APCI/ESI MSMS is a fast (<1 min/sample), sensitive (~pg/mL LOQ), and precise (intraday RSD < 10%) method for trace explosive detection that can play an important role in criminal and attributional forensics, counterterrorism, and environmental protection areas, and has the potential to augment or replace several of the existing explosive detection methods.
READ LESS

Summary

A flow-injection analysis tandem mass spectrometry (FIA MSMS) method was developed for rapid quantitative analysis of 10 different inorganic and organic explosives. Performance is optimized by tailoring the ionization method (APCI/ESI), de-clustering potentials, and collision energies for each specific analyte. In doing so, a single instrument can be used to...

READ MORE

Key Challenges and Prospects for Optical Standoff Trace Detection of Explosives

Published in:
Trends in Analytical Chemistry, vol. 100

Summary

Sophisticated improvised explosive devices (IEDs) challenge the capabilities of current sensors, particularly in areas away from static checkpoints. This security gap could be filled by standoff chemical sensors that detect IEDs based on external trace explosive residues. Unfortunately, previous efforts have not led to widely deployed capabilities. Crucially, the physical morphology of trace explosive residues and chemical “clutter” present unique challenges to the operational performance of standoff sensors. In this review, an overview of standoff trace explosive detection systems is provided in the context of these unique challenges. Tradespace analysis is performed for two popular standoff detection methods: longwave infrared hyperspectral imaging and deep-UV Raman spectroscopy. The tradespace analysis method described in this review incorporates realistic trace explosive residues and background clutter into the technology development process. The review predicts system performance and areas where additional research is needed for these two technologies to optimize performance.
READ LESS

Summary

Sophisticated improvised explosive devices (IEDs) challenge the capabilities of current sensors, particularly in areas away from static checkpoints. This security gap could be filled by standoff chemical sensors that detect IEDs based on external trace explosive residues. Unfortunately, previous efforts have not led to widely deployed capabilities. Crucially, the physical...

READ MORE

Use of mass spectrometric vapor analysis to improve canine explosive detection efficiency

Published in:
Anal. Chem., Vol. 89, 9 June 2017, 6482-90.

Summary

Canines remain the gold standard for explosives detection in many situations, and there is an ongoing desire for them to perform at the highest level. This goal requires canine training to be approached similarly to scientific sensor design. Developing a canine training regimen is made challenging by a lack of understanding of the canine's odor environment, which is dynamic and typically contains multiple odorants. Existing methodology assumes that the handler's intention is an adequate surrogate for actual knowledge of the odors cuing the canine, but canines are easily exposed to unintentional explosive odors through training material cross-contamination. A sensitive, real-time (~1 s) vapor analysis mass spectrometer was developed to provide tools, techniques, and knowledge to better understand, train, and utilize canines. The instrument has a detection library of nine explosives and explosive-related materials consisting of 2,4-dinitrotoluene (2,4-DNT), 2,6-dinitrotoluene (2,6-DNT), 2,4,6-trinitrotoluene (TNT), nitroglycerin (NG), 1,3,5-trinitroperhydro-1,3,5-triazine (RDX), pentaerythritol tetranitrate (PETN), triacetone triperoxide (TATP), hexamethylene triperoxide diamine (HMTD), and cyclohexanone, with detection limits in the parts-per-trillion to parts-per-quadrillion range by volume. The instrument can illustrate aspects of vapor plume dynamics, such as detecting plume filaments at a distance. The instrument was deployed to support canine training in the field, detecting cross-contamination among training materials, and developing an evaluation method based on the odor environment. Support for training material production and handling was provided by studying the dynamic headspace of a nonexplosive HMTD training aid that is in development. These results supported existing canine training and identified certain areas that may be improved.
READ LESS

Summary

Canines remain the gold standard for explosives detection in many situations, and there is an ongoing desire for them to perform at the highest level. This goal requires canine training to be approached similarly to scientific sensor design. Developing a canine training regimen is made challenging by a lack of...

READ MORE

Characterization of nitrated sugar alcohols by atmospheric-pressure chemical-ionization mass spectrometry

Published in:
Rapid Commun. Mass Spectrom., Vol. 33, 2017, pp. 333-43.

Summary

RATIONALE: The nitrated sugar alcohols mannitol hexanitrate (MHN), sorbitol hexanitrate (SHN) and xylitol pentanitrate (XPN) are in the same class of compounds as the powerful military-grade explosive pentaerythritol tetranitrate (PETN) and the homemade explosive erythritol tetranitrate (ETN) but, unlike for PETN and ETN, ways to detect MHN, SHN and XPN by mass spectrometry (MS) have not been fully investigated. METHODS: Atmospheric-pressure chemical-ionization mass spectrometry (APCI-MS) was used to detect ions characteristic of nitrated sugar alcohols. APCI time-of-flight mass spectrometry (APCI-TOF MS) and collision-induced dissociation tandem mass spectrometry (CID MS/MS) were used for confirmation of each ion assignment. In addition, the use of the chemical ionization reagent dichloromethane was investigated to improve sensitivity and selectivity for detection of MHN, SHN and XPN. RESULTS: All the nitrated sugar alcohols studied followed similar fragmentation pathways in the APCI source. MHN, SHN and XPN were detectable as fragment ions formed by the loss of NO2, HNO2, NO3, and CH2NO2 groups, and in the presence of dichloromethane chlorinated adduct ions were observed. It was determined that in MS/MS mode, chlorinated adducts of MHN and SHN had the lowest limits of detection (LODs), while for XPN the lowest LOD was for the [XPN-NO2]- fragment ion. Partially nitrated analogs of each of the three compounds were also present in the starting materials, and ions attributable to these compounds versus those formed from in-source fragmentation of MHN, SHN, and XPN were distinguished and assigned using liquid chromatography APCI-MS and ESI-MS. CONCLUSIONS: The APCI-MS technique provides a selective and sensitive method for the detection of nitrated sugar alcohols. The methods disclosed here will benefit the area of explosives trace detection for counterterrorism and forensics.
READ LESS

Summary

RATIONALE: The nitrated sugar alcohols mannitol hexanitrate (MHN), sorbitol hexanitrate (SHN) and xylitol pentanitrate (XPN) are in the same class of compounds as the powerful military-grade explosive pentaerythritol tetranitrate (PETN) and the homemade explosive erythritol tetranitrate (ETN) but, unlike for PETN and ETN, ways to detect MHN, SHN and XPN...

READ MORE

Biomimetic sniffing improves the detection performance of a 3D printed nose of a dog and a commercial trace vapor detector

Published in:
Scientific Reports, Vol. 6 , art. no. 36876, December 2016. DOI: 10.1038/srep36876.

Summary

Unlike current chemical trace detection technology, dogs actively sniff to acquire an odor sample. Flow visualization experiments with an anatomically-similar 3D printed dog's nose revealed the external aerodynamics during canine sniffing, where ventral-laterally expired air jets entrain odorant-laden air toward the nose, thereby extending the "aerodynamic reach" for inspiration of otherwise inaccessible odors. Chemical sampling and detection experiments quantified two modes of operation with the artificial nose-active sniffing and continuous inspiration-and demonstrated an increase in odorant detection by a factor of up to 18 for active sniffing. A 16-fold improvement in detection was demonstrated with a commercially-available explosives detector by applying this bio-inspired design principle and making the device "sniff" like a dog. These lessons learned from the dog may benefit the next-generation of vapor samplers for explosives, narcotics, pathogens, or even cancer, and could inform future bio-inspired designs for optimized sampling of odor plumes.
READ LESS

Summary

Unlike current chemical trace detection technology, dogs actively sniff to acquire an odor sample. Flow visualization experiments with an anatomically-similar 3D printed dog's nose revealed the external aerodynamics during canine sniffing, where ventral-laterally expired air jets entrain odorant-laden air toward the nose, thereby extending the "aerodynamic reach" for inspiration of...

READ MORE

Use of Photoacoustic Excitation and Laser Vibrometry to Remotely Detect Trace Explosives

Summary

In this paper, we examine a laser-based approach to remotely initiate, measure, and differentiate acoustic and vibrational emissions from trace quantities of explosive materials against their environment. Using a pulsed ultraviolet laser (266 nm), we induce a significant (>100  Pa) photoacoustic response from small quantities of military-grade explosives. The photoacoustic signal, with frequencies predominantly between 100 and 500 kHz, is detected remotely via a wideband laser Doppler vibrometer. This two-laser system can be used to rapidly detect and discriminate explosives from ordinary background materials, which have significantly weaker photoacoustic response. A 100  ng/cm2 limit of detection is estimated. Photoablation is proposed as the dominant mechanism for the large photoacoustic signals generated by explosives.
READ LESS

Summary

In this paper, we examine a laser-based approach to remotely initiate, measure, and differentiate acoustic and vibrational emissions from trace quantities of explosive materials against their environment. Using a pulsed ultraviolet laser (266 nm), we induce a significant (&gt;100  Pa) photoacoustic response from small quantities of military-grade explosives. The photoacoustic signal...

READ MORE

Reagent approaches for improved detection of chlorate and perchlorate salts via thermal desorption and ionization

Published in:
Rapid Commun. Mass Spectrom., Vol. 30, No. 1, 15 January 2016, pp. 191-8, DOI: 10.1002/rcm.7427.

Summary

RATIONALE: Techniques for improving the detectability of chlorate and perchlorate salts with thermal desorption based ionizers (i.e. radioactive, corona discharge and photoionization-based) are desired. This work employs acidic reagents to chemically transform chlorate and perchlorate anions into traces of chloric and perchloric acid. These high vapor pressure acids are easier to detect than the originating salts. METHODS: The efficacy of the reagent chemistry was quantified with a triple-quadrupole mass spectrometer interfaced with a custom-built thermal-desorption atmospheric-pressure chemical ionization (TD-APCI) source. Additional experiments were conducted using tandem IMS/MS instrumentation. Reagent pKa and pH values were varied in order to gain a better understanding of how those parameters affect the degree of observed signal enhancement. RESULTS: Samples of chlorates and perchlorates treated with liquid acidic reagents exhibit signal enhancement of up to six orders of magnitude compared with signals from untreated analytes. Three orders of magnitude of signal enhancement are demonstrated using solid-state reagents, such as weakly acidic salts and polymeric acids. Data is presented that demonstrates the compatibility of the solid-state approach with both MS and IMS/MS platforms. CONCLUSIONS: Several methods of acidification were demonstrated for enhanced vaporization and detection of chlorates and perchlorates. For applications where rapid surface collection and analysis for chlorates and perchlorates are desired, the solid-state approaches offer the simplest means to integrate the reagent chemistry into MS or IMS detection.
READ LESS

Summary

RATIONALE: Techniques for improving the detectability of chlorate and perchlorate salts with thermal desorption based ionizers (i.e. radioactive, corona discharge and photoionization-based) are desired. This work employs acidic reagents to chemically transform chlorate and perchlorate anions into traces of chloric and perchloric acid. These high vapor pressure acids are easier...

READ MORE

Trace aerosol detection and identification by dynamic photoacoustic spectroscopy

Published in:
Opt. Express, Vol. 22, No. 25, 15 December 2014, pp. A1810-A1817.

Summary

Dynamic photoacoustic spectroscopy (DPAS) is a high sensitivity technique for standoff detection of trace vapors. A field-portable DPAS system has potential as an early warning provider for gaseous-based chemical threats. For the first time, we utilize DPAS to successfully detect the presence of trace aerosols. Aerosol identification via long-wavelength infrared (LWIR) spectra is demonstrated. We estimate the sensitivity of our DPAS system to aerosols comprised of silica particles is comparable to that of SF6 gas based on a signal level per absorbance unit metric for the two materials. The implications of the measurements are discussed.
READ LESS

Summary

Dynamic photoacoustic spectroscopy (DPAS) is a high sensitivity technique for standoff detection of trace vapors. A field-portable DPAS system has potential as an early warning provider for gaseous-based chemical threats. For the first time, we utilize DPAS to successfully detect the presence of trace aerosols. Aerosol identification via long-wavelength infrared...

READ MORE

High-sensitivity detection of trace gases using dynamic photoacoustic spectroscopy

Published in:
Opt. Eng., Vol. 53 No. 2, February 2014, 021103.

Summary

Lincoln Laboratory of Massachusetts Institute of Technology has developed a technique known as dynamic photoacoustic spectroscopy (DPAS) that could enable remote detection of trace gases via a field-portable laser-based system. A fielded DPAS system has the potential to enable rapid, early warning of airborne chemical threats. DPAS is a new form of photoacoustic spectroscopy that relies on a laser beam swept at the speed of sound to amplify an otherwise weak photoacoustic signal. We experimentally determine the sensitivity of this technique using trace quantities of SF6 gas. A clutter-limited sensitivity of ~100 ppt is estimated for an integration path of 0.43 m. Additionally, detection at ranges over 5 m using two different detection modalities is demonstrated: a parabolic microphone and a laser vibrometer. Its utility in detecting ammonia emanating from solid samples in an ambient environment is also demonstrated.
READ LESS

Summary

Lincoln Laboratory of Massachusetts Institute of Technology has developed a technique known as dynamic photoacoustic spectroscopy (DPAS) that could enable remote detection of trace gases via a field-portable laser-based system. A fielded DPAS system has the potential to enable rapid, early warning of airborne chemical threats. DPAS is a new...

READ MORE

Reagent assessment for detection of ammonium ion-molecule complexes

Published in:
Rapid Commun. Mass Spectrom., Vol. 27, 2013, pp. 2797-2806.

Summary

An MS-based framework was developed to quantitatively assess API ion-molecule reagent chemistries based on ammonium selectivity versus competing ions, and intrinsic ammonium binding strength and complex survivability for detection. Methyl acetoacetate is an attractive ammonium reagent for vapor-phase API techniques given its high vapor pressure, preferential selectivity, and high critical energy for dissociation.
READ LESS

Summary

An MS-based framework was developed to quantitatively assess API ion-molecule reagent chemistries based on ammonium selectivity versus competing ions, and intrinsic ammonium binding strength and complex survivability for detection. Methyl acetoacetate is an attractive ammonium reagent for vapor-phase API techniques given its high vapor pressure, preferential selectivity, and high critical...

READ MORE

Showing Results

1-10 of 18