Publications

Refine Results

(Filters Applied) Clear All

New generation of digital microfluidic devices

Published in:
J. Microelectromech. Syst., Vol. 18, No. 4, August 2009, pp. 845-851.

Summary

This paper reports on the design, fabrication, and performance of micro-sized fluidic devices that use electrowetting to control and transport liquids. Using standard microfabrication techniques, new pumping systems are developed with significantly more capability than open digital microfluidic systems that are often associated with electrowetting. This paper demonstrates that, by integrating closed microchannels with different channel heights and using electrowetting actuation, liquid interfaces can be controlled, and pressure work can be done, resulting in fluid pumping. The operation of two different on-chip pumps and devices that can form water drops is described. In addition, a theory is presented to explain the details of single-electrode actuation in a closed channel.
READ LESS

Summary

This paper reports on the design, fabrication, and performance of micro-sized fluidic devices that use electrowetting to control and transport liquids. Using standard microfabrication techniques, new pumping systems are developed with significantly more capability than open digital microfluidic systems that are often associated with electrowetting. This paper demonstrates that, by...

READ MORE

Graphene-on-insulator transistors made using C on Ni chemical-vapor deposition

Published in:
IEEE Electron Device Lett., Vol. 30, No. 7, July 2009, pp. 745-747.
Topic:

Summary

Graphene transistors are made by transferring a thin graphene film grown on Ni onto an insulating SiO2 substrate. The properties and integration of these graphene-on-insulator transistors are presented and compared to the characteristics of devices made from graphitized SiC and exfoliated graphene flakes.
READ LESS

Summary

Graphene transistors are made by transferring a thin graphene film grown on Ni onto an insulating SiO2 substrate. The properties and integration of these graphene-on-insulator transistors are presented and compared to the characteristics of devices made from graphitized SiC and exfoliated graphene flakes.

READ MORE

New methods to transport fluids in micro-sized devices

Published in:
Lincoln Laboratory Journal, Vol. 17, No. 2, December 2008, pp. 70-80.

Summary

Applications of microfluidics require a self-contained, active pumping system in which the package size is comparable to the volume of fluid being transported. Over the past decade, several systems have been developed to address this issue, but either these systems have high power requirements or the microfabrication is too complex to be cost efficient. A recent effort at Lincoln Laboratory using an emerging technology called electrowetting has led to the development of several novel micropump concepts for pumping liquids continuously, as well as for pumping discrete volumes.
READ LESS

Summary

Applications of microfluidics require a self-contained, active pumping system in which the package size is comparable to the volume of fluid being transported. Over the past decade, several systems have been developed to address this issue, but either these systems have high power requirements or the microfabrication is too complex...

READ MORE

Characterization of a three-dimensional SOI integrated-circuit technology

Published in:
2008 IEEE Int. SOI Conf. Proc., 6 October 2008, pp. 109-110.

Summary

At Lincoln Laboratory, we have established a three dimensional (3D) integrated circuit (IC) technology that has been developed and demonstrated over eight designs, bonding two or three active circuit layers or tiers to form monolithically integrated 3D circuits. This technology has been used to successfully demonstrate a large-area 8 x 8 mm2 high-3D-via-count 1024 x 1024 visible image, a 64 x 64 laser radar focal plane based on single-photon-sensitive avalanche photodiodes, and a 10Gb/s/pin low power interconnect for 3DICs. 3DIC technology in our most recently completed 3D multiproject (3DM2) run includes three active fully-depleted-SOI (FDSOI) circuit tiers, eleven interconnect-metal layers, and dense unrestricted 3D vias interconnecting stacked circuit layers, as shown in Figure 1. While we continue our efforts to scale our 3DIC technology and increase 3D via density, we are also working to improve our understanding of 3D integration impact on transistor and process monitor circuits. In this paper, we describe our process and test results after single tier circuit fabrication as well as after three-tier integration, determine impact of 3D vias on ring oscillator performance, and demonstrate functionality of single and multi-tier circuits of varying complexity.
READ LESS

Summary

At Lincoln Laboratory, we have established a three dimensional (3D) integrated circuit (IC) technology that has been developed and demonstrated over eight designs, bonding two or three active circuit layers or tiers to form monolithically integrated 3D circuits. This technology has been used to successfully demonstrate a large-area 8 x...

READ MORE

Epitaxial graphene transistors on SiC substrates

Published in:
IEEE Trans. Electron Devices, Vol. 55, No. 8, August 2008, pp. 2078-2085.

Summary

This paper describes the behavior of top-gated transistors fabricated using carbon, specifically epitaxial graphene on SiC, as the active material. Although graphene devices have been built before, in this paper, we provide the first demonstration and systematic evaluation of arrays of a large number of transistors produced using standard microelectronics methods. The graphene devices presented feature high-k dielectric, mobilities up to 5000 cm2/V · s, and Ion/Ioff ratios of up to seven, and are methodically analyzed to provide insight into the substrate properties. Typical of graphene, these micrometer-scale devices have negligible band gaps and, therefore, large leakage currents.
READ LESS

Summary

This paper describes the behavior of top-gated transistors fabricated using carbon, specifically epitaxial graphene on SiC, as the active material. Although graphene devices have been built before, in this paper, we provide the first demonstration and systematic evaluation of arrays of a large number of transistors produced using standard microelectronics...

READ MORE

Irreversible electrowetting on thin fluoropolymer films

Published in:
Langmuir, Vol. 23, No. 24, 20 November 2007, pp. 12429-12435.

Summary

A study was conducted to investigate electrowetting reversibility associated with repeated voltage actuations for an aqueous droplet situated on a silicon dioxide insulator coated with an amorphous fluoropolymer film ranging in thickness from 20 to 80 nm. The experimental results indicate that irreversible trapped charge may occur at the aqueous-solid interface, giving rise to contact angle relaxation. The accumulation of trapped charge was found to be related to the applied electric field intensity and the breakdown strength of the fluoropolymer. On the basis of the data, an empirical model was developed to estimate the amount of trapped charge in the fluoropolymer as well as the voltage threshold for the onset of irreversible electrowetting.
READ LESS

Summary

A study was conducted to investigate electrowetting reversibility associated with repeated voltage actuations for an aqueous droplet situated on a silicon dioxide insulator coated with an amorphous fluoropolymer film ranging in thickness from 20 to 80 nm. The experimental results indicate that irreversible trapped charge may occur at the aqueous-solid...

READ MORE

Low voltage electrowetting using thin fluoroploymer films

Published in:
J. Colloid and Interface Sci., Vol. 303, No. 2, 15 November 2006, pp. 517-524.

Summary

This paper investigates the nonideal electrowetting behavior of thin fluoroploymer films. Results are presented for a three phase system consisting of: (1) an aqueous water droplet containing sodium dodecyl sulfate (SDS), (2) phosphorous-doped silicon topped with SiO2 and an amorphous fluoroploymer (aFP) insulating top layer on which the droplet is situated, and (3) a dodecane oil that surrounds the droplet. The presented measurements indicate that the electrowetting equation is valid down to a 6 nm thick aFP film on a 11 nm thick SiO2. At this dielectric thickness, a remarkable contact angle change of over 100degreescan be achieved with an applied voltage less than 3 V across the system. The data also shows that for this water/surfactant/oil system, contact angle saturation is independent of the electric field, and is reached when the surface energy of the solid-water interface approaches zero.
READ LESS

Summary

This paper investigates the nonideal electrowetting behavior of thin fluoroploymer films. Results are presented for a three phase system consisting of: (1) an aqueous water droplet containing sodium dodecyl sulfate (SDS), (2) phosphorous-doped silicon topped with SiO2 and an amorphous fluoroploymer (aFP) insulating top layer on which the droplet is...

READ MORE

Engineering of the electrocapillary behavior of electrolyte droplets on thin fluoropolymer films

Published in:
Langmuir, Vol. 22, No. 13, 20 June 2006, pp. 5690-5696.

Summary

This study presents methods for engineering the electrocapillary behavior of fluoropolymer surfaces through the use of surfactants and an external insulating liquid. By the scaling of the appropriate surface energies, electrocapillary behavior is obtained at a record low voltage, with contact angle changes in excess of 100[degrees] at 4 V. A consistent description of electrocapillary saturation is presented, identifying three separate regimes: breakdown, thermodynamic instability, and relaxation. Methods for identifying and mitigating some of the saturation behaviors are discussed. Finally, the parameters influencing the observed voltage of zero charge are summarized.
READ LESS

Summary

This study presents methods for engineering the electrocapillary behavior of fluoropolymer surfaces through the use of surfactants and an external insulating liquid. By the scaling of the appropriate surface energies, electrocapillary behavior is obtained at a record low voltage, with contact angle changes in excess of 100[degrees] at 4 V...

READ MORE