Publications

Refine Results

(Filters Applied) Clear All

CIWS product description, revision 1.0

Author:
Published in:
MIT Lincoln Laboratory Report ATC-355

Summary

Lincoln Laboratory has developed a set of information models for the encoding and distribution of data products from the National Corridor Integrated Weather System (CIWS) prototype, currently operating at Lincoln Laboratory in Lexington, Massachusetts. CIWS data products can be categorized as gridded and non-gridded. Gridded products are typically expressed as rectangular arrays whose elements contain a data value coinciding with uniformly-spaced observations or computed results on a 2-D surface. Gridded data arrays map to earth's surface through a map projection, for example, Lambert Conformal or Lambert Azimuthal Equal-Area. Non-gridded data products express observations or computed results associated with singular or sparsely distributed sets of geo-spatial locations such as points, curves, or contours. CIWS prototype data products were used to develop, refine, and evaluate reference information models for the CIWS gridded and non-gridded data. Data packaging methods were evaluated and selected on the basis of public-domain open-source availability and metadata support. Network Common Data Format (NetCDF), provided by Unidata, was selected as the information model for gridded CIWS products. For the non-gridded products, XML schemas have been developed along with sample XML instances to illustrate schema-compliant product encodings. These models follow and extend upon a number of Open Geospatial Consortium (OGC) and ISO standards including Geography Markup Language (GML), Observations and Measurements (OM), and Eurocontrol's Weather Exchange Model (WXXM). This document is intended to serve as a reference for the description of CIWS data product files.
READ LESS

Summary

Lincoln Laboratory has developed a set of information models for the encoding and distribution of data products from the National Corridor Integrated Weather System (CIWS) prototype, currently operating at Lincoln Laboratory in Lexington, Massachusetts. CIWS data products can be categorized as gridded and non-gridded. Gridded products are typically expressed as...

READ MORE

Medium intensity airport weather system NEXRAD selection recommendations

Published in:
MIT Lincoln Laboratory Report ATC-311

Summary

Under Federal Aviation Administration (FAA) sponsorship, Lincoln Laboratory has developed a Medium Intensity Airport Weather System (MIAWS). MIAWS provides air traffic controllers at medium- intensity airports a real time color display of weather impacting the terminal airspace. The weather data comes from nearby Doppler weather surveillance radars, called Next Generation Radar (NEXRAD). since May 2000 at field sites in Memphis (TN), Jackson (MS), Little Rock (AR), and Springfield (MO). With the success of the MIAWS prototypes and favorable response among air traffic controller users, the FAA is seeking to rapidly deploy MIAWS systems at forty airports within the National Airspace System Lincoln Lab has been operating prototypes of the Medium Intensity Airport Weather System (MIAWS) WAS). This report identifies suitable NEXRAD systems for each of the 40 MIAWS airports and three additional test and/or maintenance FAA facilities. Several other radar selection options are also provided to account for availability and cost-saving contingencies.
READ LESS

Summary

Under Federal Aviation Administration (FAA) sponsorship, Lincoln Laboratory has developed a Medium Intensity Airport Weather System (MIAWS). MIAWS provides air traffic controllers at medium- intensity airports a real time color display of weather impacting the terminal airspace. The weather data comes from nearby Doppler weather surveillance radars, called Next Generation...

READ MORE

Medium Intensity Airport Weather System (MIAWS)

Published in:
Ninth Conf. on Aviation, Range, and Aerospace Meteorology, 11-15 September 2000, pp. 122-126.

Summary

Operational experience with the Integrated Terminal Weather Systems (ITWS) and Airport Surveillance Radar, Model 9, (ASR-9) Weather System Processor (WSP) demonstration systems, studies of pilot weather avoidance decision making), and recent accidents have demonstrated the need to provide timely, accurate information on the location and movement of storms to air traffic controllers, pilots, and airline dispatch. At medium-intensity airports, generally those with too few flight operations to justify the presence of Doppler radar systems like the Terminal Doppler Weather Radar (TDWR) or the WSP, terminal air traffic surveillance is currently provided with the ASR-7 and ASR-8 radar systems. The ASR-7 and ASR-8 do not provide calibrated precipitation intensity products or any storm motion information. The Medium-Intensity Airport Weather System (MIAWS) program is intended to address these terminal weather information deficiencies. MIAWS-generated products would be displayed to tower and Terminal Radar Approach Control (TRACON) supervisors and delivered to aircraft cockpits and airline dispatchers to assist pilots during landings. Initially, the MIAWS will provide a real time display of storm positions and motion based on Next Generation Weather Radar (NEXRAD) product data using a product generation and display system derived from the WSP. Airport wind and wind shear information will be acquired from an FAA Low Level Wind Shear Alert System (LLWAS). A demonstration system will be installed and demonstrated at experimental sites in Memphis, TN and Jackson, MS in 2000 and potentially at a third site in 2001. This demonstration system will be used to assess technical and operational issues such as compensation for the relatively slow updates of the NEXRAD products and, Anomalous Propagation (AP) ground clutter. The ASR-11 is a replacement for the ASR-7/8 radars that feature a weather reflectivity processing channel. When it becomes available at MIAWS locations, the MIAWS processor will acquire and display precipitation and storm movement products derived from the ASR-11. Likewise, when an LLWAS Relocation/Sustainment (LLWAS-RS) (Nilsen, et al., 1999) becomes available at MIAWS locations, the MIAWS will acquire wind and wind shear information derived from the LLWAS-RS.
READ LESS

Summary

Operational experience with the Integrated Terminal Weather Systems (ITWS) and Airport Surveillance Radar, Model 9, (ASR-9) Weather System Processor (WSP) demonstration systems, studies of pilot weather avoidance decision making), and recent accidents have demonstrated the need to provide timely, accurate information on the location and movement of storms to air...

READ MORE

Showing Results

1-3 of 3