Publications

Refine Results

(Filters Applied) Clear All

Liquid crystal uncooled thermal imager development

Published in:
SPIE, Vol. 9974, Infrared Sensors, Devices, and Applications VI, 28 August 2016.

Summary

An uncooled thermal imager is being developed based on a liquid crystal (LC) transducer. Without any electrical connections, the LC transducer pixels change the long-wavelength infrared (LWIR) scene directly into a visible image as opposed to an electric signal in microbolometers. The objectives are to develop an imager technology scalable to large formats (tens of megapixels) while maintaining or improving the noise equivalent temperature difference (NETD) compared to microbolometers. The present work is demonstrating that the LCs have the required performance (sensitivity, dynamic range, speed, etc.) to enable a more flexible uncooled imager. Utilizing 200-mm wafers, a process has been developed and arrays have been fabricated using aligned LCs confined in 20-20-um cavities elevated on thermal legs. Detectors have been successfully fabricated on both silicon and fused silica wafers using less than 10 photolithographic mask steps. A breadboard camera system has been assembled to test the imagers. Various sensor configurations are described along with advantages and disadvantages of component arrangements.
READ LESS

Summary

An uncooled thermal imager is being developed based on a liquid crystal (LC) transducer. Without any electrical connections, the LC transducer pixels change the long-wavelength infrared (LWIR) scene directly into a visible image as opposed to an electric signal in microbolometers. The objectives are to develop an imager technology scalable...

READ MORE

A scalable fabrication process for liquid crystal-based uncooled thermal imagers

Published in:
J. Microelectromech. Syst., Vol. 25, No. 3. June 2016, pp. 479-88.

Summary

A novel sensor is being developed for a new uncooled imager technology that is scalable to large formats (tens of megapixels), which is greater than what is achieved by commercial microbolometer arrays. In this novel sensor, a liquid-crystal transducer is used to change a long-wavelength infrared scene into a visible image that can be detected using a conventional visible imager. This approach has the potential for making a more flexible thermal sensor that can be optimized for a variety of applications. In this paper, we describe the microfabrication processes required to create an array of sealed thermally isolated micro-cavities filled with liquid crystals to be used for an uncooled thermal imager. Experimental results from the fabricated arrays will also be discussed.
READ LESS

Summary

A novel sensor is being developed for a new uncooled imager technology that is scalable to large formats (tens of megapixels), which is greater than what is achieved by commercial microbolometer arrays. In this novel sensor, a liquid-crystal transducer is used to change a long-wavelength infrared scene into a visible...

READ MORE

Versatile alignment layer method for new types of liquid crystal photonic devices

Summary

Liquid crystal photonic devices are becoming increasingly popular. These devices often present a challenge when it comes to creating a robust alignment layer in pre-assembled cells. In this paper, we describe a method of infusing a dye into a microcavity to produce an effective photo-definable alignment layer. However, previous research on such alignment layers has shown that they have limited stability, particularly against subsequent light exposure. As such, we further describe a method of utilizing a pre-polymer, infused into the microcavity along with the liquid crystal, to provide photostability. We demonstrate that the polymer layer, formed under ultraviolet irradiation of liquid crystal cells, has been effectively localized to a thin region near the substrate surface and provides a significant improvement in the photostability of the liquid crystal alignment. This versatile alignment layer method, capable of being utilized in devices from the described microcavities to displays, offers significant promise for new photonics applications.
READ LESS

Summary

Liquid crystal photonic devices are becoming increasingly popular. These devices often present a challenge when it comes to creating a robust alignment layer in pre-assembled cells. In this paper, we describe a method of infusing a dye into a microcavity to produce an effective photo-definable alignment layer. However, previous research...

READ MORE

Materials and fabrication sequences for water soluble silicon integrated circuits at the 90 nm node

Published in:
Appl. Phys. Lett., Vol. 106, No. 1, 5 January 2015, 014105.

Summary

Tungsten interconnects in silicon integrated circuits built at the 90 nm node with releasable configurations on silicon on insulator wafers serve as the basis for advanced forms of water-soluble electronics. These physically transient systems have potential uses in applications that range from temporary biomedical implants to zero-waste environmental sensors. Systemic experimental studies and modeling efforts reveal essential aspects of electrical performance in field effect transistors and complementary ring oscillators with as many as 499 stages. Accelerated tests reveal timescales for dissolution of the various constituent materials, including tungsten, silicon, and silicon dioxide. The results demonstrate that silicon complementary metal-oxide-semiconductor circuits formed with tungsten interconnects in foundry-compatible fabrication processes can serve as a path to high performance, mass-produced transient electronic systems.
READ LESS

Summary

Tungsten interconnects in silicon integrated circuits built at the 90 nm node with releasable configurations on silicon on insulator wafers serve as the basis for advanced forms of water-soluble electronics. These physically transient systems have potential uses in applications that range from temporary biomedical implants to zero-waste environmental sensors. Systemic...

READ MORE

Liquid crystal uncooled thermal imager development

Published in:
2014 Military Sensing Symposia, (MSS 2014), Detectors and Materials, 9 September 2014.

Summary

An uncooled thermal imager is being developed based on a liquid crystal transducer. The liquid crystal transducer changes a long-wavelength infrared scene into a visible image as opposed to an electric signal in microbolometers. This approach has the potential for making a more flexible thermal sensor. One objective is to develop imager technology scalable to large formats (tens of megapixels) while maintaining or improving the noise equivalent temperature difference (NETD) compared to microbolometers. Our work is demonstrating that the liquid crystals have the required performance (sensitivity, dynamic range, speed, etc.) to make state-of-the-art uncooled imagers. A process has been developed and arrays have been fabricated using the liquid crystals. A breadboard camera system has been assembled to test the imagers. Results of the measurements are discussed.
READ LESS

Summary

An uncooled thermal imager is being developed based on a liquid crystal transducer. The liquid crystal transducer changes a long-wavelength infrared scene into a visible image as opposed to an electric signal in microbolometers. This approach has the potential for making a more flexible thermal sensor. One objective is to...

READ MORE

MEMS microswitches for reconfigurable microwave circuitry

Summary

The performance is reported for a new microelectromechanical structure (MEMS) cantilever microswitch. We report on both dc- and capacitively-contacted microswitches. The dc-contacted microswitches have contact resistance of less than 1 ohm, and the RF loss of the switch up to 40 GHz in the closed position is 0.1-0.2 dB. Capacitively-contacted switches have an impedance ratio of 141:1 from the open to closed state and in the closed position have a series capacitance of 1.2 pF. The capacitively-contacted switches have been measured up to 40 GHz with S(21) less than -0.7 dB across the 5-40 GHz band.
READ LESS

Summary

The performance is reported for a new microelectromechanical structure (MEMS) cantilever microswitch. We report on both dc- and capacitively-contacted microswitches. The dc-contacted microswitches have contact resistance of less than 1 ohm, and the RF loss of the switch up to 40 GHz in the closed position is 0.1-0.2 dB. Capacitively-contacted...

READ MORE

MEMs microswitch arrays for reconfigurable distributed microwave components

Summary

A revolutionary device technology and circuit concept is introduced for a new class of reconfigurable microwave circuits and antennas. The underlying mechanism is a compact MEMs cantilever microswitch that is arrayed in two-dimensions. The switches have the ability to be individually actuated. By constructing distributed circuit components from an array, the individual addressability of the microswitch provides the means to reconfigure the circuit trace and, thus, provides the ability to either fine-tune or completely reconfigure the circuit element's behavior. Device performance can be reconfigured over a decade in bandwidth in the nominal frequency range of 1 to 100 GHz. In addition, other circuit-element attributes can be reconfigured such as instantaneous bandwidth, impedance, and polarization (for antennas). This will enable the development of next-generation communication, radar and surveillance systems with agiIity to reconfigure operation for diverse operating bands, modes, power levels, and waveforms.
READ LESS

Summary

A revolutionary device technology and circuit concept is introduced for a new class of reconfigurable microwave circuits and antennas. The underlying mechanism is a compact MEMs cantilever microswitch that is arrayed in two-dimensions. The switches have the ability to be individually actuated. By constructing distributed circuit components from an array...

READ MORE

Showing Results

1-7 of 7