Publications

Refine Results

(Filters Applied) Clear All

Measurement of the surface-enhanced coherent anti-Stokes Raman scattering (SECARS) due to the 1574 cm^-1 surface-enhanced Raman scattering (SERS) mode of benzenethiol using low-power (<20 mW) CW diode lasers

Published in:
Appl. Spectrosc., Vol. 67, No. 2, February 2013, pp. 132-135.

Summary

The surface-enhanced coherent anti-Stokes Raman scattering (SECARS) from a self-assembled monolayer (SAM) of benzenethiol on a silver-coated surface-enhanced Raman scattering (SERS) substrate has been measured for the 1574 cm^-1 SERS mode. A value of 9.6 +- 1.7 x 10^-14 W was determined for the resonant component of the SECARS signal using 17.8 mW of 784.9 nm pump laser power and 7.1 mW of 895.5 nm Stokes laser power; the pump and Stokes lasers were polarized parallel to each other but perpendicular to the grooves of the diffraction grating in the spectrometer. The measured value of resonant component of the SECARS signal is in agreement with the calculated value of 9.3 x 10^-14 W using the measured value of 8.7 +- 0.5 cm^-1 for the SERS linewidth Gamma (full width at half-maximum) and the value of 5.7 +- 1.4 x 10^-7 for the product of the Raman cross section rSERS and the surface concentration Ns of the benzenethiol SAM. The xxxx component of the resonant part of the third-order nonlinear optical susceptibility |3X (3)R/xxxx| for the 1574 cm^-1 SERS mode has been determined to be 4.3 +- 1.1 x 10^-5 cm g^-1 s^2. The SERS enhancement factor for the 1574 cm^-1 mode was determined to be 3.6 +- 0.9 x 10^7 using the value of 1.8 x 10^15 molecules/cm^2 for Ns.
READ LESS

Summary

The surface-enhanced coherent anti-Stokes Raman scattering (SECARS) from a self-assembled monolayer (SAM) of benzenethiol on a silver-coated surface-enhanced Raman scattering (SERS) substrate has been measured for the 1574 cm^-1 SERS mode. A value of 9.6 +- 1.7 x 10^-14 W was determined for the resonant component of the SECARS signal...

READ MORE

Measurement of the third-order nonlinear optical susceptibility chi^(3) for the 1002-cm^-1 mode of benzenethiol using coherent anti-Stokes Raman scattering with continuous-wave diode lasers

Published in:
J. Raman Spectrosc., Vol. 43, No. 7, July 2012, pp. 911-916.

Summary

The components of the third-order nonlinear optical susceptibility x^(3) for the 1002-cm^?1 mode of neat benzenethiol have been measured using coherent anti-Stokes Raman scattering with continuous-wave diode pump and Stokes lasers at 785.0 and 852.0 nm, respectively. Values of 2.8±0.3 X 10^-12, 2.0±0.2 X 10^-12, and 0.8±0.1 X 10^-12 cmg^-1 s^2 were measured for the xxxx, xxyy, and xyyx components of |3x^(3)|, respectively. We have calculated these quantities using a microscopic model, reproducing the same qualitative trend. The Raman cross-section sigma RS for the 1002-cm^-1 mode of neat benzenethiol has been determined to be 3.1±0.6 X 10^-29 cm^2 per molecule. The polarization of the anti-Stokes Raman scattering was found to be parallel to that of the pump laser, which implies negligible depolarization. The Raman linewidth (full-width at half-maximum) Gamma was determined to be 2.4±0.3 cm^-1 using normal Stokes Raman scattering. The measured values of sigma RS and Gamma yield a value of 2.1±0.4 X 10^-12 cmg^-1 s^2 for the resonant component of 3x^(3). A value of 1.9±0.9 X 10^-12 cmg^-1 s^2 has been deduced for the nonresonant component of 3x^(3).
READ LESS

Summary

The components of the third-order nonlinear optical susceptibility x^(3) for the 1002-cm^?1 mode of neat benzenethiol have been measured using coherent anti-Stokes Raman scattering with continuous-wave diode pump and Stokes lasers at 785.0 and 852.0 nm, respectively. Values of 2.8±0.3 X 10^-12, 2.0±0.2 X 10^-12, and 0.8±0.1 X 10^-12 cmg^-1...

READ MORE

Measurement of the absolute Raman scattering cross sections of sulfur and the standoff Raman detection of a 6-mm-thick sulfur specimen at 1500m

Published in:
J. Raman Spectr., Vol. 42, No. 3, March 2011, pp. 461-464.

Summary

The absolute Raman scattering cross sections (σRS) for the 471, 217, and 153 cm−1 modes of sulfur were measured as 6.0 ± 1.2 × 10−27, 7.7 ± 1.6 × 10−27, and 1.2 ± 0.24 × 10−26 cm2 at 815, 799, and 794 nm, respectively, using a 785-nm pump laser. The corresponding values of σRS at 1120, 1089, and 1081 nm were determined to be 1.5 ± 0.3 × 10−27, 1.2 ± 0.24 × 10−27, and 1.2 ± 0.24 × 10−27 cm2 using a 1064-nm laser. A temperature-controlled, small-cavity (2.125 mm diameter) blackbody source was used to calibrate the signal output of the Raman spectrometers for these measurements. Standoff Raman detection of a 6-mm-thick sulfur specimen located at 1500 m from the pump laser and the Raman spectrometer was made using a 1.4-W, CW, 785-nm pump laser.
READ LESS

Summary

The absolute Raman scattering cross sections (σRS) for the 471, 217, and 153 cm−1 modes of sulfur were measured as 6.0 ± 1.2 × 10−27, 7.7 ± 1.6 × 10−27, and 1.2 ± 0.24 × 10−26 cm2 at 815, 799, and 794 nm, respectively, using a 785-nm pump laser. The...

READ MORE

Showing Results

1-3 of 3