Publications

Refine Results

(Filters Applied) Clear All

Airspace encounter models for conventional and unconventional aircraft

Published in:
8th USA/Europe Air Traffic Management Research and Development Sem. (ATM 2009), 25 March 2009.

Summary

Collision avoidance systems play an important role in the future of aviation safety. Before new technologies on board manned or unmanned aircraft are deployed, rigorous analysis using encounter simulations is required to prove system robustness. These simulations rely on models that accurately reflect the geometries and dynamics of aircraft encounters at close range. These types of encounter models have been developed by several organizations since the early 1980s. Lincoln Laboratory's newer encounter models, however, provide a higher-fidelity representation of encounters, are based on substantially more data, leverage a theoretical framework for finding optimal model structures, and reflect recent changes in the airspace. Three categories of encounter model were developed by Lincoln Laboratory. Two of these categories are used for modeling conventional aircraft; one involving encounters with prior air traffic control intervention and one without. The third category of encounter model is for encounters with unconventional aircraft -- such as gliders, skydivers, balloons, and airships -- that typically do not carry transponders. Together, these encounter models are being used to examine the safety and effectiveness of aircraft collision avoidance systems and as a foundation for algorithms for future manned and unmanned systems.
READ LESS

Summary

Collision avoidance systems play an important role in the future of aviation safety. Before new technologies on board manned or unmanned aircraft are deployed, rigorous analysis using encounter simulations is required to prove system robustness. These simulations rely on models that accurately reflect the geometries and dynamics of aircraft encounters...

READ MORE

A comprehensive aircraft encounter model of the National Airspace System

Published in:
Lincoln Laboratory Journal, Vol. 17, No. 2, December 2008, pp. 41-54.

Summary

Collision avoidance systems play an important role in the future of aviation safety. Before new technologies on board manned or unmanned aircraft are deployed, rigorous analysis using encounter simulations is required to prove system robustness. These simulations rely on models that accurately reflect the geometries and dynamics of aircraft encounters at close range. These types of encounter models have been developed by several organizations since the early 1980s. Lincoln Laboratory's newer encounter models, however, provide a higher-fidelity representation of encounters, are based on substantially more radar data, leverage a theoretical framework for finding optimal model structures, and reflect recent changes in the airspace.
READ LESS

Summary

Collision avoidance systems play an important role in the future of aviation safety. Before new technologies on board manned or unmanned aircraft are deployed, rigorous analysis using encounter simulations is required to prove system robustness. These simulations rely on models that accurately reflect the geometries and dynamics of aircraft encounters...

READ MORE

Uncorrelated encounter model of the National Airspace System version 1.0

Published in:
MIT Lincoln Laboratory Report ATC-345

Summary

Airspace encounter models, covering close encounter situations that may occur after standard separation assurance has been lost, are a critical component in the safety assessment of aviation procedures and collision avoidance systems. Of particular relevance to Unmanned Aircraft Systems (UAS) is the potential for encountering general aviation aircraft that are flying under Visual Flight Rules (VFR) and which may not be in contact with air traffic control. In response to the need to develop a model of these types of encounters, Lincoln Laboratory undertook an extensive radar data collection and modeling effort involving more than 120 sensors across the U.S. This report describes the structure and content of that encounter model. The model is based on the use of Bayesian networks to represent relationships between dynamic variables and to construct random aircraft trajectories that are statistically similar to those observed in the radar data. The result is a framework from which representative intruder trajectories can be generated and used in fast-time Monte Carlo simulations to provide accurate estimates of collision risk. The model described in this report is one of three developed by Lincoln Laboratory. An encounter with an intruder that does not have a transponder, or between two aircraft using a Mode A code of 1200 (VFR), is uncorrelated in the sense that it is unlikely that there would be prior intervention by air traffic control. The uncorrelated model described in this report is based on transponder-equipped aircraft using a 1200 (VFR) Mode A code observed by radars across the U.S. As determined from a comparison against primary-only tracks, in addition to representing VFR-on-VFR encounters, this model is representative of encounters between a cooperative aircraft and conventional noncooperative aircraft similar to those that use a 1200 transponder code. A second uncorrelated model is also being developed for unconventional aircraft that have different flight characteristics than 1200-code aircraft. Finally, a correlated encounter model has been developed to represent situations in which it is likely that there would be air traffic control intervention prior to a close encounter. The correlated model applies to intruders that are using a discrete (non-1200) code. Separate electronic files are available from Lincoln Laboratory that contain the statistical data required to generate and validate encounter trajectories. Details on how to interpret the data file and an example of how to randomly construct trajectories are provided in Appendices A and B, respectively. A Matlab software package is also available to generate random encounter trajectories based on the data tables. A byproduct of the encounter modeling effort was the development of National aircraft track and traffic density databases. Example plots of traffic density data are provided in this report, but the complete track and density databases are not provided in electronic form due to their size and the complexity of processing specific locations, altitudes, and times.
READ LESS

Summary

Airspace encounter models, covering close encounter situations that may occur after standard separation assurance has been lost, are a critical component in the safety assessment of aviation procedures and collision avoidance systems. Of particular relevance to Unmanned Aircraft Systems (UAS) is the potential for encountering general aviation aircraft that are...

READ MORE

Correlated encounter model for cooperative aircraft in the National Airspace System, version 1.0

Published in:
MIT Lincoln Laboratory Report ATC-344

Summary

This document describes a new cooperative aircraft encounter model for the National Airspace System (NAS). The model is used to generate random close encounters between transponder-equipped (cooperative) aircraft in fast-time Monte Carlo simulations to evaluate collision avoidance system concepts. An extensive set of radar data from across the United States, including more than 120 sensors and collected over a period of nine months, was used to build the statistical relationships in the model to ensure that the encounters that are generated are representative of actual events in the airspace.
READ LESS

Summary

This document describes a new cooperative aircraft encounter model for the National Airspace System (NAS). The model is used to generate random close encounters between transponder-equipped (cooperative) aircraft in fast-time Monte Carlo simulations to evaluate collision avoidance system concepts. An extensive set of radar data from across the United States...

READ MORE

A Bayesian approach to aircraft encounter modeling

Published in:
AIAA Guidance, Navigation, and Control Conf., 18-21 August 2008.

Summary

Aircraft encounter models can be used in a variety of analyses, including collision avoidance system safety assessment, sensor design trade studies, and visual acquisition analysis. This paper presents an approach to airspace encounter model construction based on Markov models estimated from radar data. We use Bayesian networks to represent the distribution over initial states and dynamic Bayesian networks to represent transition probabilities. We apply Bayesian statistical techniques to identify the relationships between the variables in the model to best leverage a large volume of raw aircraft track data obtained from more than 130 radars across the United States.
READ LESS

Summary

Aircraft encounter models can be used in a variety of analyses, including collision avoidance system safety assessment, sensor design trade studies, and visual acquisition analysis. This paper presents an approach to airspace encounter model construction based on Markov models estimated from radar data. We use Bayesian networks to represent the...

READ MORE

Electro-optical system analysis for sense and avoid

Published in:
AIAA Guidance, Navigation, and Control Conf. and Exhibit, 19-21 August 2008.

Summary

This paper presents a parametric analysis of the sense and avoid capability for an electro- optical system on unmanned aircraft. Our sensor analysis is based on simulated encounters from a new U.S. airspace encounter model that provides a comprehensive distribution of typical visual flight rule (VFR) aircraft behavior and encounter geometries. We assess the exchange between the sensor field-of-view shape and detection range with the probability of intruder detection prior to near miss. This assessment also includes a trade-off analysis between field-of-view azimuth angle and probability of detection with fixed tracking technology (i.e. pixel array sensor and tracking algorithm). Initial results suggest that current standards are suitable for detecting larger aircraft but may not be ideal for small aircraft such as ultralights.
READ LESS

Summary

This paper presents a parametric analysis of the sense and avoid capability for an electro- optical system on unmanned aircraft. Our sensor analysis is based on simulated encounters from a new U.S. airspace encounter model that provides a comprehensive distribution of typical visual flight rule (VFR) aircraft behavior and encounter...

READ MORE

Hazard alerting using line-of-sight rate

Published in:
AIAA Guidance, Navigation, and Control Conf., 18-21 August 2008.

Summary

This paper presents an analysis of an electro-optical hazard alerting system based on intruder line-of-sight rate. We use a recently-developed airspace encounter model to analyze intruder line-of-sight rate behavior prior to near miss. We look at a simple hazard alerting system that alerts whenever the line-of-sight rate drops below some set threshold. Simulations demonstrate that such an approach, regardless of the chosen threshold, leads to frequent false alerts. We explain how the problem of hazard alerting can also be formulated as a partially observable Markov decision process (POMDP) and show how such an approach significantly decreases the false alert rate.
READ LESS

Summary

This paper presents an analysis of an electro-optical hazard alerting system based on intruder line-of-sight rate. We use a recently-developed airspace encounter model to analyze intruder line-of-sight rate behavior prior to near miss. We look at a simple hazard alerting system that alerts whenever the line-of-sight rate drops below some...

READ MORE

Encounter modeling for sense and avoid deployment

Published in:
2008 Integrated Communications, Navigation, and Surveillence Conf., 5-7 May 2008.

Summary

Integrating unmanned aircraft into civil airspace requires the development and certification of systems for sensing and avoiding other aircraft. Because such systems are typically very complex and a high-level of safety must be maintained, rigorous analysis is required before they can be certified for operational use. As part of the certification process, collision avoidance systems need to be evaluated across millions of randomly generated close encounters that are representative of actual operations. New encounter models are under development that capture changes that have occurred in U.S. airspace since earlier models were developed in the 1980s and 1990s. These models capture the characteristics of small, General Aviation aircraft that may not be receiving Air Traffic Control services as well as typically larger aircraft that are squawking a discrete transponder code. Both models allow dynamic changes in airspeed, vertical rates, and turn rates in a way that was not possible previously. This paper describes the process used to construct the encounter models, how the models may be used in the development of sense-and-avoid systems for unmanned aircraft, and their application in an analysis of an electro-optical system for collision avoidance.
READ LESS

Summary

Integrating unmanned aircraft into civil airspace requires the development and certification of systems for sensing and avoiding other aircraft. Because such systems are typically very complex and a high-level of safety must be maintained, rigorous analysis is required before they can be certified for operational use. As part of the...

READ MORE