Publications

Refine Results

(Filters Applied) Clear All

A comparative performance study of TDWR/LLWAS 3 integration algorithms for wind shear detection

Author:
Published in:
Workshop on Wind Shear and Wind Shear Alert Systems, Oklahoma City, 13-15 November, 1996.

Summary

This paper gives a brief overview of the history of the development of the TDWR/LLWAS 3 integration algorithms, a brief overview of the various algorithms, and a discussion of the comparative evaluation of the TDWR, LLWAS 3, and the three candidate TDWR/LLWAS 3 integration algorithms. This is followed by a more detailed description of the TDWR/LLWAS 3 integration algorithm chosen by the FAA for production, and a brief overview of the ITWS/LLWAS 3 integration algorithm.
READ LESS

Summary

This paper gives a brief overview of the history of the development of the TDWR/LLWAS 3 integration algorithms, a brief overview of the various algorithms, and a discussion of the comparative evaluation of the TDWR, LLWAS 3, and the three candidate TDWR/LLWAS 3 integration algorithms. This is followed by a...

READ MORE

The Integrated Terminal Weather System terminal winds product

Author:
Published in:
Lincoln Laboratory Journal, Vol. 7, No. 2, Fall 1994, pp. 475-502.

Summary

The wind in the airspace around an airport impacts both airport safety and operational efficiency. Knowledge of the wind helps controllers and automation systems merge streams of traffic; it is also important for the prediction of storm growth and decay, burn-off of fog and lifting of low ceilings, and wake vortex hazards. This knowledge is provided by the Integrated Terminal Weather System (ITWS) gridded wind product, or Terminal Winds. The Terminal Winds product combines data from a national numerical weather-prediction model, called the Rapid Update Cycle, with observations from ground stations, aircraft reports, and Doppler weather radars to provide estimates of the horizontal wind field in the terminal area. The Terminal Winds analysis differs from previous real-time winds-analysis systems in that it is dominated by Doppler weather-radar data. Terminal Winds uses an analysis called cascade of scales and a new winds-analysis technique based on least squares to take full advantage of the information contained in the diverse data set available in an ITWS. The weather radars provide sufficiently fine-scale winds information to support a 2-km horizontal-resolution analysis and a five-minute update rate. A prototype of the Terminal Winds analysis system was tested at Orlando International Airport in 1992, 1993, and 1995, and at Memphis International Airport in 1994. The field operations featured the first real-time winds analysis combining data from the Federal Aviation Administration TDWR radar and the National Weather Service NEXRAD radar. The evaluation plan is designed to capture both the overall system performance and the performance during convective weather, when the fine-scale analysis is expected to show its greatest benefit.
READ LESS

Summary

The wind in the airspace around an airport impacts both airport safety and operational efficiency. Knowledge of the wind helps controllers and automation systems merge streams of traffic; it is also important for the prediction of storm growth and decay, burn-off of fog and lifting of low ceilings, and wake...

READ MORE

ITWS gridded winds product

Author:
Published in:
Proc. Sixth Conf. on Aviation Weather Systems, 15-20 January 1995, pp. 384-389.

Summary

The Terminal Winds analysis technique was developed to take advantage of the Doppler information available in the terminal area. This technique, Optimal Estimation (OE), uses a minimum error variance technique (least squares) and is closely related to both the state-of-the-art operational non-Doppler winds analysis technique, Optimal Interpolation (OI) (Gandin, 1963) (Daly, 1991), and standard multiple Doppler techniques (Armijo, 1969). This technique was evaluated on data collected in 1992-1993 in Orlando FL, and demonstrated in real time in the Orlando testbed during the summer of 1993 and in the Memphis testbed during the summer of 1994.
READ LESS

Summary

The Terminal Winds analysis technique was developed to take advantage of the Doppler information available in the terminal area. This technique, Optimal Estimation (OE), uses a minimum error variance technique (least squares) and is closely related to both the state-of-the-art operational non-Doppler winds analysis technique, Optimal Interpolation (OI) (Gandin, 1963)...

READ MORE

Summer 1992 Terminal area-Local Analysis and Prediction System (T-LAPS) evaluation

Published in:
MIT Lincoln Laboratory Report ATC-218

Summary

The Integrated Terminal Weather System (ITWS) is a development program initiated by the Federal Administration (FAA) to produce a fully automated, integrated terminal weather information system to improve the safety, efficiency and capacity of terminal area aviation operations. The ITWS will acquire data from FAA and National Weather Service sensors as well as from aircraft in flight in the terminal area. The ITWS will provide Air Traffic personnel with products that are immediately usable without further meteorological interpretation. Among the products are current terminal area weather, short-term (0-30 minute) predictions of significant weather phenomena, and the Terminal Winds product. The terminal winds product is the component of the ITWS which produces estimates of the horizontal winds on a three dimensional grid of points encompassing an airport terminal region. It uses information from a variety of sensors, including Doppler weather radars. In 1992, an operational test of an initial prototype Terminal Winds system was conducted at the MIT Lincoln Laboratory testbed in Orlando, FL. This report describes our evalution of the initial Terminal Winds prototype.
READ LESS

Summary

The Integrated Terminal Weather System (ITWS) is a development program initiated by the Federal Administration (FAA) to produce a fully automated, integrated terminal weather information system to improve the safety, efficiency and capacity of terminal area aviation operations. The ITWS will acquire data from FAA and National Weather Service sensors...

READ MORE

Terminal Doppler Weather Radar (TDWR) Low Level Wind Shear Alert System 3 (LLWAS 3) integration studies at Orlando International Airport Airport in 1991 and 1992

Author:
Published in:
MIT Lincoln Laboratory Report ATC-216

Summary

In 1993 the Federal Aviation Administration (FAA) began deploying two new wind shear detectionsystems: the Terminal Doppler Weather Radar (TDWR) and the third-generation Low Level Windshear Alert System (LLWAS 3). Currently, nine airports are scheduled to receive both a TDWR and an LLWAS 3. This number may eventually increase to as high as 45. When co-located, the systems will be integrated to provide a single set of wind shear alerts and improve system performance. The TDWR production schedule required one of three integration algorithms to be chosen for specification by fall 1991. The three algorithms are the prototype integration algorithm developed at the National Center for Atmospheric Research (NCAR) and two algorithms developed at MIT Lincoln Laboratory (MIT/LL). To assess the performance of the three algorithms, MIT/LL performed a study of the integration, TDWR, and LLWAS 3 algorithms at Orlando International Airport in the summer of 1992. We discuss results of the 1991 comparative study and a follow-up study of the TDWR, LLWAS 3, and Message Level integration algorithms at Orlando in 1992. All of the algorithms met the requirement of detecting 90 percent of microburst level wind shear with loss events. LLWAS 3, Build 5 TDWR, and the MIT/LL integration algorithms run with Build 5 TDWR, all met the requirement that less than 10 percent of wind shear alerts be false. The NCAR prototype did not utilize Build 5 TDWR. Build 4 TDWR and all integration algorithms run with Build 4 TDWR did not meet the false-alert requirement. Detailed descriptions of the algorithms are given. The methodology for estimating various algoirthm performance statistics based on a comparison with a dual-Doppler algorithm is detailed.
READ LESS

Summary

In 1993 the Federal Aviation Administration (FAA) began deploying two new wind shear detectionsystems: the Terminal Doppler Weather Radar (TDWR) and the third-generation Low Level Windshear Alert System (LLWAS 3). Currently, nine airports are scheduled to receive both a TDWR and an LLWAS 3. This number may eventually increase to...

READ MORE

LLWAS II and LLWAS III performance evaluation

Author:
Published in:
Proc. Fifth Int. Conf. on Aviation Weather Systems, 2-6 August 1993, pp. 204-208.

Summary

Low level wind shear has been identified as a cause or contributing factor in a significant number of aviation accidents. Research has shown that the most dangerous type of wind shear is the microburst (Fujita, et al., 1977 and 1979). Briefly, a microburst is an intense local downdraft that results in a strong divergent outflow near the surface. The diameter of the outflow region may vary from 3 to 10 Km. Although many of these accidents were nonfatal, six of them resulted in a total of 550 lives lost. During the past 17 years, the mainstay of the effort by the Federal Aviation Administration (FAA) to provide wind shear warnings to pilots has been the Low Level Wind Shear Alert System (LLWAS). The system has been redesigned, based on extensive operational experience and new knowledge about the nature of the aviation wind shear hazard (Goff and Gramzow, 1989). In parallel development, the Terminal Doppler Weather Radar (TDWR) has provided a capable alternative for ground-based microburst detection (Turnbull, et al., 1989). Recent studies on the integration of LLWAS with TDWR have established the value of a combined TDWR/LLWAS wind shear detection system (Cole and Todd, 1993) The LLWAS system is being developed in four phases, I, II, III, and IV, which reflect the chronology of operational deployments. The original LLWAS, now called LLWAS I, was designed for the detection of frontal shears under the assumption that hazardous wind shear is associated with large-scale meteorological features (Goff and Gramzow, 1989). This system was deployed at 110 airports between 1977 and 1987. LLWAS I had no microburst detection capability and had excessive false alerts. LLWAS II was developed to reduce the false alert rate of LLWAS I and to provide a modest microburst detection capability. It is a direct response to recommendations by the National Research Council (NRS-NAS, 1983), following the 1982 microburst crash in New Orleans. This upgrade, deployed by modifying the software in LLWAS I, provided an improvement that would not suffer the delays and costs of the major construction that is required for off-airport LLWAS III sensors. These upgrades to LLWAS I were installed between 1988 and 1991. LLWAS II will be the operational wind shear detection system at many airports until the late '90s. LLWAS III was developed in response to the requirements that LLWAS have a microburst detection capability (NRS-NAS, 1983). This system was designed by a combination of computer simulation studies (Wilson and Flueck, 1986) and a successful field test of a prototype at Stapleton International Airport, Denver in Augist 1987 (Smythe, et al., 1989 and Wilson et al., 1991). LLWAS III combines a dense sensor network and a sophisticated Wind Shear/Microburst (WSMB) detection algoritohm to provide a substantial microburst detection capability. The prototype LLWAS III has continued to operate at Stapleton International Airport, Denver since 1987 and has been credited with the "save" of a commercial airliner on July 8, 1989. Nine LLWAS IIIs are being installed this year. LLWAS IV will be deployed at 83 airports in the late '90s. The LLWAS IV wind shear and microburst detection algorithms will be identical to LLWAS III. This system features a full hardware upgrade. Major imporvements include an ice-free sensor and hardware that is more reliable and maintainable. This report provides an evaluation of the effectiveness of LLWAS II and LLWAS III. The TDWR operational test bed at Orlando International Airport, Orlando (MCO) provides a unique data set for this evaluation. This test-bed features data from a 14-sensor LLWAS, the prototype TDWR, FL-2C, operated by MIT/LL, and the University of North Dakota meteorolgical radar (UND). Data from this test bed in the summers of 1991 and 1992 are used to provide an evaluation of LLWAS II and LLWAS III. Since LLWAS IV uses the same wind shear detection algorithm, it is expected that LLWAS III and LLWAS IV will have comparable wind shear detection capabilities.
READ LESS

Summary

Low level wind shear has been identified as a cause or contributing factor in a significant number of aviation accidents. Research has shown that the most dangerous type of wind shear is the microburst (Fujita, et al., 1977 and 1979). Briefly, a microburst is an intense local downdraft that results...

READ MORE

Real-time multiple single Doppler analysis with NEXRAD data

Published in:
26th Int. Conf. on Radar Meteorology, 24-28 May 1993, pp. 460-462.

Summary

As part of the Aviation Weather Development Program of the Federal Aviation Administration, a high resolution winds analysis system was demonstrated at Orlando International Airport (MCO) in the summer of 1992. The purpose of this demonstration was to illustrate the winds analysis capability possible from operational sensors in the mid '90s. An important part of the design of this system was the development of a procedure for the assimilation of Doppler data from multiple radars. This procedure had to be able to automatically handle regions with missing data from one or more radars, as well as avoid baseline instability. The two operational radars scanning the analysis region were the National Weather Service WSR-88D (NEXRAD) radar located approximately 65 km east and slightly south of MCO, and the MIT prototype Terminal Doppler Weather Radar (TDWR) located 7 km due south of the airport. The base data from these two Doppler radars were the major information component for the analysis system. Our system includes the most recent improvements in the winds analysis portion of the Local Analysis and Prediction System (LAPS) developed by the Forecast Systems Laboratory (McGinely et al., 1991). LAPS is designed to run locally on systems affordable for operational weather offices and takes advantages of all sources of local data at the highest possible resolution. Our implementation for the airport terminal region id called the Terminal-area LAPS (T-LAPS). LAPS formerly had a technique for the assimilation of data from a single Doppler radar. We have modified that technique for the assimilation of data from the two available radars. Our approach, using a Multiple Single Doppler Analysis (MSDA) technique, is more suited for unsupervised operational analysis than traditional Dual Doppler Analysis (DDA), because it is able to handle such problems as incomplete data and baseline instability. We will describe the T-LAPS analysis, with particular attention to our implementation of ASDA, and give some examples from our demonstration.
READ LESS

Summary

As part of the Aviation Weather Development Program of the Federal Aviation Administration, a high resolution winds analysis system was demonstrated at Orlando International Airport (MCO) in the summer of 1992. The purpose of this demonstration was to illustrate the winds analysis capability possible from operational sensors in the mid...

READ MORE

Setting values for TDWR/LLWAS 3 integration parameters

Author:
Published in:
MIT Lincoln Laboratory Report ATC-195

Summary

In 1993 the FAA will begin deploying the Terminal Doppler Weather Radar (TDWR) at selected airports in the United States. Forty-five TDWRs will be collocated with LLWAS 3 systems, and the FAA has decided that all TDWRs collocated with LLWAS 3 systems must be integrated with LLWAS 3 prior to commissioning. The algorithm chosen to perform this integration must be supplied with a set of site-specific parameters. This report gives guidance on how to set the values of theme integration parameters.
READ LESS

Summary

In 1993 the FAA will begin deploying the Terminal Doppler Weather Radar (TDWR) at selected airports in the United States. Forty-five TDWRs will be collocated with LLWAS 3 systems, and the FAA has decided that all TDWRs collocated with LLWAS 3 systems must be integrated with LLWAS 3 prior to...

READ MORE

Terminal Doppler weather radar/low-level wind shear alert system integration algorithm specification, version 1.1

Author:
Published in:
MIT Lincoln Laboratory Report ATC-187

Summary

There will be a number of airports that receive both a Terminal Doppler Weather Radar (TDWR) windshear detection system and a phase III Low-Level Wind Shear Alert System (LLWAS). At those airports, the two systems will need to he combined into a single windshear detection system. This report specifies the algorithm to be used to integrate the two subsystems. The algorithm takes in the alphanumeric runway alert messages generated by each subsystem and joins them into integrated alert messages. The design goals of this windshear detection system are (1) to maintain the probability of detection for hazardous events while reducing the number of false alerts and microburst overwarnings and 2) to increase the accuracy of the loss/gain estimates. The first design goal is accomplished by issuing an integrated alert for an operational runway whenever either subsystem issues a 'strong' alert for that runway; by canceling a 'weak' windshear alert on an operational runway if only one subsystem is making the declaration; and by reducing a 'weak' microburst alert on an operational runway to a 'strong' windshear alert if only one subsystem is making the declaration. The second design goal is accomplished by using the average of the two loss/gain values, when appropriate. TDWR, windshear, LLWAS, algorithm specification.
READ LESS

Summary

There will be a number of airports that receive both a Terminal Doppler Weather Radar (TDWR) windshear detection system and a phase III Low-Level Wind Shear Alert System (LLWAS). At those airports, the two systems will need to he combined into a single windshear detection system. This report specifies the...

READ MORE