Publications

Refine Results

(Filters Applied) Clear All

Comparisons between total lightning data, mesocyclone strength, and storm damage associated with the Florida tornado outbreak of February 23 1998

Published in:
19th Conf. on Severe Local Storms, 14-18 September 1998, pp. 681-684.

Summary

During the late evening and early morning hours of February 22/23 1998, the worst tornado outbreak in recorded history occurred over the peninsula of central Florida. Analysis of KMLB Doppler radar data indicated at least 9 supercells developed over the region, with 4 of the supercells producing tornadoes. These 4 tornadic supercells produced a total of 7 tornadoes, some of them on the ground for tens of miles (Fig. 1.). A total of 42 fatalities were reported with over 260 injured. Monetary losses totaled over 100 million dollars. During this severe weather outbreak, National Weather Service Melbourne, in collaboration with the National Aeronautics and Space Administration and the Massachusetts Institute of Technology, was collecting data from a unique lightning observing system called Lightning Imaging Sensor Data Applications Display (LISDAD). This system has the capability to combine radar reflectivity data collected from the KMLB WSR-88D, cloud to ground data collected from the National Lightning Detection Network, and total lightning data collected from NASA's Lightning Detection And Ranging (LDAR) system. The object of this study is to compare total lightning data collected from the LISDAD system to mesocyclone strength as observed from the KMLB WSR-88D. These data will then be compared to the times of tornadic winds.
READ LESS

Summary

During the late evening and early morning hours of February 22/23 1998, the worst tornado outbreak in recorded history occurred over the peninsula of central Florida. Analysis of KMLB Doppler radar data indicated at least 9 supercells developed over the region, with 4 of the supercells producing tornadoes. These 4...

READ MORE

Observations of total lightning associated with severe convection during the wet season in Central Florida

Published in:
19th Conf. on Severe Local Storms, 14-18 September 1998, 635-638.

Summary

This paper will discuss findings of a collaborative lightning research project between the Massachusetts Institute of Technology, the National Weather Service (NWS) office in Melbourne (MLB), Florida and the National Aeronautics and Space Administration. In August 1996, NWS MLB received a workstation which incorporates data from the KMLB WSR-88D, Cloud to Ground (CG) stroke data from the National Lightning Detection Network (NLDN), and 3D volumetric lightning data collected from the Kennedy Space Centers' Lightning Detection And Ranging (LDAR) system. The two primary objectives of this lightning workstation, called Lightning Imaging Sensor Data Applications Display (L1SDAD), are to: a.) Observe how total lightning relates to severe convective storm morphology over central Florida, and, b.) Compare ground based total lightning data (LDAR) to a satellite based lightning detection system. This presentation will focus on objective #1.
READ LESS

Summary

This paper will discuss findings of a collaborative lightning research project between the Massachusetts Institute of Technology, the National Weather Service (NWS) office in Melbourne (MLB), Florida and the National Aeronautics and Space Administration. In August 1996, NWS MLB received a workstation which incorporates data from the KMLB WSR-88D, Cloud...

READ MORE

The design and evaluation of the Lightning Imaging Sensor Data Applications Display (LISDAD)

Published in:
19th Conf. on Severe Local Storms, 14-18 September 1998, pp. 631-634.

Summary

The ultimate goal of the LISDAD system is to quantify the utility of total lightning infomation in short-term, severe-weather-forecasting operations. Secondary goals were to collect times series of various storm-cell parameters that relate to storm development and electrification and subsequently make these data available for post-facto analysis. To these ends scientists from NASA, NWS, and MIT/LL organized an effort to study the relationship of lightning and severe-weather on a storm-by-storm, and even cell-by-cell basis for as many storms as possible near Melbourne, Florida. Melbourne was chosen as it offers a unique combination of high probability of severe weather and proximity to major relevant sensors, specifically: NASA's total lightning mapping system at Kennedy Space Center (the LDAR system) at KSC [Lennon and Maier, 1991], a NWS / NEXRAD radar at Melbourne, and a prototype Integrated Terminal Weather System (ITWS), at Orlando. The ITWS system obtains cloud-to-ground lightning information from the National Lightning Detection Network (NLDN) via a link to Lexington, MA, and also uses NSSL's Severe Storms Analysis Package (NSSL / SSAP) to obtain information about various storm-cell parameters
READ LESS

Summary

The ultimate goal of the LISDAD system is to quantify the utility of total lightning infomation in short-term, severe-weather-forecasting operations. Secondary goals were to collect times series of various storm-cell parameters that relate to storm development and electrification and subsequently make these data available for post-facto analysis. To these ends...

READ MORE

Global validation of single-station Schumann resonance lightning location

Published in:
J. Atmos. Sol.-Terr. Phys., Vol. 60, No. 7-9., May-June 1998, pp. 701-712.

Summary

Global measurements of large, optically bright lightning events from the Optical Transient Detector (OTD) satellite are used to validate estimates of lightning location from single-station Schumann resonance (SR) data. Bearing estimates are obtained through conventional magnetic direction-finding techniques, while source range is estimated from the range-dependent impedance spectrum of an individual SR transients. An analysis of 40 such transients suggests that single-station techniques can locate lightning globally with an accuracy of 1-2 Mm. This is confirmed by further validation at close ranges from flashes detected by the National Lightning Detection Network (NLDN). Observations with both OTD and SR systems may be useful for globally locating lightning with necessary, if not sufficient, characteristics to trigger mesospheric sprites.
READ LESS

Summary

Global measurements of large, optically bright lightning events from the Optical Transient Detector (OTD) satellite are used to validate estimates of lightning location from single-station Schumann resonance (SR) data. Bearing estimates are obtained through conventional magnetic direction-finding techniques, while source range is estimated from the range-dependent impedance spectrum of an...

READ MORE

Performance characteristics of an algorithm used to remove anomolous propagation from the NEXRAD data

Published in:
28th Conf. on Radar Meteorology, 7-12 September 1997, pp. 317-319.

Summary

An important limitation of precipitation sensors is contamination from ground clutter targets under conditions of anomalous propagation (AP). This problem can be mitigated significantly by high-pass clutter filters such as used by the Terminal Doppler Weather Radar (TDWR) and Next Generation Weather Radar (NEXRAD) systems....MIT Lincoln Laboratory (MIT/LL) has developed and tested an algorithm that removes AP from the NEXRAD reflectivity data. In this paper, we will first provide a brief description of the algorithm. Next we will present the truthing methodology used to identify AP. Then, we will show the algorithm performance results and failure mechanisms with this initial version. Finally, we consider refinements to improve the algorithm's performance.
READ LESS

Summary

An important limitation of precipitation sensors is contamination from ground clutter targets under conditions of anomalous propagation (AP). This problem can be mitigated significantly by high-pass clutter filters such as used by the Terminal Doppler Weather Radar (TDWR) and Next Generation Weather Radar (NEXRAD) systems....MIT Lincoln Laboratory (MIT/LL) has developed...

READ MORE

Initial comparison of lightning mapping with operational time-of-arrival and interferometric systems

Published in:
J. Geophys. Res., Vol. 102, No. D10, 27 May 1997, pp. 11,071-11,085.

Summary

The mapping of lightning radiation sources produced by the operational Time-of-Arrival National Aeronautics and Space Administration/Lightning Detection and Ranging (NASA/LDAR) system is compared with that of the Interferometric French Office National D'Etudes et de Recherches Aerospatiales (ONERA-3D) system. The comparison comprises lightning activity in three Florida storms and also individual flashes in one of these storms. Although limited in scope, the comparison analysis show a significant difference in the representation of lightning radiation by each mapping system. During the duration of a flash, the LDAR data show a continuity in time and a three-dimensional structure of radiation sources. The ONERA-3D radiation source data are more intermittent in time and have a more two-dimensional structure. The distinction between the radiation sources mapped by the two systems is also reflected in the difference between their propagation speeds, 10^4-10^5 m s^-1, estimated by the LDAR system, and 10^7-10^8 m s^-1, estimated by the ONERA-3D system. We infer that this difference occurs because most of the radiation sources mapped with LDAR are associated with virgin breakdown processes typical of slowly propagating negative leaders. On the other hand, most of the radiation sources mapped with ONERA3D are produced by fast intermittent negative breakdown processes typical of dart leaders and K changes as they traverse the previously ionized channels. Thus each operational system may emphasize different stages of the lightning flash, but neither appears to map the entire flash.
READ LESS

Summary

The mapping of lightning radiation sources produced by the operational Time-of-Arrival National Aeronautics and Space Administration/Lightning Detection and Ranging (NASA/LDAR) system is compared with that of the Interferometric French Office National D'Etudes et de Recherches Aerospatiales (ONERA-3D) system. The comparison comprises lightning activity in three Florida storms and also individual...

READ MORE

An algorithm to remove anomalous propagation clutter returns from ASR-9 weather channel data using pencil beam radar data

Published in:
Sixth Conf. on Aviation Weather Systems, 15-20 January 1995, pp. 366-371.

Summary

The Integrated Terminal Weather System (ITWS), currently under development by the Federal Aviation Administration (FAA), will produce a fully automated, integrated terminal weather information system to improve the safety, efficiency and capacity of terminal area aviation operations. The ITWS will acquire data from FAA and National Weather Service sensors as well as from aircraft in flight in the terminal area. The ITWS will provide products to Air Traffic personnel that are immediately usable without further meteorological interpretation. These products include current terminal-area weather and short-term (0-30 minute) predictions of significant weather phenomena. The ASR (Airport Surveillance Radar)-9 radar is used in the terminal area to control aircraft. This radar has a weather channel that provides the location and intensity of precipitation (6-level) on the air traffic controllers' radar screen. Controllers use the weather information to aid aircraft in avoiding weather. The ASR-9 radar data are often contaminated by anomalous propagation (AP). Due to the smoothing process used in the ASR-9, controllers are unable to distinguish between AP and valid weather returns. As a result controllers may attempt to vector aircraft around AP, resulting in increased controller workload and decreased terminal airspace capacity. The ITWS product suite includes two precipitation products: ITWS Precipitation (AP removed) and the ASR-9 Precipitation (AP flagged in black). The basis for these products is the ASR-9 weather channel output. Both of these products are created by an algorithm called AP-edit. The ITWS precipitation product is a representation of the location and intensity of precipitation in the TRACON (Terminal Radar Approach Control) area and may be used for situational awareness and as a planning aid for air traffic managers by showing where weather is located relative to traffic flow patterns. The ASR-9 precipitation product explicitly shows where AP clutter is located relative to any ASR-9 radar. Since the ITWS precipitation product docs not replace the ASR-9 weather display on any controllers' displays, the Air Traffic Control (ATC) supervisor or traffic manager may use the ASR-9 precipitation product to indicate the location of AP clutter to any individual controller. The products were demonstrated during the ITWS Demonstration and Validation Operational Test and Evaluation (OT&E) conducted at Memphis and Orlando International Airports during the summer of 1994. This paper describes the AP-edit algorithm and provides a preliminary evaluation of the performance of the algorithm.
READ LESS

Summary

The Integrated Terminal Weather System (ITWS), currently under development by the Federal Aviation Administration (FAA), will produce a fully automated, integrated terminal weather information system to improve the safety, efficiency and capacity of terminal area aviation operations. The ITWS will acquire data from FAA and National Weather Service sensors as...

READ MORE