Publications

Refine Results

(Filters Applied) Clear All

The identification and verification of hazardous convective cells over oceans using visible and infrared satellite observations

Published in:
86th AMS Ann. Mtg., 1st Symposium on Policy Research, 2006.

Summary

Three algorithms based on geostationary visible and infrared (IR) observations, are used to identify convective cells that do (or may) present a hazard to aviation over the oceans. The algorithms were developed at the Naval Research Laboratory (NRL), National Center for Atmospheric Research (NCAR), and Aviation Weather Center (AWC). The performance of the algorithms in detecting potentially hazardous cells is determined through verification based upon data from National Aeronautical and Space Administration (NASA) Tropical Rainfall Measuring Mission (TRMM) satellite observations of lightning and radar reflectivity, which provide internal information about the convective cells. The probability of detection of hazardous cells using the satellite algorithms can exceed 90% when lightning is used as a criterion for hazard, but the false alarm ratio with all three algorithms is consistently large (~40%), thereby exaggerating the presence of hazardous conditions. This shortcoming results in part from limitations resulting from the algorithms' dependence upon visible and IR observations, and can be traced to the widespread prevalence of deep cumulonimbi with weak updrafts but without lightning, whose origin is attributed to pronounced departures from non-dilute ascent.
READ LESS

Summary

Three algorithms based on geostationary visible and infrared (IR) observations, are used to identify convective cells that do (or may) present a hazard to aviation over the oceans. The algorithms were developed at the Naval Research Laboratory (NRL), National Center for Atmospheric Research (NCAR), and Aviation Weather Center (AWC). The...

READ MORE

Development of automated aviation weather products for ocean/remote regions: scientific and practical challenges, research strategies, and first steps

Published in:
10th Conf. on Aviation, Range, and Aerospace Meteorology, 13-16 May 2002, pp. 57-60.

Summary

From the common and recognizable occurrence of convection, to the sporadic and far less visible reach of volcanic ash, meteorological phenomena impose diverse challenges to the efficiency, economic viability, and safety of flight operations across the global oceans. Those challenges are compounded by special difficulties associated with nowcasting and forecasting for remote areas, such as expansive voids in surface observations and soundings, large forecast domains, communications difficulties, and long-duration flights often needing significant forecast updates. Conspicuously lacking over oceans are the observational capabilities that provide key information about the internal structure of convection - notably radar and lightning detection systems. The long-term oceanic weather development program (OW) outlined here seeks to use improved understanding of the phenomenology of oceanic weather hazards along with new observations, model information and processing tools to fashion automated forecast/briefing products supporting remote oceanic routes. A parallel OW objective (outlined by Lindholm and Bums, 2002, this conference volume) supports in-flight product transfer to the cockpit. Established in March, 2001, the OW program is still in its infancy. Thus, we concentrate here upon strategy and the scientific basis for our plans. Although our work has begun with a focus on low and middle latitudes (Pacific, Atlantic and Gulf of Mexico regions), increasing use of polar routes is likely to raise the priority for products tailored to high latitude regions over the next several years.
READ LESS

Summary

From the common and recognizable occurrence of convection, to the sporadic and far less visible reach of volcanic ash, meteorological phenomena impose diverse challenges to the efficiency, economic viability, and safety of flight operations across the global oceans. Those challenges are compounded by special difficulties associated with nowcasting and forecasting...

READ MORE

Showing Results

1-2 of 2