Publications

Refine Results

(Filters Applied) Clear All

A modified transmission line model for cavity backed microstrip antennas

Author:
Published in:
IEEE Antennas and Propagation Society Int. Symp. 1997 Digest, Vol. 4, 13-18 July 1997, pp. 2139-42.

Summary

Spatial power combining of many MMIC amplifiers at millimeter wave frequencies using a fixed array of microstrip antenna elements places unique demands on dielectric media. The substrate must be relatively thick to allow space for MMIC placement, must provide rather high thermal conductivity to disipate MMIC heat, and be of high dielectric constant to shrink circuit element dimensions. Presently, microstrip antenna models require a low dielectric constant substrate to be valid. This paper presents a modified transmission line model on the model of Pues and Van de Capelle which addresses the problems of thick, high microstrip antenna elements. The goal of the model was to guide design of a microstrip array antenna suitable for a spatial power combined module.
READ LESS

Summary

Spatial power combining of many MMIC amplifiers at millimeter wave frequencies using a fixed array of microstrip antenna elements places unique demands on dielectric media. The substrate must be relatively thick to allow space for MMIC placement, must provide rather high thermal conductivity to disipate MMIC heat, and be of...

READ MORE

45-GHz MMIC power combining using a circuit-fed, spatially combined array

Published in:
IEEE Microw. Guid. Wave Lett., Vol. 7, No. 1, January 1997, pp. 15-17.

Summary

We describe the design and measurement of a hybrid-circuit, tile-approach subarray for use in spatial power-combined transmitters. The subarray consists of 16 monolithic millimeter-wave integrated circuit (MMIC) amplifiers, each feeding a circularly polarized cavity-backed microstrip antenna. The average performance across the 43.5-45.5 GHz band is as follows: EIRP 18.3 dBW, dc-RF efficiency 10.3%, effective transmitter power 530 mW, system gain 13.2 dB, and combining efficiency of 46.2%. The minimum axial ratio is 1.2 dB at 43.9 GHz, and the array has a 3% 3-dB axial ratio bandwidth.
READ LESS

Summary

We describe the design and measurement of a hybrid-circuit, tile-approach subarray for use in spatial power-combined transmitters. The subarray consists of 16 monolithic millimeter-wave integrated circuit (MMIC) amplifiers, each feeding a circularly polarized cavity-backed microstrip antenna. The average performance across the 43.5-45.5 GHz band is as follows: EIRP 18.3 dBW...

READ MORE

A 16-element subarray for hybrid-circuit tile-approach spatial power combining

Published in:
IEEE Trans. Microw. Theory Tech., Vol. 44, No. 11, November 1996, pp. 2093-8.

Summary

Three designs for a 4-by-4 are described for use in a spatial power-combined transmitter. The subarrays are constructed using a hybrid-circuit, tile-approach architecture and are composed of 16 cavity-backed, proximity-coupled microstrip antennas, each fed by a 0.5 watt amplifier. Both linearly and circularly polarized subarrays have been constructed for operation over a 10% band centered at 10 GHz. The linearly polarized subarray showed the following peak performance: EIRP greater than 27 dBW, effective transmitter power greater than 5 watts, dc-RF efficiency greater than 20%, and excellent graceful degradation performance.
READ LESS

Summary

Three designs for a 4-by-4 are described for use in a spatial power-combined transmitter. The subarrays are constructed using a hybrid-circuit, tile-approach architecture and are composed of 16 cavity-backed, proximity-coupled microstrip antennas, each fed by a 0.5 watt amplifier. Both linearly and circularly polarized subarrays have been constructed for operation...

READ MORE

Experimental comparison of the radiation efficiency for conventional and cavity backed microstrip antennas

Author:
Published in:
IEEE Antennas and Propagation Society Intl Symp., 21-26 July 1996.

Summary

The radiation efficiency of conventional microstrip antennas generally decreases when the substrate thickness or permittivity is increased because of loss to surface waves. However, constructing a metal cavity around the microstrip antenna prevents the surface wave propagation. Thus, the cavity backed microstrip antenna has been predicted to have increased radiation efficiency. In this paper, we compare conventional and cavity backed microstrip patch antennas on substrates with an electrical thickness of 0.067 ho and dielectric constants of ~r=2.94, 6.15, and 10.2. As one would expect, the radiation efficiency of the conventional patch decreases with increasing dielectric constant, but the efficiency remains relatively constant for the cavity backed patch. In this work, three different methods are used to measure the radiation efficiencies: a far field gain comparison, a Wheeler cap method and an input admittance method.
READ LESS

Summary

The radiation efficiency of conventional microstrip antennas generally decreases when the substrate thickness or permittivity is increased because of loss to surface waves. However, constructing a metal cavity around the microstrip antenna prevents the surface wave propagation. Thus, the cavity backed microstrip antenna has been predicted to have increased radiation...

READ MORE