Publications

Refine Results

(Filters Applied) Clear All

Lincoln Laboratory 1030/1090 MHz monitoring, March-June 2010

Published in:
MIT Lincoln Laboratory Report ATC-372

Summary

Traffic Alert and Collision Avoidance System (TCAS) behavior in New England airspace is being monitored and analyzed, making use of an omni-directional 1030/1090 MHz receiver. The receiver system, located in Lexington, Massachusetts, and operated by MIT Lincoln Laboratory, is used to record data for subsequent analysis in non-real-time. This is the second report of MIT Lincoln Laboratory 1030/1090 MHz monitoring, covering the period March through June 2010. There are three main areas of study: 1. 1030 MHz data related to TCAS air-to-air coordination and other communications, 2. 1030 and 1090 MHz data related to TCAS surveillance, and 3. 1090 MHZ Extended Squitter data, i.e., the Mode S implementation of Automatic Dependent Surveillance-Broadcast (ADS-B). In addition to a summary of results, this report answers specific questions raised during the previous 2009 analysis and attempts to provide insights into the meaning of the data with respect to TCAS operation. This four-month period will be used to baseline 1030/1090 MHz activity in the New England area. Future plans call for the 1030/1090 MHz receiver to be moved so that limited data recording can be performed at various TCAS RA monitoring system (TRAMS) sites throughout the NAS.
READ LESS

Summary

Traffic Alert and Collision Avoidance System (TCAS) behavior in New England airspace is being monitored and analyzed, making use of an omni-directional 1030/1090 MHz receiver. The receiver system, located in Lexington, Massachusetts, and operated by MIT Lincoln Laboratory, is used to record data for subsequent analysis in non-real-time. This is...

READ MORE

Decomposition methods for optimized collision avoidance with multiple threats

Published in:
DASC 2011, 30th IEEE/AIAA Digital Avionics Systems Conference, 16-20 October 2011, pp. 1D2.

Summary

Aircraft collision avoidance systems assist in the resolution of collision threats from nearby aircraft by issuing avoidance maneuvers to pilots. Encounters where multiple aircraft pose a threat, though rare, can be difficult to resolve because a maneuver that might resolve a conflict with one aircraft might induce conflicts with others. Recent efforts to develop robust collision avoidance systems for single-threat encounters have involved modeling the problem as a Markov decision process and applying dynamic programming to solve for the optimal avoidance strategy. Because this methodology does not scale well to multiple threats, this paper evaluates a variety of decomposition methods that leverage the optimal avoidance strategy for single-threat encounters.
READ LESS

Summary

Aircraft collision avoidance systems assist in the resolution of collision threats from nearby aircraft by issuing avoidance maneuvers to pilots. Encounters where multiple aircraft pose a threat, though rare, can be difficult to resolve because a maneuver that might resolve a conflict with one aircraft might induce conflicts with others...

READ MORE

Collision avoidance for general aviation

Published in:
30th AIAA/IEEE Digital Avionics Systems Conf., 16-20 October 2011.

Summary

The Traffic Alert and Collision Avoidance System (TCAS) is mandated on all large transport aircraft to reduce mid-air collision risk. Since its introduction, no mid-air collisions between TCAS-equipped aircraft have occurred in the United States. However, General Aviation (GA) aircraft are generally not equipped with TCAS and experience collisions several times per year. There is interest in low-cost collision avoidance systems for GA aircraft to reduce collision risk with other GA aircraft as well as with TCAS-equipped aircraft. Since TCAS was designed for large aircraft that can achieve greater vertical rates, the assumptions made by the system and the associated advisories are not always appropriate for GA aircraft. Modifying the TCAS logic to accommodate GA aircraft is far from straightforward. Even minor changes to TCAS to correct operational issues are difficult to implement due to the interaction of the complex rules defining the logic. Recent work has explored an alternative to the TCAS logic based on optimization with respect to a probabilistic model of aircraft behavior. The model encodes performance constraints of GA aircraft, and a computational technique called dynamic programming allows the optimal collision avoidance strategy to be computed efficiently. Prior work has focused on systems that meet the performance assumptions of the existing TCAS logic. However, these assumptions are not always appropriate for GA aircraft. This paper will present simulation results comparing the existing logic to logic that has been optimized to operate onboard GA aircraft. If both aircraft are equipped with collision avoidance logic, it is important that the advisories be coordinated to prevent both aircraft from climbing or descending. The TCAS logic has a built-in coordination mechanism with which a GA system must maintain compatibility. Several coordination strategies, both with the optimized logic and the current logic, are evaluated in simulation.
READ LESS

Summary

The Traffic Alert and Collision Avoidance System (TCAS) is mandated on all large transport aircraft to reduce mid-air collision risk. Since its introduction, no mid-air collisions between TCAS-equipped aircraft have occurred in the United States. However, General Aviation (GA) aircraft are generally not equipped with TCAS and experience collisions several...

READ MORE

Position validation strategies using partially observable Markov decision processes

Published in:
Proc. 30th IEEE/AIAA Digital Avionics Systems Conference, DASC, 16-20 October 2011, pp. 4A2.

Summary

The collision avoidance system that is currently deployed worldwide relies upon radar beacon surveillance. With its broad deployment over the next decade, aviation surveillance based on Automatic Dependent Surveillance-Broadcast (ADS-B) reports may reduce the need for frequent beacon interrogation over the communication channel, but there is a risk of ADS-B providing erroneous data to the collision avoidance system, resulting in a potential collision. Hence, there is a need to use beacon interrogation to periodically validate ADS-B position reports. Various threshold-based validation strategies based on proximity and closure rate have been suggested to reduce channel congestion while maintaining the reliability of the collision avoidance system. This paper shows how to model the problem of deciding when to validate ADS-B reports as a partially observable Markov decision process, and it explains how to solve for the optimal validation strategy. The effectiveness of this approach is demonstrated in simulation.
READ LESS

Summary

The collision avoidance system that is currently deployed worldwide relies upon radar beacon surveillance. With its broad deployment over the next decade, aviation surveillance based on Automatic Dependent Surveillance-Broadcast (ADS-B) reports may reduce the need for frequent beacon interrogation over the communication channel, but there is a risk of ADS-B...

READ MORE

The Tower Flight Data Manager prototype system

Published in:
DASC 2011, 30th IEEE/AIAA Digital Avionics Systems Conference, 16-20 October 2011, pp. 2C5.

Summary

The Tower Flight Data Manager (TFDM) will serve as the next generation air traffic control tower automation platform for surface and local airspace operations. TFDM provides three primary enhancements over current systems: consolidation of diverse data and information sources into a single platform; electronic data exchange, including flight data entries, within and outside the tower cab; and a suite of decision support capabilities leveraging TFDM's access to external data sources and systems. This paper describes a TFDM prototype system that includes integrated surveillance, flight data, and decision support display components. Enhancements in airport configuration management, runway assignment, taxi routing, sequencing and scheduling, and departure route assurance are expected to yield significant benefits in delay reduction, fuel savings, additional capacity, improved access, enhanced safety, and reduced environmental impact. Data are provided on system performance and air traffic controller acceptance from simulation studies and a preliminary field demonstration at Dallas / Ft. Worth International Airport.
READ LESS

Summary

The Tower Flight Data Manager (TFDM) will serve as the next generation air traffic control tower automation platform for surface and local airspace operations. TFDM provides three primary enhancements over current systems: consolidation of diverse data and information sources into a single platform; electronic data exchange, including flight data entries...

READ MORE

Analysis of open-loop and closed-loop planning for aircraft collision avoidance

Published in:
2011 14th Int. IEEE Conf. on Intelligent Transportation Systems, 5-7 October 2011, pp. 212-217.

Summary

Open-loop planning has been a popular approach for developing aircraft collision avoidance systems. Open-loop planning computes a future plan to follow without anticipation of how future observations can affect the future course of action. Closed-loop planning, in contrast, takes into account the ability to react to future information. This paper explores trade-offs that exist between the two strategies as they apply to aircraft collision avoidance. It demonstrates some of the performance gains that con be realized by adopting a closed-loop planning strategy.
READ LESS

Summary

Open-loop planning has been a popular approach for developing aircraft collision avoidance systems. Open-loop planning computes a future plan to follow without anticipation of how future observations can affect the future course of action. Closed-loop planning, in contrast, takes into account the ability to react to future information. This paper...

READ MORE

Establishing a risk-based separation standard for unmanned aircraft self separation

Published in:
11th AIAA Aviation Technology, Integration, and Operations (ATIO) Conf., 20-22 September 2011.

Summary

Unmanned Aircraft Systems require an ability to sense and avoid other air traffic to gain access to civil airspace and meet requirements in civil aviation regulations. One sense and avoid function is self separation, which requires that aircraft remain well clear. An approach is proposed in this paper to treat well clear as a separation standard, thus posing it as a relative state between aircraft where the risk of collision first reaches an unacceptable level. By this approach, an analytically-derived boundary for well clear can be derived that supports rigorous safety assessment. A preliminary boundary is proposed in both time and distance for the well clear separation standard, and recommendations for future work are made.
READ LESS

Summary

Unmanned Aircraft Systems require an ability to sense and avoid other air traffic to gain access to civil airspace and meet requirements in civil aviation regulations. One sense and avoid function is self separation, which requires that aircraft remain well clear. An approach is proposed in this paper to treat...

READ MORE

A field demonstration of the air traffic control Tower Flight Data Manager prototype

Published in:
HFES 2011, Human Factors and Ergonomics Society 55th Annual Mtg., 19-23 September 2011, p. 61-65.

Summary

The development and evaluation process of the Tower Flight Data Manager prototype at Dallas Ft. Worth airport is described. Key results from the first field evaluation are presented, including lessons learned about making electronic flight information acceptable to controllers. Iteration of the field evaluation methods are discussed for practitioner benefit.
READ LESS

Summary

The development and evaluation process of the Tower Flight Data Manager prototype at Dallas Ft. Worth airport is described. Key results from the first field evaluation are presented, including lessons learned about making electronic flight information acceptable to controllers. Iteration of the field evaluation methods are discussed for practitioner benefit.

READ MORE

Hazard alerting based on probabilistic models

Published in:
AIAA Modeling and Simulation Technologies Conf., 8-11 August 2011.

Summary

Hazard alerting systems alert operators to potential future undesirable events so that action may be taken to mitigate risk. One way to develop a hazard alerting system based on probabilistic models is by using a threshold-based approach, where the probability of the undesirable event without mitigation is compared against a threshold. Another way to develop such a system is to model the system as a Markov decision process and solve for the hazard alerting strategy that maximizes expected utility. This paper analyzes and compares these two methods. The experiments reveal that an expected utility approach performs better than threshold-based approaches when the dynamic stochasticity is high, where accounting for delays or changes in the alert becomes more important. However, for certain system parameters and operating environments, a threshold-based approach may provide comparable performance.
READ LESS

Summary

Hazard alerting systems alert operators to potential future undesirable events so that action may be taken to mitigate risk. One way to develop a hazard alerting system based on probabilistic models is by using a threshold-based approach, where the probability of the undesirable event without mitigation is compared against a...

READ MORE

Accounting for state uncertainty in collision avoidance

Published in:
J. Guidance, Control, and Dynamics, Vol. 34, No. 4, July-August 2011, pp. 951-960.

Summary

An important consideration in the development of aircraft collision avoidance systems is how to account for state uncertainty due to sensor limitations and noise. However, many collision avoidance systems simply use point estimates of the state instead of leveraging the full posterior state distribution. Recently, there has been work on applying decision-theoretic methods to collision avoidance, but the importance of accommodating state uncertainty has not yet been well studied. This paper presents a computationally efficient framework for accounting for state uncertainty based on dynamic programming. Examination of characteristic encounters and Monte Carlo simulations demonstrates that properly handling state uncertainty rather than simply using point estimates can significantly enhance safety and improve robustness to sensor error.
READ LESS

Summary

An important consideration in the development of aircraft collision avoidance systems is how to account for state uncertainty due to sensor limitations and noise. However, many collision avoidance systems simply use point estimates of the state instead of leveraging the full posterior state distribution. Recently, there has been work on...

READ MORE