Publications

Refine Results

(Filters Applied) Clear All

Optically sampled analog-to-digital converters

Published in:
IEEE Trans. Microw. Theory Tech., Vol. 49, No. 10, October 2001, pp. 1840-1853.
Topic:

Summary

Optically sampled analog-to-digital converters (ADCs) combine optical sampling with electronic quantization to enhance the performance of electronic ADCs. In this paper, we review the prior and current work in this field, and then describe our efforts to develop and extend the bandwidth of a linearized sampling technique referred to as phase-encoded optical sampling. The technique uses a dual-output electrooptic sampling transducer to achieve both high linearity and 60-dB suppression of laser amplitude noise. The bandwidth of the technique is extended by optically distributing the post-sampling pulses to an array of time-interleaved electronic quantizers. We report on the performance of a 505-MS/s (megasample per second) optically sampled ADC that includes high-extinction LiNbO(3) 1-to-8 optical time-division demultiplexers. Initial characterization of the 505-MS/s system reveals a maximum signal-to-noise ratio of 51 dB (8.2 bits) and a spur-free dynamic range of 61 dB. The performance of the present system is limited by electronic quantizer noise, photodiode saturation, and preliminary calibration procedures. None of these fundamentally limit this sampling approach, which should enable multigigahertz converters with 12-b resolution. A signal-to-noise analysis of the phase-encoded sampling technique shows good agreement with measured data from the 505-MS/s system.
READ LESS

Summary

Optically sampled analog-to-digital converters (ADCs) combine optical sampling with electronic quantization to enhance the performance of electronic ADCs. In this paper, we review the prior and current work in this field, and then describe our efforts to develop and extend the bandwidth of a linearized sampling technique referred to as...

READ MORE

Sub-Poisson statistics observed in an electronically shuttered and back-illuminated CCD pixel

Author:
Published in:
IEEE Trans. Electron Devices, Vol. 44, No. 1, January 1997, pp. 69-73. Selected Papers on CCD and CMOS Imagers, SPIE Milestone Series, Vol. MS 177, 2003, pp. 169-173.

Summary

The variance versus average signal has been measured for a pixel in an electronically shuttered and back-illuminated CCD imaging array. The measurements demonstrate that, over a certain operating range, the electronic shutter modifies the input Poisson distributed photoelectrons during the collection process such that the charge signal accumulated in the CCD well has a sub-Poisson distribution (variance less than a mean). A simple one-dimensional model has been developed that explains the experimental results.
READ LESS

Summary

The variance versus average signal has been measured for a pixel in an electronically shuttered and back-illuminated CCD imaging array. The measurements demonstrate that, over a certain operating range, the electronic shutter modifies the input Poisson distributed photoelectrons during the collection process such that the charge signal accumulated in the...

READ MORE

Dynamic suppression of interface-state dark current in buried-channel CCDs

Published in:
IEEE Trans. Electron. Devices, Vol. 38, No. 2, February 1991, pp. 285-290.

Summary

It is shown that the time dependence of the carrier generation rate at a depleted surface can be exploited to completely suppress interface-state dark current in buried-channel charge-coupled devices (CCDs). When a surface is switched from an inverted to a depleted state, the generation current recovers with a time constant which is strongly temperature dependent and varies from a few milliseconds at room temperature to nearly 3 h at -80 degrees C. This property can be applied to three- and four-phase CCDs by exchanging charge packets between adjacent phases within a cell at a rate that ensures that each phase remains out of inversion for time that is short in comparison to the recovery time. Measurements of this effect have been made on a CCD imager over the temperature range from -40 degrees C to +22 degrees C, and the results agree well with theory.
READ LESS

Summary

It is shown that the time dependence of the carrier generation rate at a depleted surface can be exploited to completely suppress interface-state dark current in buried-channel charge-coupled devices (CCDs). When a surface is switched from an inverted to a depleted state, the generation current recovers with a time constant...

READ MORE