Publications

Refine Results

(Filters Applied) Clear All

Variable-PRI processing for meteorologic Doppler radars

Published in:
1994 IEEE Natl. Radar Conf., 29-31 March 1994, pp. 85-90.

Summary

In this communication we described how, with nonuniform sampling, the concept of bandlimited extrapolation can be used to obtain unambiguous Doppler velocity estimates in the supra-Nyquist region. The proposed method coherently processes a multi-PRI sample using a generalized form of periodogram analysis. The work is described in the context of meteorologic Doppler processing and includes a discussion of effective suppression for stationary ground clutter when multi-PRI schemes are used.
READ LESS

Summary

In this communication we described how, with nonuniform sampling, the concept of bandlimited extrapolation can be used to obtain unambiguous Doppler velocity estimates in the supra-Nyquist region. The proposed method coherently processes a multi-PRI sample using a generalized form of periodogram analysis. The work is described in the context of...

READ MORE

Status of the Terminal Doppler Weather Radar with deployment underway

Published in:
Proc. Fifth Int. Conf. on Aviation Weather Systems, 2-6 August 1993, pp. 32-34.

Summary

The Federal Aviation Administration (FAA) initiated the Terminal Doppler Weather Radar (TDWR) program in the mid-1980's in response to the need for improved real-time hazardous weather (especially low-altitude wind shear) surveillance in the terminal area (Turnbull, et al., 1989). The initial focus for the TDWR was to provide reliable, fully automated Doppler radar detection of microbursts and gust fronts and 20-minute warning of wind shifts which could effect runway usage. Subsequent operational demonstrations have shown that the overall terminal situational awareness provided by the TDWR color Geographical Situation Display (GSD) depiction of wind shear locations, weather reflectivity and storm motion also yields substantial improvements in terminal operations efficiency for air traffic managers and for airlines. In this paper, we will describe the current status and deployment strategy for the operational systems and recent results from the extensive testing of the radar system concept and of the weather information dissemination approach.
READ LESS

Summary

The Federal Aviation Administration (FAA) initiated the Terminal Doppler Weather Radar (TDWR) program in the mid-1980's in response to the need for improved real-time hazardous weather (especially low-altitude wind shear) surveillance in the terminal area (Turnbull, et al., 1989). The initial focus for the TDWR was to provide reliable, fully...

READ MORE

Coherent processing across multi-PRI waveforms

Published in:
Proc. 26th Int. Conf. on Radar Meteorology, 24-28 May 1993, pp. 232-234.

Summary

Meteorological Doppler radars have typically utilized constant pulse-repetition intervals (PRI) to facilitate clutter filtering and estimation of weather echo spectral moments via pulse-pair or periodogram-based algorithms. Utilization of variable PRIs to support resolution of velocity ambiguities has been discussed, for example by Banjanin and Zrnic, but not implemented owing to difficulties associated with clutter filter design. Recent work by Chornoboy presents design algorithms for time-varying finite impulse response (FIR) filters that achieve Chebyshev or mean-squared error (MSE) optimality when processing multi-PRI waveforms. This paper is a follow-on to that work, treating techniques for post-clutter filter processing (e.g. periodogram estimation) that are appropriate for such waveforms. Our approach involves a least-squares fitting of the signal - sampled at a nonuniform rate - to a weighted sum of uniformly spaces sinusoids. The sinusoids or "basis functions" are chosen to span a Nyquist interval consistent with the longest PRI in the transmitted waveform, and need not be centered at zero Doppler. Determination of the sinusoid weightings - effectively a discrete Fourier transformation (DFT) - and the associated residual between the harmonic fit and the data area accomplished via multiplications of the signal vector with precomputed matrices. The resulting spectrum estimate can be used directly for weather echo moment calculations, or can be inverse-Fourier transformed using conventional techniques to generate a time-domain signal representation. This work has been motivated by a specific application - estimation of weather spectrum moments for a Wind Shear Processor (WSP) modification to the Federal Aviation Administration's Airport Surveillance Radar (ASR-9). Our approach supports candidate low-altitude radial wind estimation algorithms that operate on frequency-domain signal representations and require that the radar's block-stagger PRI and the possibility of velocity ambiguities be accounted for in generating the spectrum estimates. In principle, however, these processing techniques are also applicable to weather radar systems such as WSR-88D and Terminal Doppler Weather Radar (TDWR) where range and Doppler ambiguities are an operational concern.
READ LESS

Summary

Meteorological Doppler radars have typically utilized constant pulse-repetition intervals (PRI) to facilitate clutter filtering and estimation of weather echo spectral moments via pulse-pair or periodogram-based algorithms. Utilization of variable PRIs to support resolution of velocity ambiguities has been discussed, for example by Banjanin and Zrnic, but not implemented owing to...

READ MORE

Summary of triple Doppler data, Orlando 1991

Published in:
MIT Lincoln Laboratory Report ATC-186

Summary

Under Federal Aviation Administration (FAA) sponsorship, Lincoln Laboratory conducted an aviation weather hazard measurement and operational demonstration program during the summer of 1991 near the Orlando International Airport. Three Doppler radars were sited in a triangle around the airport, allowing triple Doppler coverage of thunderstorms and microbursts occurring there. This report contains a summary of all of the microburst producing thunderstorms that occurred within the triple Doppler region that were scanned in a coordinated fashion, during the months of June, July, August, and September, 1991. Statistics on the microburst events are presented to give an overall picture of the available data for use in analysis. The bulk of the report consists of detailed information about each triple Doppler day, including the time, location, and strength of microbursts within the triple Doppler period as well as the availability of data from supporting sensors including the ASR-9-WSR Doppler radar, radiosondes, LLWAS, Mesonet, AWOS, instrumented aircraft, ACARS, interferometer, and corona points.
READ LESS

Summary

Under Federal Aviation Administration (FAA) sponsorship, Lincoln Laboratory conducted an aviation weather hazard measurement and operational demonstration program during the summer of 1991 near the Orlando International Airport. Three Doppler radars were sited in a triangle around the airport, allowing triple Doppler coverage of thunderstorms and microbursts occurring there. This...

READ MORE

Doppler mean velocity estimation - small sample analysis and a new estimator

Published in:
MIT Lincoln Laboratory Report TR-942

Summary

Optimal Doppler velocity estimation, under the constraint of small sample size, is explored for a standard Gaussian signal measurement model and thematic maximum likelihood (ML) and Bayes estimation. Because the model considered depends on a vector parameter [velocity, spectrum width, and signal-to-noise ratio (SNR)], the exact formulation of an ML or Bayes solution involves a system of equations that is neither uncoupled nor explicit in form. Historically, iterative methods have been the most suggested approach to solving the required equations. In addition to being computationally intensive, it is unclear whether iterative methods can be constructed to perform well given a small-sample size and low signal strength. This report takes a different approach and seeks to construct approximate (ML and Bayes) estimators based on the notion of using constrained adaptive models to deal with nuisance parameter removal. A Monte Carlo simulation is used to determine small-sample estimator statistics and to demonstrate true performance bounds in the case of known nuisance values. Performance comparisons between these optional forms and other standard estimators [pulse pairs (PP) and a frequency domain (WP) method] are presented. Performance sensitivity of the optimal algorithms, with respect to uncertainity in the values of model nuisance parameters, is explored.
READ LESS

Summary

Optimal Doppler velocity estimation, under the constraint of small sample size, is explored for a standard Gaussian signal measurement model and thematic maximum likelihood (ML) and Bayes estimation. Because the model considered depends on a vector parameter [velocity, spectrum width, and signal-to-noise ratio (SNR)], the exact formulation of an ML...

READ MORE

High resolution microburst outflow vertical profile data from Huntsville, Alabama, and Denver, Colorado

Author:
Published in:
MIT Lincoln Laboratory Report ATC-163

Summary

The purpose of this report is to present detailed data on microburst outflows recorded by the TDWR testbed radar (FL-2) in Huntsville, Alabama (1986) and Denver, Colorado (1987-88). Whenever possible, a microburst detected within 10 km of the radar was scanned in a vertical direction (RHI) at 1 to 2 degree azimuthal intervals about the center of divergence. The vertical profile of the outflow is pertinent to the detection capability and siting strategy of a single Doppler radar observing the microburst from a horizontal viewing angle. Additionally, outflow features are important in assessing the hazard associated with microbursts as well as the capability of other wind shear detection (LLWAS or ASR). Of particular interest is the variability of outflows depths from case to case and site to site. If the depth across the maximum velocity differential is shallow, an outflow might go undetected or underestimated by a radar, the beam ot which was not viewing the axis of peak divergence. Previous research projects in Denver reported the highest winds in a microburst typically occur near the surface with an average outflow depth (1/2 peak velocity) ranging between 500 and 600 meters: however, the vertical resolution of these data was fairly crude due to the scan strategies utilized. This report provides detailed high resolution microburst outflow vertical profile data pertinent to TDWR system studies based on RHI and closely spaced PPI scans. The median observed outflow depth in Huntsville was 200 meters shallower than in Denver while the median height of the maximum velocity varied from 100 meters AGL in Huntsville to 200 meters AGL in Denver. For those Denver events presented here, we recommend that the TDWR microburst detection scan extend to at least 200 meters AGL and 100 meters if there is adequate clutter suppression.
READ LESS

Summary

The purpose of this report is to present detailed data on microburst outflows recorded by the TDWR testbed radar (FL-2) in Huntsville, Alabama (1986) and Denver, Colorado (1987-88). Whenever possible, a microburst detected within 10 km of the radar was scanned in a vertical direction (RHI) at 1 to 2...

READ MORE

Clutter suppression for Doppler weather radars with multirate sampling schemes

Published in:
MIT Lincoln Laboratory Report ATC-149

Summary

Reliable weather parameter estimates are required of radars such as the Terminal Doppler Weather Radar (TDWR) - a Federal Aviation Administration project - which will automatically detect hazaradous weather phenomena in the vicinity of an airport. Velocity and range aliasing will degrade the quality of these estimates, as will contamination by ground clutter. For radars which operate at short ranges and at low elevation angles, as the TDWR will to detect windshears at the airport surface, clutter contamination is an especiallly severe problem. Multirate pulse trains - pulse trains containing multiple intersample spacings - can extend both the unambiguous velocity and range of a Pulsed Doppler Radar beyond those afforded by pulse trains with a constant intersample spacing; but the usual properties of conventional clutter filter architectures change radically when applied to data collected with a multirate sampling scheme. A brief introduction to the systems and weather considerations fo Doppler Weather Radars is provided and the Pulse-Pair spectral moment estimators are presented. This introduction is followed by a discussion of frequency domain clutter rejection tecniques for Batch PRT (Pulse Repetition Time) sequences - blocks of equispaced samples with the PRT alternating from block to block. The main topic of the report is clutter suppression for Staggered PRT sequences in which the PRT alternates from pulse to pulse. The Staggered PRT scheme has the advantage over the Batch PRT scheme of spatial coherency for estimates of the radar return signal's autocorrelation function at the lags corresponding to the two PRT's. A time-varying filter architecture with multiple transfer functions is presented and analyzed, and its interaction with the Pulse-Pair estimators is explored. Three design techniques for Staggered PRT filters are described and assessed in the context of clutter suppression. The final section of the report summarizes the results for the Batch and Staggered PRT schemes and provides suggestions for further research.
READ LESS

Summary

Reliable weather parameter estimates are required of radars such as the Terminal Doppler Weather Radar (TDWR) - a Federal Aviation Administration project - which will automatically detect hazaradous weather phenomena in the vicinity of an airport. Velocity and range aliasing will degrade the quality of these estimates, as will contamination...

READ MORE

Preliminary results of the 1983 Coordinated Aircraft - Doppler weather radar turbulence experiment, volume 1

Published in:
MIT Lincoln Laboratory Report ATC-137-I

Summary

This report presents results of analyses of coordinated radar-aircraft data acquired form the 1983 experiment conducted at Hanscom AFB, Massachusetts. The objective of the experiment is to assess and validate the current NEXRAD algorithms for estimating aircraft turbulence from volume-scanned Doppler weather observations. Estimates of the turbulence severity index epsilon to the 1/3 power (a quantity used by NEXRAD) computed from radar and aircraft data are presented as a time series along each aircraft track. The radar point estimates of turbulence were averaged horizontally and vertically to yield layered Cartesian maps such as are intended for use by real time ATC controllers and pilots. The derived gust velocity (Ude), also used to indicate the intensity of aircraft encountered turbulence, was computed so that comparisons could be made of the turbulence intensity scales inferred from values of epsilon and U sub de. These quantitative comparisons indicate that for the turbulence generally encountered during the flights, both radar and aircraft estimates of epsilon to the 1/3 power significantly overstate the severity of turbulence as reported by the aircraft pilot. The data analysis also shows that radar-based estimates of epsilon to the 1/3 power, often significantly exceeded aircraft based estimates of epsilon to the 1/3 power. In contrast, the quantity Ude underestimates the aircraft reported turbulence intensity on all the flights. The uncertainty as to operationally useful thresholds for radar epsilon to the 1/3 power, aircraft epsilon to the 1/3 power and Ude is discussed as is the use of spectrum width as a turbulence indicator. It should be noted that the turbulence detection flights used in the study were conducted at ranges such that the radar resolution cell cross range extent was typically 1.5 to 3 km. With such resolution cell size extents, the hypothesis of spatially homogeneous turbulence may not hold and/or the assumed relationship of radar measured spectrum width to kinetic dissipation rate may not be fully accurate.
READ LESS

Summary

This report presents results of analyses of coordinated radar-aircraft data acquired form the 1983 experiment conducted at Hanscom AFB, Massachusetts. The objective of the experiment is to assess and validate the current NEXRAD algorithms for estimating aircraft turbulence from volume-scanned Doppler weather observations. Estimates of the turbulence severity index epsilon...

READ MORE

TDWR clutter residue map generation and usage

Author:
Published in:
MIT Lincoln Laboratory Report ATC-148

Summary

The Terminal Doppler Weather Radar (TDWR) system is designed to provide high quality low altitude Doppler radar data near airports. Ground clutter suppression will be a major challenge to supplying such high quality Doppler data. To confront this challenge the FAA has specified stringent clutter suppression requirements in the TDWR technical specifications. These specifications are designed to provide an effective clutter suppression system. In particular, the specifications require an antenna with narrow beam width and low side-lobes to minimize ground target illumination. Also, a high pass frequency filter (with a stop attenuation in excess of 50 dB) is required to reduce stationary clutter. FInally, a clutter reisdue map editing system is used to remove remaining clutter. This report describes the algorithms used to generate and use the clutter residue editing system. The major issues are discussed followed by a description of the algorithms designed to address these issues. Finally, preliminary experimental results using a clutter residue map are presented.
READ LESS

Summary

The Terminal Doppler Weather Radar (TDWR) system is designed to provide high quality low altitude Doppler radar data near airports. Ground clutter suppression will be a major challenge to supplying such high quality Doppler data. To confront this challenge the FAA has specified stringent clutter suppression requirements in the TDWR...

READ MORE

Automated detection of microburst windshear for terminal doppler weather radar

Author:
Published in:
SPIE, Vol. 846, Digital Image Processing and Visual Communications Technolody in Meteorology, 27-28 October 1987, pp. 61-68.

Summary

An image analysis method is presented for use in detecting strong windshear events, called microbursts, in Doppler weather radar images. This technique has been developed for use in a completely automated surveil-lance system being procured by the Federal Aviation Administration (FAA) for the protection of airport terminal areas. The detection system must distill the rapidly evolving radar imagery into brief textual warning messages in real time, with high reliability.
READ LESS

Summary

An image analysis method is presented for use in detecting strong windshear events, called microbursts, in Doppler weather radar images. This technique has been developed for use in a completely automated surveil-lance system being procured by the Federal Aviation Administration (FAA) for the protection of airport terminal areas. The detection...

READ MORE