Publications

Refine Results

(Filters Applied) Clear All

Wind-shear system cost-benefit analysis

Author:
Published in:
Lincoln Laboratory Journal, Vol. 18, No. 2, August 20, pp. 47-68.

Summary

Mitigating thunderstorm wind-shear threats for aircraft near the ground has been an important issue since the 1970s, when several fatal commercial aviation accidents were attributed to wind shear. Updating the knowledge base for airport wind-shear exposure and effectiveness of detection systems has become critical to the Federal Aviation Administration as they consider options for aging systems and evaluations of new systems.
READ LESS

Summary

Mitigating thunderstorm wind-shear threats for aircraft near the ground has been an important issue since the 1970s, when several fatal commercial aviation accidents were attributed to wind shear. Updating the knowledge base for airport wind-shear exposure and effectiveness of detection systems has become critical to the Federal Aviation Administration as...

READ MORE

Noncontact detection of homemade explosive constituents via photodissociation followed by laser-induced fluorescence

Published in:
Opt. Express, Vol. 18, No. 6, 15 March 2010, pp. 5399-5406.

Summary

Noncontact detection of the homemade explosive constituents urea nitrate, nitromethane and ammonium nitrate is achieved using photodissociation followed by laser-induced fluorescence (PD-LIF). Our technique utilizes a single ultraviolet laser pulse (~7 ns) to vaporize and photodissociate the condensed-phase materials, and then to detect the resulting vibrationally-excited NO fragments via laser-induced fluorescence. PD-LIF excitation and emission spectra indicate the creation of NO in vibrationally-excited states with significant rotational energy, useful for low-background detection of the parent compound. The results for homemade explosives are compared to one another and 2,6- dinitrotoluene, a component present in many military explosives.
READ LESS

Summary

Noncontact detection of the homemade explosive constituents urea nitrate, nitromethane and ammonium nitrate is achieved using photodissociation followed by laser-induced fluorescence (PD-LIF). Our technique utilizes a single ultraviolet laser pulse (~7 ns) to vaporize and photodissociate the condensed-phase materials, and then to detect the resulting vibrationally-excited NO fragments via laser-induced...

READ MORE

Evaluation of enroute Convective Weather Avoidance Models based on planned and observed flight

Published in:
14th Conf. on Aviation, Range, and Aerospace Meteorology, ARAM, 16-21 January 2010.

Summary

The effective management of convective weather in congested air space requires decision support tools that can translate weather information available to air traffic managers into anticipated impact on air traffic operations. The Convective Weather Avoidance Model (CWAM) has been under development at Lincoln Lab under sponsorship of NASA to develop a correlation between pilot behavior and observable weather parameters. To date, the observable weather parameters have been the Corridor Integrated Weather System (CIWS) high resolution Vertically Integrated Liquid (VIL) precipitation map and the CIWS Echo Top product. The CWAM was dependent upon a crude model to define pilot deviations based upon finding weather encounters and then comparing the distance between the planned and actual flight trajectories. Due to a large number of false deviations from this crude model, a significant amount of hand editing was required to use the database. This paper will focus on two areas of work to improve the performance of the enroute convective weather avoidance models. First, an improved automated algorithm to detect weather-related deviations that significantly reduces the percentage of false deviation detections will be presented. This new model includes additional information on each deviation, including the location the decision was made to deviate. The additional information extracted from this algorithm can be used to evaluate the conditions at the decision time which may impact the severity of weather pilots are willing to penetrate. The new deviation detection algorithm has also reduced the amount of hand editing required by removing short cuts taken to reduce the flight time, deviations that occur well past the decision time, and non-weather related reroutes. The second focus of this paper will be the comparison of three different convective weather avoidance models that have been proposed, based upon the analysis of an expanded database of flight deviations. Six weather impact days from 2007 and 2008 have been added to the existing case set from 2006, tripling the number of flight trajectories that can be used in validating the models. In addition to validating the existing CWAM, we will look at additional parameters that may improve the performance of the CWAM.
READ LESS

Summary

The effective management of convective weather in congested air space requires decision support tools that can translate weather information available to air traffic managers into anticipated impact on air traffic operations. The Convective Weather Avoidance Model (CWAM) has been under development at Lincoln Lab under sponsorship of NASA to develop...

READ MORE

Measurement of trace explosive residues in a surrogate operational environment: implications for tactical use of chemical sensing in C-IED operations

Published in:
26th Army Science Conf., 1 December 2008 (Anal. Bioanal. Chem., Vol. 395, pp. 357-369).

Summary

A campaign to measure the amount of trace explosive residues in an operational military environment was conducted on May 27?31, 2007, at the National Training Center at Fort Irwin, CA, USA. The objectives of this campaign were to develop the methods needed to collect and analyze samples from tactical military settings, to use the data obtained to determine what the trace explosive signatures suggest about the potential capabilities of chemical-based means to detect IEDs, and, finally, to present a framework whereby a sound understanding of the signature science can be used to guide development of new sensing technologies and sensor concepts of operation. Through our use of combined background and threat signature data, we have performed statistical analyses to estimate upper limits of notional sensor performance that is limited only by the spatial correlation of the signature chemicals to the threats of interest.
READ LESS

Summary

A campaign to measure the amount of trace explosive residues in an operational military environment was conducted on May 27?31, 2007, at the National Training Center at Fort Irwin, CA, USA. The objectives of this campaign were to develop the methods needed to collect and analyze samples from tactical military...

READ MORE

Moving clutter spectral filter for Terminal Doppler Weather Radar

Author:
Published in:
34th Conf. on Radar Meteorology, 5-9 October 2009.

Summary

Detecting low-altitude wind shear in support of aviation safety and efficiency is the primary mission of the Terminal Doppler Weather Radar (TDWR). The wind-shear detection performance depends directly on the quality of the data produced by the TDWR. At times the data quality suffers from the presence of clutter. Al-though stationary ground clutter signals can be removed by a high-pass filter, moving clutter such as birds and roadway traffic cannot be attenuated using the same technique because their signal power can exist any-where in the Doppler velocity spectrum. Furthermore, because the TDWR is a single-polarization radar, polarimetry cannot be used to discriminate these types of clutter from atmospheric signals. The moving clutter problem is exacerbated at Western sites with dry microbursts, because their low signal-to-noise ratios (SNRs) are more easily masked by un-wanted moving clutter. For Las Vegas (LAS), Nevada, the offending clutter is traffic on roads that are oriented along the radar line of sight near the airport. The radar is located at a significantly higher altitude than the town, improving the visibility to the roads, and giving LAS the worst road clutter problem of all TDWR sites. The Salt Lake City (SLC), Utah, airport is located near the Great Salt Lake, which is the biggest inland staging area for migrating seabirds in the country. It, therefore, suffers from bird clutter, which not only can obscure wind shear signatures but can also mimic them to trigger false alarms. The TDWR "dry" site issues are discussed in more detail by Cho (2008). In order to mitigate these problems, we developed a moving clutter spectral filter (MCSF). In this paper we describe the algorithm and present preliminary test results.
READ LESS

Summary

Detecting low-altitude wind shear in support of aviation safety and efficiency is the primary mission of the Terminal Doppler Weather Radar (TDWR). The wind-shear detection performance depends directly on the quality of the data produced by the TDWR. At times the data quality suffers from the presence of clutter. Al-though...

READ MORE

Progress of Multifunction Phased Array Radar (MPAR) program

Published in:
89th AMS Annual Conf., 11-15 January 2009.

Summary

This paper will discuss the progress the Multi-function Phased Array Radar (MPAR) research program has made over the last 18 months as well as insight into the program strategy for moving forward. Current research activities include evaluating the impact of MPAR's faster scanning rates to aviation weather algorithms (e.g., how it will help in predicting storm growth and decay) and exploring dual polarization for phased array radars. Additionally, the Department of Homeland Security (DHS) has expanded the MPAR multi-agency partnership and is sponsoring research into the mitigation of wind-farm interference on weather sensing. Significant research in semi-conductor technology and advances in transmit/receive module design and phased array architectures are beginning to create a pathway towards system affordability. The MPAR program plan calls for a technology demonstration phase followed by the initiation of a prototype development effort within the next five years. This paper will provide the updates on these and other program activities.
READ LESS

Summary

This paper will discuss the progress the Multi-function Phased Array Radar (MPAR) research program has made over the last 18 months as well as insight into the program strategy for moving forward. Current research activities include evaluating the impact of MPAR's faster scanning rates to aviation weather algorithms (e.g., how...

READ MORE

A novel method for remotely detecting trace explosives

Published in:
Lincoln Laboratory Journal, Vol. 17, No. 2, December 2008, pp. 27-40.

Summary

The development of a technique with the ability to detect trace quantities of explosives at a distance is of critical importance. In numerous situations when explosive devices are prepared, transported, or otherwise handled, quantifiable amounts of the explosive material end up on surfaces. Rapid detection of these chemical residues in a noninvasive standoff manner would serve as an indicator for attempts at concealed assembly or transport of explosive materials and devices. We are investigating the use of a fluorescence-based technique to achieve the necessary detection sensitivity.
READ LESS

Summary

The development of a technique with the ability to detect trace quantities of explosives at a distance is of critical importance. In numerous situations when explosive devices are prepared, transported, or otherwise handled, quantifiable amounts of the explosive material end up on surfaces. Rapid detection of these chemical residues in...

READ MORE

Detection of condensed-phase explosives via laser-induced vaporization, photodissociation, and resonant excitation

Published in:
Appl. Opt., Vol. 47, No. 31, 1 November 2008, pp. 5767-5776.

Summary

We investigate the remote detection of explosives via a technique that vaporizes and photodissociates the condensed-phase material and detects the resulting vibrationally excited NO fragments via laser-induced fluorescence. The technique utilizes a single 7 ns pulse of a tunable laser near 236:2nm to perform these multiple processes. The resulting blue-shifted fluorescence (226 nm) is detected using a photomultiplier and narrowband filter that strongly block the scatter of the pump laser off the solid media while passing the shorter wavelength photons. Various nitro-bearing compounds, including 2,6-dinitrotoluene (DNT), 2,4,6-trinitrotoluene (TNT), pentaerythritol tetranitrate (PETN), and hexahydro-1,3,5- trinitro-1,3,5-triazine (RDX) were detected with a signal-to-noise of 25 dB. The effects of laser fluence, wavelength, and sample morphology were examined.
READ LESS

Summary

We investigate the remote detection of explosives via a technique that vaporizes and photodissociates the condensed-phase material and detects the resulting vibrationally excited NO fragments via laser-induced fluorescence. The technique utilizes a single 7 ns pulse of a tunable laser near 236:2nm to perform these multiple processes. The resulting blue-shifted...

READ MORE

Detecting asteroids with a multi-hypothesis velocity matched filter

Published in:
ACM 2008, 10th Asteroids, Comets Meteors Mtg., 14-18 July 2008.

Summary

We present a novel approach to image processing for optical detection of faint asteroids. Traditional methods of asteroid detection require observations in multiple frames taken over a period of time, but are limited by the signal-to-noise ratio in a single frame. Our approach is based on a velocity matched filter (VMF), which combines the signal from multiple frames in order to increase the aggregate SNR for dim objects. By generating a series of hypotheses about the apparent velocities of potential objects, we create a set of highly sensitive velocity-specific filters, the results of which are combined to achieve complete coverage of the search space. Each filter collapses a set of sidereal frames into a single frame through a shifted sum operation, thus aggregating the signal from the entire frameset and increasing SNR for objects matching the hypothesized velocity. We also present additional signal processing steps designed to filter out a variety of noise sources such as stars, spacecraft, and background gradients.
READ LESS

Summary

We present a novel approach to image processing for optical detection of faint asteroids. Traditional methods of asteroid detection require observations in multiple frames taken over a period of time, but are limited by the signal-to-noise ratio in a single frame. Our approach is based on a velocity matched filter...

READ MORE

Experimental demonstration of remote optical detection of trace explosives.

Published in:
SPIE Vol. 6954, Chemical, Biologica, Radiological, Nuclear and Explosives (CBRNE) Sensing IX, 18-20 March 2008, 695407.

Summary

MIT Lincoln Laboratory has developed a concept that could enable remote (10s of meters) detection of trace explosives' residues via a field-portable laser system. The technique relies upon laser-induced photodissociation of nitro-bearing explosives into vibrationally excited nitric oxide (NO) fragments. Subsequent optical probing of the first vibrationally excited state at 236 nm yields narrowband fluorescence at the shorter wavelength of 226 nm. With proper optical filtering, these photons provide a highly sensitive explosives signature that is not susceptible to interference from traditional optical clutter sources (e.g., red-shifted fluorescence). Quantitative measurements of trace residues of TNT have been performed demonstrating this technique using a breadboard system, which relies upon a pulsed optical parametric oscillator (OPO) based laser. Based on these results, performance projections for a fieldable system are made.
READ LESS

Summary

MIT Lincoln Laboratory has developed a concept that could enable remote (10s of meters) detection of trace explosives' residues via a field-portable laser system. The technique relies upon laser-induced photodissociation of nitro-bearing explosives into vibrationally excited nitric oxide (NO) fragments. Subsequent optical probing of the first vibrationally excited state at...

READ MORE