Publications

Refine Results

(Filters Applied) Clear All

Cryogenically cooled, 149 W, Q-switched, YbLiYF4 laser

Published in:
Opt. Lett., Vol. 38, No. 20, 15 October 2013, pp. 4260-1.

Summary

We demonstrate a 149 W Yb:LiYF4 laser with diffraction-limitation beam quality at 995 nm. The laser, Q-switched at 10 kHz pulse repetition frequency, produces linearly polarized 52 ns pulses with a slope efficiency of 73%. The combination of cryogenic cooling and a low (3.5%) quantum defect results in minimal thermo-optic effects and high thermal efficiency. The measured heat load to the cryogen is 0.15 W per watt of output. These results show the potential for significant power scaling of Q-switched Yb:YLF lasers with excellent beam quality.
READ LESS

Summary

We demonstrate a 149 W Yb:LiYF4 laser with diffraction-limitation beam quality at 995 nm. The laser, Q-switched at 10 kHz pulse repetition frequency, produces linearly polarized 52 ns pulses with a slope efficiency of 73%. The combination of cryogenic cooling and a low (3.5%) quantum defect results in minimal thermo-optic...

READ MORE

Gigahertz (GHz) hard X-ray imaging using fast scintillators

Summary

Gigahertz (GHz) imaging technology will be needed at high-luminosity X-ray and charged particle sources. It is plausible to combine fast scintillators with the latest picosecond detectors and GHz electronics for multi-frame hard X-ray imaging and achieve an inter-frame time of elss than 10 ns. The time responses and light yield of LYSO, LaBr3, BaF2 and ZnO are measured using an MCP-PMT detector. Zinc Oxide (ZnO) is an attractive material for fast hard X-ray imaging based on GEANT4 simulations and previous studies, but the measured light yield from the samples is much lower than expected.
READ LESS

Summary

Gigahertz (GHz) imaging technology will be needed at high-luminosity X-ray and charged particle sources. It is plausible to combine fast scintillators with the latest picosecond detectors and GHz electronics for multi-frame hard X-ray imaging and achieve an inter-frame time of elss than 10 ns. The time responses and light yield...

READ MORE

A tunable AC atom interferometer magnetometer

Published in:
QIM 2013, Quantum Information and Measurement, 17-20 June 2013.

Summary

We demonstrate an atom interferometer designed to measure magnetic fields and field gradients. Here, we study various pulse sequences and show how they can be manipulated to filter unwanted frequencies and to enhance desired frequencies.
READ LESS

Summary

We demonstrate an atom interferometer designed to measure magnetic fields and field gradients. Here, we study various pulse sequences and show how they can be manipulated to filter unwanted frequencies and to enhance desired frequencies.

READ MORE

High efficiency coherent beam combining of semiconductor optical amplifiers

Published in:
Opt. Lett., Vol. 37, No. 23, 1 December 2012, pp. 5006-5008.

Summary

We demonstrate 40 W coherently combined output power in a single diffraction-limited beam from a one-dimensional 47-element array of angled-facet slab-coupled optical waveguide amplifiers at 1064 nm. The output from each emitter was collimated and overlapped onto a diffractive optical element combiner using a common transform lens. Phase locking was achieved via active feedback on each amplifier's drive current to maximize the power in the combined beam. The combining efficiency at all current levels was nearly constant at 87%.
READ LESS

Summary

We demonstrate 40 W coherently combined output power in a single diffraction-limited beam from a one-dimensional 47-element array of angled-facet slab-coupled optical waveguide amplifiers at 1064 nm. The output from each emitter was collimated and overlapped onto a diffractive optical element combiner using a common transform lens. Phase locking was...

READ MORE

Characterizing the optical variability of bright blazars: variability-based selection of fermi active galactic nuclei

Summary

We investigate the use of optical photometric variability to select and identify blazars in large-scale time-domain surveys, in part to aid in the identification of blazar counterparts to the ~30% of y -ray sources in the Fermi 2FGL catalog still lacking reliable associations. Using data from the optical LINEAR asteroid survey, we characterize the optical variability of blazars by fitting a damped random walk model to individual light curves with two main model parameters, the characteristic timescales of variability T , and driving amplitudes on short timescales ^sigma. Imposing cuts on minimum T and ^sigma allows for blazar selection with high efficiency E and completeness C. To test the efficacy of this approach, we apply this method to optically variable LINEAR objects that fall within the several arcminute error ellipses of y -ray sources in the Fermi 2FGL catalog. Despite the extreme stellar contamination at the shallow depth of the LINEAR survey, we are able to recover previously associated optical counterparts to Fermi active galactic nuclei with E >/ 88% and C = 88% in Fermi 95% confidence error ellipses having semimajor axis r < 8'. We find that the suggested radio counterpart to Fermi source 2FGL J1649.6+5238 has optical variability consistent with other y -ray blazars and is likely to be the y -ray source. Our results suggest that the variability of the non-thermal jet emission in blazars is stochastic in nature, with unique variability properties due to the effects of relativistic beaming. After correcting for beaming, we estimate that the characteristic timescale of blazar variability is ~3 years in the rest frame of the jet, in contrast with the ~320 day disk flux timescale observed in quasars. The variability-based selection method presented will be useful for blazar identification in time-domain optical surveys and is also a probe of jet physics.
READ LESS

Summary

We investigate the use of optical photometric variability to select and identify blazars in large-scale time-domain surveys, in part to aid in the identification of blazar counterparts to the ~30% of y -ray sources in the Fermi 2FGL catalog still lacking reliable associations. Using data from the optical LINEAR asteroid...

READ MORE

High dynamic range suppressed-bias microwave photonic links using unamplified semiconductor laser source

Published in:
AVFOP 2012: IEEE Avionics, Fiber-Optics and Photonics Tech. Conf., 11-13 September 2012, pp. 28-9.
Topic:
R&D group:

Summary

Microwave photonic (MWP) links with a low noise figure and high dynamic range are required for antenna remoting, radio-over-fiber (RoF), and other advanced applications. MWP links have recently been demonstrated with noise figures approaching 3 dB, without any electrical preamplification, by using low-noise high-power laser sources in conjunction with efficient optical intensity modulators and high-power photodetectors. An alternate approach to noise figure reduction, suitable for sub-octave links, is based on using a high-power laser source and shifting the bias point of an external optical intensity modulator to reduce the average photocurrent and suppress excess link noise. Here, we report the performance of a novel slab-coupled optical waveguide external-cavity laser (SCOWECL) in a suppressed bias MWP link. We compare the performance of this link with a suppressed-bias link using a source comprising a commercial-off-the-shelf (COTS) laser and erbium-doped fiber amplifier (EDFA) and show that MWP links built using SCOW-based emitter technology offer superior performance due to the small-form factor, high-efficiency, low-noise, and high power laser source.
READ LESS

Summary

Microwave photonic (MWP) links with a low noise figure and high dynamic range are required for antenna remoting, radio-over-fiber (RoF), and other advanced applications. MWP links have recently been demonstrated with noise figures approaching 3 dB, without any electrical preamplification, by using low-noise high-power laser sources in conjunction with efficient...

READ MORE

Amplifier-free slab-coupled optical waveguide optoelectronic oscillator systems

Published in:
Opt. Express, Vol. 20, No. 17, 13 August 2012, pp. 19589-19598.
Topic:

Summary

We demonstrate a free-running 3-GHz slab-coupled optical waveguide (SCOW) optoelectronic oscillator (OEO) with low phase-noise (88 dB down from carrier). The SCOW-OEO uses highpower low-noise SCOW components in a single-loop cavity employing 1.5- km delay. The noise properties of our SCOW external-cavity laser (SCOWECL) and SCOW photodiode (SCOWPD) are characterized and shown to be suitable for generation of high spectral purity microwave tones. Through comparisons made with SCOW-OEO topologies employing amplification, we observe the sidemode levels to be degraded by any amplifiers (optical or RF) introduced within the OEO cavity.
READ LESS

Summary

We demonstrate a free-running 3-GHz slab-coupled optical waveguide (SCOW) optoelectronic oscillator (OEO) with low phase-noise (88 dB down from carrier). The SCOW-OEO uses highpower low-noise SCOW components in a single-loop cavity employing 1.5- km delay. The noise properties of our SCOW external-cavity laser (SCOWECL) and SCOW photodiode (SCOWPD) are characterized...

READ MORE

Sub-picosecond pulses at 100 W average power from a Yb:YLF chirped-pulse amplification system

Published in:
Opt. Lett., Vol. 37, No. 13, 1 July 2012, pp. 2700-2702.

Summary

We present a high-repetition-frequency, diode-pumped, and chirped-pulse amplification system operating at 106 W average output with excellent beam quality (M^2 = 1.3), based on cryogenically cooled Yb:YLF. 1 nJ seed pulses, derived from a mode-locked Ti:sapphire laser, are first amplified to 1 mJ pulse energy at 10 kHz repetition frequency in a regenerative amplifier. The second-stage, multipass amplifier increases the pulse energy to 10.6 mJ, resulting in a spectral width of 2.2 nm. The pulses are compressed to 865 fs in duration, which is 1.26 times the transform limit.
READ LESS

Summary

We present a high-repetition-frequency, diode-pumped, and chirped-pulse amplification system operating at 106 W average output with excellent beam quality (M^2 = 1.3), based on cryogenically cooled Yb:YLF. 1 nJ seed pulses, derived from a mode-locked Ti:sapphire laser, are first amplified to 1 mJ pulse energy at 10 kHz repetition frequency...

READ MORE

Impact of semiconductor optical amplifiers in coherent down-conversion microwave photonic links

Published in:
CLEO: Conf. on Lasers and Electro-Optics, 6-11 June 2012.
Topic:
R&D group:

Summary

We compare the impact of conventional semiconductor optical amplifiers (SOAs) and high linearity slab-coupled optical waveguide amplifiers (SCOWAs) on the SFDR of carrier-suppressed coherent down-conversion microwave photonic links.
READ LESS

Summary

We compare the impact of conventional semiconductor optical amplifiers (SOAs) and high linearity slab-coupled optical waveguide amplifiers (SCOWAs) on the SFDR of carrier-suppressed coherent down-conversion microwave photonic links.

READ MORE

Waveguide engineering for hybrid Si/III-V lasers and amplifiers

Published in:
CLEO: Conf. on Lasers and Electro-Optics, 6-11 June 2012.

Summary

Using adiabatic tapers, hybrid silicon / III-V lasers and amplifiers are integrated with conventional thin (t = 0.25 um) silicon waveguides. Amplifiers have ~12 dB intrachip gain, and similar lasers have thresholds of 35 mA.
READ LESS

Summary

Using adiabatic tapers, hybrid silicon / III-V lasers and amplifiers are integrated with conventional thin (t = 0.25 um) silicon waveguides. Amplifiers have ~12 dB intrachip gain, and similar lasers have thresholds of 35 mA.

READ MORE