Publications

Refine Results

(Filters Applied) Clear All

Electrically switchable diffractive waveplates with metasurface aligned liquid crystals

Published in:
Opt. Express, Vol. 24, No. 21, 17 October 2016, 24265-24273.

Summary

Diffractive waveplates and equivalent metasurfaces provide a promising path for applications in thin film beam steering, tunable lenses, and polarization filters. However, fixed metasurfaces alone are unable to be tuned electronically. By combining metasurfaces with tunable liquid crystals, we experimentally demonstrate a single layer device capable of electrically switching a diffractive waveplate design at a measured peak diffraction efficiency of 35%, and a minimum switching voltage of 10V. Furthermore, the nano-scale metasurface aligned liquid crystals are largely independent of variations in wavelength and temperature. We also present a computational analysis of the efficiency limits of liquid crystal based diffractive waveplates, and compare this analysis to experimental measurements.
READ LESS

Summary

Diffractive waveplates and equivalent metasurfaces provide a promising path for applications in thin film beam steering, tunable lenses, and polarization filters. However, fixed metasurfaces alone are unable to be tuned electronically. By combining metasurfaces with tunable liquid crystals, we experimentally demonstrate a single layer device capable of electrically switching a...

READ MORE

The TESS camera: modeling and measurements with deep depletion devices

Summary

The Transiting Exoplanet Survey Satellite, a NASA Explorer-class mission in development, will discover planets around nearby stars, most notably Earth-like planets with potential for follow up characterization. The all-sky survey requires a suite of four wide field-of-view cameras with sensitivity across a broad spectrum. Deep depletion CCDs with a silicon layer of 100 um thickness serve as the camera detectors, providing enhanced performance in the red wavelengths for sensitivity to cooler stars. The performance of the camera is critical for the mission objectives, with both the optical system and the CCD detectors contributing to the realized image quality. Expectations for image quality are studied using a combination of optical ray tracing in Zemax and simulations in Matlab to account for the interaction of the incoming photons with the 100 um silicon layer. The simulations include a probabilistic model to determine the depth of travel in the silicon before the photons are converted to photo-electrons, and a Monte Carlo approach to charge diffusion. The charge diffusion model varies with the remaining depth for the photo-electron to traverse and the strength of the intermediate electric field. The simulations are compared with laboratory measurements acquired by an engineering unit camera with the TESS optical design and deep depletion CCDs. In this paper we describe the performance simulations and the corresponding measurements taken with the engineering unit camera, and discuss where the models agree well in predicted trends and where there are differences compared to observations.
READ LESS

Summary

The Transiting Exoplanet Survey Satellite, a NASA Explorer-class mission in development, will discover planets around nearby stars, most notably Earth-like planets with potential for follow up characterization. The all-sky survey requires a suite of four wide field-of-view cameras with sensitivity across a broad spectrum. Deep depletion CCDs with a silicon...

READ MORE

Resonance fluorescence from an artificial atom in squeezed vacuum

Published in:
Phys. Rev. X, Vol. 6, No. 3, July-September 2016, 031004.

Summary

We present an experimental realization of resonance fluorescence in squeezed vacuum. We strongly couple microwave-frequency squeezed light to a superconducting artificial atom and detect the resulting fluorescence with high resolution enabled by a broadband traveling-wave parametric amplifier. We investigate the fluorescence spectra in the weak and strong driving regimes, observing up to 3.1 dB of reduction of the fluorescence linewidth below the ordinary vacuum level and a dramatic dependence of the Mollow triplet spectrum on the relative phase of the driving and squeezed vacuum fields. Our results are in excellent agreement with predictions for spectra produced by a two-level atom in squeezed vacuum [Phys. Rev. Lett. 58, 2539 (1987)], demonstrating that resonance fluorescence offers a resource-efficient means to characterize squeezing in cryogenic environments.
READ LESS

Summary

We present an experimental realization of resonance fluorescence in squeezed vacuum. We strongly couple microwave-frequency squeezed light to a superconducting artificial atom and detect the resulting fluorescence with high resolution enabled by a broadband traveling-wave parametric amplifier. We investigate the fluorescence spectra in the weak and strong driving regimes, observing...

READ MORE

Broadband Optical Switch Based on Liquid Crystal Dynamic Scattering

Published in:
Optics Express, vol. 24, no. 13

Summary

This work demonstrates a novel broadband optical switch, based on dynamic-scattering effect in liquid crystals (LCs). Dynamic-scattering-mode technology was developed for display applications over four decades ago, but was displaced in favor of the twisted-nematic LCs. However, with the recent development of more stable LCs, dynamic scattering provides advantages over other technologies for optical switching. We demonstrate broadband polarization-insensitive attenuation of light directly passing thought the cell by 4 to 5 orders of magnitude at 633 nm. The attenuation is accomplished by light scattering to higher angles. Switching times of 150 μs to 10% transmission have been demonstrated. No degradation of devices is found after hundreds of switching cycles. The light-rejection mechanism is due to scattering, induced by disruption of LC director orientation with dopant ion motion with an applied electric field. Angular dependence of scattering is characterized as a function of bias voltage.
READ LESS

Summary

This work demonstrates a novel broadband optical switch, based on dynamic-scattering effect in liquid crystals (LCs). Dynamic-scattering-mode technology was developed for display applications over four decades ago, but was displaced in favor of the twisted-nematic LCs. However, with the recent development of more stable LCs, dynamic scattering provides advantages over...

READ MORE

Photonic lantern adaptive spatial mode control in LMA fiber amplifiers

Published in:
Opt. Express, Vol. 24, No. 4, 22 February 2016, pp. 3405-13.

Summary

We demonstrate adaptive-spatial mode control (ASMC) in few-moded double-clad large mode area (LMA) fiber amplifiers by using an all-fiber-based photonic lantern. Three single-mode fiber inputs are used to adaptively inject the appropriate superposition of input modes in a multimode gain fiber to achieve the desired mode at the output. By actively adjusting the relative phase of the single-mode inputs, near-unity coherent combination resulting in a single fundamental mode at the output is achieved.
READ LESS

Summary

We demonstrate adaptive-spatial mode control (ASMC) in few-moded double-clad large mode area (LMA) fiber amplifiers by using an all-fiber-based photonic lantern. Three single-mode fiber inputs are used to adaptively inject the appropriate superposition of input modes in a multimode gain fiber to achieve the desired mode at the output. By...

READ MORE

Photothermal speckle modulation for noncontact materials characterization

Summary

We have developed a noncontact, photothermal materials characterization method based on visible-light speckle imaging. This technique is applied to remotely measure the infrared absorption spectra of materials and to discriminate materials based on their thermal conductivities. A wavelength-tunable (7.5-8.7 um), intensity-modulated, quantum cascade pump laser and a continuous-wave 532 nm probe laser illuminate a sample surface such that the two laser spots overlap. Surface absorption of the intensity-modulated pump laser induces a time-varying thermoelastic surface deformation, resulting in a time-varying 532 nm scattering speckle field from the surface. The speckle modulation amplitude, derived from a series of visible camera images, is found to correlate with the amplitude of the surface motion. By tuning the pump laser's wavelength over a molecular absorption feature, the amplitude spectrum of the speckle modulation is found to correlate to the IR absorption spectrum. As an example, we demonstrate this technique for spectroscopic identification of thin polymeric films. Furthermore, by adjusting the rate of modulation of the pump beam and measuring the associated modulation transfer to the visible speckle pattern, information about the thermal time constants of surface and sub-surface features can be revealed. Using this approach, we demonstrate the ability to distinguish between different materials (including metals, semiconductors, and insulators) based on differences in their thermal conductivities.
READ LESS

Summary

We have developed a noncontact, photothermal materials characterization method based on visible-light speckle imaging. This technique is applied to remotely measure the infrared absorption spectra of materials and to discriminate materials based on their thermal conductivities. A wavelength-tunable (7.5-8.7 um), intensity-modulated, quantum cascade pump laser and a continuous-wave 532 nm...

READ MORE

A near-quantum-limited Josephson traveling-wave parametric amplifier

Published in:
Sci., Vol. 350, No. 6258, 16 October 2015,pp. 307-10.

Summary

Detecting single photon level signals--carriers of both classical and quantum information--is particularly challenging for low-energy microwave frequency excitations. Here we introduce a superconducting amplifier based on a Josephson junction transmission line. Unlike current standing-wave parametric amplifiers, this traveling wave architecture robustly achieves high gain over a bandwidth of several gigahertz with sufficient dynamic range to read out 20 superconducting qubits. To achieve this performance, we introduce a sub-wavelength resonant phase matching technique that enables the creation of nonlinear microwave devices with unique dispersion relations. We benchmark the amplifier with weak measurements, obtaining a high quantum efficiency of 75% (70% including following amplifier noise). With a flexible design based on compact lumped elements, this Josephson amplifier has broad applicability to microwave metrology and quantum optics.
READ LESS

Summary

Detecting single photon level signals--carriers of both classical and quantum information--is particularly challenging for low-energy microwave frequency excitations. Here we introduce a superconducting amplifier based on a Josephson junction transmission line. Unlike current standing-wave parametric amplifiers, this traveling wave architecture robustly achieves high gain over a bandwidth of several gigahertz...

READ MORE

Super-resolution microscopy by movable thin-films with embedded microspheres: resolution analysis

Summary

Microsphere-assisted imaging has emerged as an extraordinary simple technique of obtaining optical super-resolution. This work addresses two central problems in developing this technology: i) methodology of the resolution measurements and ii) limited field-of-view provided by each sphere. It is suggested that a standard method of resolution analysis in far-field microscopy based on convolution with the point-spread function can be extended into the superresolution area. This allows developing a unified approach to resolution measurements, which can be used for comparing results obtained by different techniques. To develop the surface scanning functionality, the high-index (n ~ 2) barium titanate glass microspheres were embedded in polydimethylsiloxane (PDMS) thin-films. It is shown that such films adhere to the surface of nanoplasmonic structures so that the tips of embedded spheres experience the objects' optical near-fields. Based on rigorous criteria, the resolution ~lambda/6-lambda/7 (where lambda is the illumination wavelength) is demonstrated for arrays of Au dimers and bowties. Such films can be translated along the surface of investigated samples after liquid lubrication. It is shown that just after lubrication the resolution is diffraction limited, however the super-resolution gradually recovers as the lubricant evaporates.
READ LESS

Summary

Microsphere-assisted imaging has emerged as an extraordinary simple technique of obtaining optical super-resolution. This work addresses two central problems in developing this technology: i) methodology of the resolution measurements and ii) limited field-of-view provided by each sphere. It is suggested that a standard method of resolution analysis in far-field microscopy...

READ MORE

Snapshot on-chip HDR ROIC architectures

Published in:
Computational Optical Sensing and Imaging, 7-11 June 2015.

Summary

We describe novel digital readout integrated circuits (DROICs) that achieve snapshot on-chip high dynamic range imaging where most commercial systems require a multiple exposure acquisition.
READ LESS

Summary

We describe novel digital readout integrated circuits (DROICs) that achieve snapshot on-chip high dynamic range imaging where most commercial systems require a multiple exposure acquisition.

READ MORE

Coherent beam-combining of quantum cascade amplifier arrays

Summary

We present design, packaging and coherent beam combining of quantum cascade amplifier (QCA) arrays, measurements of QCA phase noise, the drive-current-to-optical-phase transfer function, and the small signal gain for QCAs.
READ LESS

Summary

We present design, packaging and coherent beam combining of quantum cascade amplifier (QCA) arrays, measurements of QCA phase noise, the drive-current-to-optical-phase transfer function, and the small signal gain for QCAs.

READ MORE