Publications

Refine Results

(Filters Applied) Clear All

Geiger-mode avalanche photodiode arrays integrated to all-digital CMOS circuits

Author:
Published in:
Sensors, Vol. 16, No. 495, 2016, doi:10.3390/s16040495.

Summary

This article reviews MIT Lincoln Laboratory's work over the past 20 years to develop photon-sensitive image sensors based on arrays of silicon Geiger-mode avalanche photodiodes. Integration of these detectors to all-digital CMOS readout circuits enable exquisitely sensitive solid-state imagers for lidar, wavefront sensing, and passive imaging.
READ LESS

Summary

This article reviews MIT Lincoln Laboratory's work over the past 20 years to develop photon-sensitive image sensors based on arrays of silicon Geiger-mode avalanche photodiodes. Integration of these detectors to all-digital CMOS readout circuits enable exquisitely sensitive solid-state imagers for lidar, wavefront sensing, and passive imaging.

READ MORE

Versatile alignment layer method for new types of liquid crystal photonic devices

Summary

Liquid crystal photonic devices are becoming increasingly popular. These devices often present a challenge when it comes to creating a robust alignment layer in pre-assembled cells. In this paper, we describe a method of infusing a dye into a microcavity to produce an effective photo-definable alignment layer. However, previous research on such alignment layers has shown that they have limited stability, particularly against subsequent light exposure. As such, we further describe a method of utilizing a pre-polymer, infused into the microcavity along with the liquid crystal, to provide photostability. We demonstrate that the polymer layer, formed under ultraviolet irradiation of liquid crystal cells, has been effectively localized to a thin region near the substrate surface and provides a significant improvement in the photostability of the liquid crystal alignment. This versatile alignment layer method, capable of being utilized in devices from the described microcavities to displays, offers significant promise for new photonics applications.
READ LESS

Summary

Liquid crystal photonic devices are becoming increasingly popular. These devices often present a challenge when it comes to creating a robust alignment layer in pre-assembled cells. In this paper, we describe a method of infusing a dye into a microcavity to produce an effective photo-definable alignment layer. However, previous research...

READ MORE

Silicon Geiger-mode avalanche photodiode arrays for photon-starved imaging

Author:
Published in:
SPIE, Vol. 9492, Advanced Photon Counting Techniques IX, 28 May 2015.

Summary

Geiger-mode avalanche photodiodes (GMAPDs) are capable of detecting single photons. They can be operated to directly trigger all-digital circuits, so that detection events are digitally counted or time stamped in each pixel. An imager based on an array of GMAPDs therefore has zero readout noise, enabling quantum-limited sensitivity for photon-starved imaging applications. In this review, we discuss devices developed for 3D imaging, wavefront sensing, and passive imaging.
READ LESS

Summary

Geiger-mode avalanche photodiodes (GMAPDs) are capable of detecting single photons. They can be operated to directly trigger all-digital circuits, so that detection events are digitally counted or time stamped in each pixel. An imager based on an array of GMAPDs therefore has zero readout noise, enabling quantum-limited sensitivity for photon-starved...

READ MORE

Model of turn-on characteristics of InP-based Geiger-mode avalanche photodiodes suitable for circuit simulations

Published in:
SPIE, Vol. 9492, Advanced Photon Counting Techniques IX, 28 May 2015.

Summary

A model for the turn-on characteristics of separate-absorber-multiplier InP-based Geiger-mode Avalanche Photodiodes (APDs) has been developed. Verilog-A was used to implement the model in a manner that can be incorporated into circuit simulations. Rather than using SPICE elements to mimic the voltage and current characteristics of the APD, Verilog-A can represent the first order nonlinear differential equations that govern the avalanche current of the APD. This continuous time representation is fundamentally different than the piecewise linear characteristics of other models. The model is based on a driving term for the differential current, which is given by the voltage overbias minus the voltage drop across the device?s space-charge resistance RSC. This drop is primarily due to electrons transiting the separate absorber. RSC starts off high and decreases with time as the initial breakdown filament spreads laterally to fill the APD. With constant bias voltage, the initial current grows exponentially until space charge effects reduce the driving function. With increasing current the driving term eventually goes to zero and the APD current saturates. On the other hand, if the APD is biased with a capacitor, the driving term becomes negative as the capacitor discharges, reducing the current and driving the voltage below breakdown. The model parameters depend on device design and are obtained from fitting the model to Monte-Carlo turn-on simulations that include lateral spreading of the carriers of the relevant structure. The Monte-Carlo simulations also provide information on the probability of avalanche, and jitter due to where the photon is absorbed in the APD.
READ LESS

Summary

A model for the turn-on characteristics of separate-absorber-multiplier InP-based Geiger-mode Avalanche Photodiodes (APDs) has been developed. Verilog-A was used to implement the model in a manner that can be incorporated into circuit simulations. Rather than using SPICE elements to mimic the voltage and current characteristics of the APD, Verilog-A can...

READ MORE

A study of crosstalk in a 256 x 256 photon counting imager based on silicon Geiger-mode avalanche photodiodes

Published in:
IEEE Sens. J., Vol. 15, No. 4, April 2015, pp. 2123-32.

Summary

We demonstrate a 256 x 256 passive photon counting imager based on hybridization of back-illuminated silicon Geiger-mode avalanche photodiodes to an all-digital CMOS counting chip. Photon detection efficiencies in the 10%-20% are observed at visible wavelengths. The detection efficiency is currently limited by optical crosstalk that leads to elevation of dark count rates as the bias voltage on the photodiodes is increased. Both the time dependence of dark count activity during a gate time and the spatial structure of dark images were successfully explained using crosstalk-based models.
READ LESS

Summary

We demonstrate a 256 x 256 passive photon counting imager based on hybridization of back-illuminated silicon Geiger-mode avalanche photodiodes to an all-digital CMOS counting chip. Photon detection efficiencies in the 10%-20% are observed at visible wavelengths. The detection efficiency is currently limited by optical crosstalk that leads to elevation of...

READ MORE

Detection statistics in Geiger-mode avalanche photodiode quad-cell arrays with crosstalk and dead time

Published in:
IEEE Sens. J., Vol. 15, No. 4, April 2015, pp. 2133-43.

Summary

The detection statistics of Geiger-mode photodetector subarrays with a combination of reset-time blocking loss and optical crosstalk are investigated. Closed-form expressions are obtained for the means and covariances of the numbers of counts in 2 x 2 subarrays (quad cells) used in Shack-Hartmann wavefront sensors. The predicted wavefront sensing precision is compared with that obtained with a charge-coupled device-based wavefront sensor with readout noise. The results of the theory are also used to predict photon transfer curves for the Geiger-mode device and these are compared with experiment.
READ LESS

Summary

The detection statistics of Geiger-mode photodetector subarrays with a combination of reset-time blocking loss and optical crosstalk are investigated. Closed-form expressions are obtained for the means and covariances of the numbers of counts in 2 x 2 subarrays (quad cells) used in Shack-Hartmann wavefront sensors. The predicted wavefront sensing precision...

READ MORE

Silicon photonics devices for integrated analog signal processing and sampling

Published in:
Nanophotonics, Vol. 3, No. 4-5, 1 August 2014, pp. 313-27.

Summary

Silicon photonics offers the possibility of a reduction in size weight and power for many optical systems, and could open up the ability to build optical systems with complexities that would otherwise be impossible to achieve. Silicon photonics is an emerging technology that has already been inserted into commercial communication products. This technology has also been applied to analog signal processing applications. MIT Lincoln Laboratory in collaboration with groups at MIT has developed a toolkit of silicon photonic devices with a focus on the needs of analog systems. This toolkit includes low-loss waveguides, a high-speed modulator, ring resonator based filter bank, and all-silicon photodiodes. The components are integrated together for a hybrid photonic and electronic analog-to-digital converter. The development and performance of these devices will be discussed. Additionally, the linear performance of these devices, which is important for analog systems, is also investigated.
READ LESS

Summary

Silicon photonics offers the possibility of a reduction in size weight and power for many optical systems, and could open up the ability to build optical systems with complexities that would otherwise be impossible to achieve. Silicon photonics is an emerging technology that has already been inserted into commercial communication...

READ MORE

Impact ionization in AlxGa1-xASySb1-y avalanche photodiodes

Summary

Avalanche photodiodes (APDs) have been fabricated in order to determine the impact ionization coefficients of electrons (alpha) and holes (beta) in AlxGa1-xAsySb1-y lattice matched to GaSb for three alloy compositions: (x=0.40, y=0.035), (x=0.55, y=0.045), and (x=0.65, y=0.054). The impact ionization coefficients were calculated from photomultiplication measurements made on specially designed APDs, which allowed for both pure electron and pure hole injection in the same device. Photo-multiplication measurements were made at temperatures ranging from 77K to 300K for all three alloys. A quasi-physical model with an explicit temperature dependence was used to express the impact ionization coefficients as a function of electric-field strength and temperature. For all three alloys, it was found that alpha < beta at any given temperature. In addition, the values of the impact ionization coefficients were found to decrease as the aluminum concentration of the AlGaAsSb alloy was increased. A value between 1.2 and 4.0 was found for beta/x, which is dependent on temperature, alloy composition, and electric-field strength.
READ LESS

Summary

Avalanche photodiodes (APDs) have been fabricated in order to determine the impact ionization coefficients of electrons (alpha) and holes (beta) in AlxGa1-xAsySb1-y lattice matched to GaSb for three alloy compositions: (x=0.40, y=0.035), (x=0.55, y=0.045), and (x=0.65, y=0.054). The impact ionization coefficients were calculated from photomultiplication measurements made on specially designed...

READ MORE

Slab-coupled optical waveguide (SCOW) devices and photonic integrated circuits (PICs)

Summary

We review recent advances in the development of slab-coupled optical waveguide (SCOW) devices, progress toward a flexible photonic integration platform containing both conventional high-confinement and SCOW ultra-low confinement devices, and applications of this technology.
READ LESS

Summary

We review recent advances in the development of slab-coupled optical waveguide (SCOW) devices, progress toward a flexible photonic integration platform containing both conventional high-confinement and SCOW ultra-low confinement devices, and applications of this technology.

READ MORE

P-sync: a photonically enabled architecture for efficient non-local data access

Summary

Communication in multi- and many-core processors has long been a bottleneck to performance due to the high cost of long-distance electrical transmission. This difficulty has been partially remedied by architectural constructs such as caches and novel interconnect topologies, albeit at a steep cost in terms of complexity. Unfortunately, even these measures are rendered ineffective by certain kinds of communication, most notably scatter and gather operations that exhibit highly non-local data access patterns. Much work has gone into examining how the increased bandwidth density afforded by chip-scale silicon photonic interconnect technologies affects computing, but photonics have additional properties that can be leveraged to greatly accelerate performance and energy efficiency under such difficult loads. This paper describes a novel synchronized global photonic bus and system architecture called P-sync that uses photonics' distance independence to greatly improve performance on many important applications previously limited by electronic interconnect. The architecture is evaluated in the context of a non-local yet common application: the distributed Fast Fourier Transform. We show that it is possible to achieve high efficiency by tightly balancing computation and communication latency in P-sync and achieve upwards of a 6x performance increase on gather patterns, even when bandwidth is equalized.
READ LESS

Summary

Communication in multi- and many-core processors has long been a bottleneck to performance due to the high cost of long-distance electrical transmission. This difficulty has been partially remedied by architectural constructs such as caches and novel interconnect topologies, albeit at a steep cost in terms of complexity. Unfortunately, even these...

READ MORE