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The growth of large, unstructured data­
sets is driving the development of new tech­
nologies for finding items of interest in these 
data. Because of the tremendous expansion 

of data from DNA sequencing, bioinformatics has become 
an active area of research in the supercomputing com­
munity [1, 2]. The Dynamic Distributed Dimensional 
Data Model (D4M) developed at Lincoln Laboratory, and 
available at http://www.mit.edu/~kepner/D4M, has been 
used to accelerate DNA sequence comparison, which is a 
fundamental operation in bioinformatics. 

D4M is an innovation in computer programming 
that combines the advantages of five processing tech­
nologies: triple­store databases, associative arrays, dis­
tributed arrays, sparse linear algebra, and fuzzy algebra. 
Triple­store databases are a key enabling technology for 
handling massive amounts of data and are used by many 
large Internet companies (e.g., Google Big Table). Triple 
stores are highly scalable and run on commodity com­
puters, but lack interfaces to support rapid development 
of the mathematical algorithms used by signal process­
ing experts. D4M provides a parallel linear algebraic 
interface to triple stores. Using D4M, developers can 
create composable analytics with significantly less effort 
than if they used traditional approaches. The central 
mathematical concept of D4M is the associative array 
that combines spreadsheets, triple stores, and sparse lin­
ear algebra. Associative arrays are group theoretic con­
structs that use fuzzy algebra to extend linear algebra to 
words and strings. 

The supercomputing community has taken up 
the challenge of “taming the beast” spawned 
by the massive amount of data available in the 
bioinformatics domain: How can these data 
be exploited faster and better? MIT Lincoln 
Laboratory computer scientists demonstrated 
how a new Laboratory-developed technology, 
the Dynamic Distributed Dimensional Data 
Model (D4M), can be used to accelerate DNA 
sequence comparison, a core operation in 
bioinformatics.

»
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from such an outbreak. Accelerated sequence analy­
sis would also support accelerated bioforensic analy­
sis for attribution of the source (e.g., the specific lab 
in which the strain originated). Thus, improving 
DNA sequencing analysis capabilities has multiple 
significant roles to play in enhancing the full spec­
trum response to a bioweapon attack. With the rapid 
progress being made in DNA sequencing, operational 
use of these technologies is now becoming feasible. 
Real­world samples (e.g., environmental and clinical 
samples) contain complex mixtures of DNA from the 
host or environment, the pathogen(s) of interest, and 
symbiotic bacteria and viruses, thereby leading to a 
jumble of genomic data. Complete analysis of these 
samples requires the application of modern genom­
ics techniques to the study of communities of micro­
bial organisms directly in their natural environments, 
bypassing the need for isolation and lab cultivation of 
individual species (i.e., metagenomics) [5].

With rapidly expanding sequencing capacity, the 
greatest barrier to effective use is efficient and accurate 
algorithms to (1) sort through the extremely complex DNA 
sequence information present in real­world environmental 
and clinical samples, (2) reassemble constituent genomes, 
and (3) identify pathogens and characterize them for genes 
of interest for antibiotic resistance and toxins. Accelerat­
ing the testing process with high­performance databases 
[6] and parallel computing software technologies [7, 8] 
will directly impact the ability to field these systems. 

Computing Challenges in Bioinformatics
 In 2003, the cost of sequencing the first human genome 
was $3 billion. The cost for sequencing has declined 
steadily since then and is projected to drop to $1000 by 
2013 [3]. The dramatic decrease in the cost of obtaining 
genetic sequences (Figure 1) has resulted in an explosion 
of data with a range of applications:
•	 Early detection and identification of bioweapons
•	 Early detection and identification of epidemics
•	 Identification of suspects from genetic samples taken 

from bomb components
•	 Determination of extended family kinship from refer­

ence and forensic DNA samples 
•	 Prediction of externally visible characteristics from 

genetic samples
The computational challenges of these applications 

require Big Data solutions, such as Apache’s Hadoop 
software, for research, development, and testing of algo­
rithms on large sets of data. For example, the Proton II 
sequencer used by Lincoln Laboratory’s biomedical engi­
neers can generate up to 600 GB of data per day. In addi­
tion, energy­efficient solutions must be designed and 
tested for field deployment; for example, the handheld 
Oxford Nanopore sequencer can be connected to a laptop.

The computational requirements for bioinformatics 
rely on a variety of string matching, graph analysis, and 
database technologies. The ability to test and improve 
existing and new algorithms is limited by the compu­
tational requirements necessary to ingest and store the 
required data. 

Consider the specific use case of identifying a specific 
bioweapon after victims experience the onset of symp­
toms. The current state of the art is well illustrated by the 
E. coli outbreak that took place in Germany in the sum­
mer of 2011 (Figure 2a). In this instance, while genetic 
sequencing played a role in confirming the ultimate 
source of the outbreak, it arrived too late to significantly 
impact the number of deaths. 

Figure 2b shows that there are a number of places 
in the “Current” time frames for the sequencing pro­
cess where improved algorithms and computation 
could have a significant impact. Ultimately, with the 
appropriate combination of technologies, it should 
be possible to shorten the timeline for identification 
from weeks to less than one day. A shortened time­
line could significantly reduce the number of deaths 

FIGURE 1. Advances in DNA sequencing technologies are 
rapidly decreasing the costs of DNA sequencing a whole 
human genome (blue line). As a result, the number of 
humans being sequenced is increasing significantly (red 
line). The amount of data being produced is rapidly outpac-
ing computing technology (black line). Together, these drive 
the need for more efficient techniques for extracting infor-
mation from DNA sequences.
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System Architecture 
Sequence algorithm development is often done in high­
level programming environments (e.g., Matlab, Python, 
and Java) that interface to large databases. Lincoln Labo­
ratory researchers, who developed and extended a parallel 
supercomputing system called LLGrid [10], have exten­

sive experience with high­level environments and have 
developed novel technologies that allow an algorithm 
analyst to write parallel database programs in these envi­
ronments [6, 7, 11, 12]. Sequence algorithm research often 
requires many copies of the data to be constructed (in 
parallel) in many formats. A variety of additional statistics 
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FIGURE 2. Example disease outbreak (a) and processing pipeline (b). In the May to July 2011 virulent E. coli outbreak in Ger-
many, the identification of the E. coli source was too late to have substantial impact on illnesses [9]. Improved computing and 
algorithms can play a significant role in reducing the current time of 10–45 days to less than 1 day. 
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are also computed (in parallel) on each copy of the data. 
Together, these formats and statistics allow the analyst to 
intelligently select the algorithms to explore on the basis 
of a particular mission goal.

In the testing phase, an analyst is interactively modi­
fying a selected algorithm by processing all the data (in 
parallel) while exploring a range of parameters. The ana­
lyst repeats these tests until an optimal set of parameters 
is selected for the particular mission goal. Statistics are 
computed to demonstrate the effectiveness and limits of 
the selected algorithm. After testing is completed, the 
algorithm must be tested on a smaller, energy­efficient 
computing system for deployment.

Both the research and testing phases require rapid 
data retrieval. The optimal data storage approach 
depends upon the nature of the data and the analysis. 
Parallel file systems (e.g., Lustre), distributed file systems 
(e.g., Hadoop), and distributed databases (e.g., HBase and 
Accumulo) are all used. Parallel file systems stripe large 
files across many storage devices and are ideal for deliver­
ing high bandwidth to all the processors in a system (i.e., 
sending the data to the compute nodes). Distributed file 
systems place files on the local storage of compute nodes 
and are ideal for processing many different files with the 
same algorithm (i.e., sending the computation to the data 
nodes). Distributed databases index the data contents and 
are ideal for rapid retrieval of specific pieces of data.

Most sequence algorithms are broken down into a 
parse collection, database ingest, and query­compare 
pipeline (Figure 3). Each stage presents different technical 
challenges and requires different engineering approaches. 

Pipeline
The collection step receives data from a sequencer (or 
other data source) and parses the data into a format suit­
able for further analysis. This process begins with attach­
ing metadata to the sequence data so that each collected 
sequence can be uniquely identified. In addition, many 
analysis techniques rely on constructing hash words (or 
mers) of the sequences. A typical hash word length can be 
10 DNA bases (a 10­mer), 20 DNA bases (a 20­mer), or 
even 50 DNA bases (a 50­mer).

The ingestion step takes data from the collection 
step and puts them into a database to allow detailed que­
ries based on the specific contents of the data. Recently 
developed triple­store databases (e.g., Apache HBase 
and Apache Accumulo) are designed to sit on top of the 
Hadoop distributed file system. Hadoop is based on the 
Google Big Table architecture and is the foundation of 
much of the commercial Big Data ecosystem. These data­
bases have been demonstrated on thousands of nodes. 
Typical ingest rates for these databases are 100,000 
entries per second per node [6].

The query step works on a combination of the outputs 
of the collect and ingest steps. In this step, the data are 
combined so as to find the sequence matches required 
by the specific mission. A complete analysis requires one 
query for each DNA base coming out of the sequencer. 
Triple stores are designed to support both high ingest and 
high retrieval rate, and can sustain 100,000 entries per 
second per node. Using 100 compute nodes to retrieve 
and analyze the data from the sequencer will allow the 
proposed system to meet this requirement.

FIGURE 3. Processing pipeline using the Dynamic Distributed Dimensional Data Model (D4M) and triple-store database 
technologies. Sequence data are input as FASTA files (a format commonly used in bioinformatics for representing sequences) 
and parsed into row, column, and values triples. The reference-data triples are converted to D4M associative arrays and 
inserted into a triple-store database. The sample data are stored as D4M associative arrays and saved to files. A D4M pro-
gram then reads each sample file, selects the relevant triples from the database, and computes the top matches.
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Computational Approach
Sequence alignment compares two strings to determine 
how well they match. Sequence alignment is the core 
operation in bioinformatics. BLAST (for Basic Local 
Alignment Search Tool) [13] is the standard software 
package for sequence alignment and consists of 850,000 
lines of mostly C++ code. The runtime of BLAST is a func­
tion of the product of the two sequences being compared. 
For example, the single­core execution time of compar­
ing a 20 Megabase (a length of DNA fragments equal to 
1 million nucleotides) sample with a 500 Megabase refer­
ence is ~100 minutes. The dominant parallel scheme for 
BLAST is to break up the sequences and perform separate 
BLAST calculations on each subsequence. Direct use of 
BLAST to compare a 600 Gigabase collection with a com­
parably sized reference set requires months on a 10,000­
core system. A key goal for bioinformatics is to develop 
faster approaches for rapidly identifying sequences from 
samples. One promising approach is to replace computa­
tions with lookups in a database. 

Just as important as performance is providing envi­
ronments that allow algorithm developers to be pro­
ductive. BLAST is a very large, highly optimized piece 
of software. A typical algorithm developer or biologist 
needs additional tools to quickly explore data and test 
new algorithm concepts. Lincoln Laboratory’s system 
includes the full LLGrid software stack that includes the 
GridEngine scheduler; Lustre parallel file system; Apache 
Hadoop, Accumulo, and HBase; Matlab, GNU Octave, 
MatlabMPI, pMatlab, gridMatlab, LLGridMapReduce, 
and the D4M graph analysis package. This software stack 
has proven to be effective at supporting developers on a 
wide range of applications [10]. Two of these packages are 
particularly important for bioinformatics: the D4M graph 
analysis package and the triple­store databases (Apache 
Accumulo and HBase). 

Software Interfaces
Most modern sequence­alignment algorithms use a hash­
ing scheme in which each sequence is decomposed into 
short words (mers) to accelerate their computations. 
Mathematically, this scheme is equivalent to storing each 
set of sequences in a large sparse matrix where the row is 
the subsequence identifier and the column is the specific 
word (Figure 4). Sequence alignments are computed by 
multiplying the sparse matrices together and selecting 

those combinations of sequences with the highest num­
bers of word matches.

The sparse matrix multiply approach is simple 
and intuitive to most algorithm developers. However, 
using sparse matrices directly has been difficult because 
of a lack of software tools. D4M provides these tools 
that enable the algorithm developer to implement a 
sequence­alignment algorithm on par with BLAST in 
just a few lines of code. D4M also provides a direct inter­
face to high­performance triple­store databases that 
allows new database sequence­alignment techniques to 
be explored quickly.

The key concept in D4M is the associative step that 
allows the user to index sparse arrays with strings instead 
of indices. For example, the associative array entry

A(AB000106.1_1-1343,ggaatctgcc) = 2

shows that the 10­mer ggaatctgcc appears twice in the 
sequence AB000106.1_1-1343. D4M provides a full 
associative array implementation of the linear algebraic 
operations required to write complex algorithms [14, 8]. 
D4M has also been successfully applied to text analysis 
and cyber security applications [15, 16].

Associative arrays provide an intuitive mechanism 
for representing and manipulating triples of data and 
are a natural way to interface with the new class of high­
performance NoSQL triple­store databases (e.g., Google 
Big Table, Apache Accumulo, Apache HBase, NetFlix 
Cassandra, Amazon Dynamo). By using D4M, complex 
queries to these databases can be done with simple array 
indexing operations (Figure 5). For example, to select all 
sequences in a database table T that contain the 10­mer 
ggaatctgcc can be accomplished with the one­line 
D4M statement:

 A = T(:,ggaatctgcc)

Because the results of all queries and D4M functions 
are associative arrays, all D4M expressions are composable 
and can be directly used in linear algebraic calculations. 
The composability of associative arrays stems from the 
ability to define fundamental mathematical operations 
whose results are also associative arrays. Given two 
associative arrays A and B, the results of all the following 
operations will also be associative arrays:

 A + B    A – B    A & B   A|B   A*B
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Associative array composability can be further 
grounded in the mathematical closure of semirings (i.e., 
linear algebraic “like” operations) on multidimensional 
functions of infinite, strict, totally ordered sets (i.e., sorted 
strings). In addition, many of the linear algebraic properties 
of fuzzy algebra can also be directly applied: linear inde­
pendence [17], strong regularity [18], and uniqueness [19].

Software Performance
Triple­store databases are a new paradigm of database 
designed to store enormous amounts of unstructured 
data. They play a key role in a number of large Internet 
companies (e.g., Google Big Table, Amazon Dynamo, 
and NetFlix Cassandra). The open­source Accumulo and 
HBase databases (both of which use the Hadoop distrib­

uted file system) are both based on the Google Big Table 
design. Accumulo was developed by the National Secu­
rity Agency and is widely used in the intelligence com­
munity. Accumulo has been tested and shown to scale 
well on very large systems. The highest published Accu­
mulo performance numbers are from Lincoln Labora­
tory’s LLGrid team [6]. The LLGrid team demonstrated 
650,000 inserts per second using eight dual­core nodes 
and 4,000,000 inserts per second using eight 24­core 
nodes (Figure 6). 

Algorithm Performance
High­performance triple­store databases can acceler­
ate DNA sequence comparison by replacing computa­
tions with lookups. The triple­store database stores the 

RNA reference set
Reference bacteria Unknown bacteria

Collected sample

A1

A1 A2
'

A2

R
ef

er
en

ce
 s

eq
ue

nc
e 

ID

U
nk

no
w

n 
se

qu
en

ce
 ID

Sequence word (10-mer)Sequence word (10-mer)

R
ef

er
en

ce
 s

eq
ue

nc
e 

ID

Unknown sequence ID

SeqID  
G6J0L4R01AUYU3
G6J0L4R01DLKJM
G6J0L4R01D0SEN
G6J0L4R01EOS3L

SeqID 
AB000106.1_1-1343
AB000278.1_1-1410
AB000389.1_1-1508
AB000390.2_1-1428

sequence
ggaatctgcccttgggttcgg
caggcctaacacatgcaagt
ttgatcctggctcagattgaa
catgcaagtcgagcggaaac

sequence
TAGATACTGCTGCCTCCCG
TTTTTTTCGTGCTGCTGCCT
TTATCGGCTGCTGCCTCCC
AGGTTGTCTGCTGCCTCTA

FIGURE 4. Sequence alignment via sparse matrix multiplication. DNA sequences hashed into words (10-mers) can 
be readily expressed as sparse matrices. The alignment of two sets of sequences can then be computed by multiply-
ing the two matrices together. 
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associative array representation of the sequence (see Fig­
ure 4) by creating a unique column for every possible 
10­mer. A row in the database consists of the sequence 
identification (ID) followed by a series of column and 
value pairs. The storage is efficient because only the 
nonempty columns are kept for each row. By using this 
format, the database can quickly look up any sequence 
ID in constant time. By also storing the transpose of the 
associative array, it is possible to look up any 10­mer in 
constant time. D4M hides these details from the user so 
that the database appears to be able to quickly look up 
either rows or columns.

The Accumulo triple store used here can tally data 
as they are inserted. By creating row and column tal­
lies, it is possible to compute the row and column sums 
as the sequences are inserted into the database. The 
sequence data can be viewed as a bipartite graph with 
edges connecting a set of sequence ID vertices with 
a set of 10­mer vertices. The row sums represent the 
number of edges coming out of each sequence ID vertex 
(i.e., the outdegrees). The column sums represent the 
number of edges going into each 10­mer vertex (i.e., 
the indegrees). Figure 7 shows that the vast majority of 
edges occur in very popular 10­mers. However, these 
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FIGURE 5.  D4M binding to a triple store. D4M binds associative arrays to a triple store (Accumulo or HBase), enabling rapid 
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least popular 10­mers are selected because they have the 
most power to uniquely identify the sequence. By subsam­
pling the data to the least popular 10­mers, the volume of 
data that needs to be directly compared is significantly 
reduced. Figures 8, 9, and 10 compare the quality of 
the results produced by subsampling 0.5% of the data 

popular 10­mers have very little power to uniquely 
identify a sequence match. 

The procedure for exploiting the distribution of 
10­mers stored in the database is as follows. First, the 
sample sequence is loaded into a D4M associative array. 
All the unique 10­mers from the sample are extracted and 
used to query the column tally table. The least popular 
10­mers from the reference are then selected from the 
full database table and compared with the sample. The 
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with full 100% sampling. Figure 8 shows that all strong 
matches are detected. Figure 9 shows that all sequences 
with true matches >100 are detected. Figure 10 shows 
that a subsampled match of >10 is always a true match.

The benefit of using D4M in this application is that it 
can significantly reduce programming time and increase 
performance. Figure 11 shows the relative performance and 
software size of sequence alignment implemented using 
BLAST, D4M alone, and D4M with a triple store. In this 
specific example, D4M with a triple store provided a 100× 
coding and a 100× performance improvement over BLAST. 

Future Directions
D4M has the potential to significantly accelerate the key 
bioinformatics operation of DNA sequence comparison. 
Furthermore, the compactness of D4M allows an algorithm 
developer to quickly make changes and explore new algo­
rithms. D4M brings linear algebra to string­based datasets 
and allows the techniques of signal processing to be applied 
to the bioinformatics domain. Combined, these capabilities 
should result in new techniques for rapidly identifying DNA 
sequences for early detection and identification of bioweap­
ons, early detection and identification of epidemics, identi­
fication of suspects from genetic samples taken from bomb 
components, determination of extended family kinship 
from reference and forensic DNA samples, and prediction 
of externally visible characteristics from genetic samples.

Acknowledgments
The authors are indebted to the following individuals 
for their technical contributions to this work: William 
Arcand, William Bergeron, David Bestor, Chansup Byun, 
Matthew Hubbell, Peter Michaleas, David O’Gwynn, 
Andrew Prout, Albert Reuther, Antonio Rosa, and 
Charles Yee. 

References
1. K. Madduri, “High­Performance Metagenomic Data Clus­

tering and Assembly,” SIAM Annual Meeting, 2012, Min­
neapolis, Minn., available online at www.graphanalysis.org/
SIAM­AN12/07_Madduri.pdf.

2. S Reinhardt, “Graph Analytics for Subject­Matter Experts: 
Balancing Standards, Simplicity, and Complexity,” SIAM 
Annual Meeting, 2012, Minneapolis, Minn., available online 
at http://www.graphanalysis.org/workshop2012.html.

3. R.F. Service, “A $1000 Genome by 2013?” Science-
NOW,  July 2011, available online at news.sciencemag.org/
sciencenow/2011/07/a­1000­genome­by­2013.html.

4.  K. Wetterstrand, DNA Sequencing Costs, Data from the 
National Human Genome Research Institute Large­Scale 
Genome Sequencing Program, available online at www.
genome.gov/sequencingcosts, accessed 8 March 2012.

5. K. Chen and L. Pachter, “Bioinformatics for Whole­Genome 
Shotgun Sequencing of Microbial Communities,” PLoS Com-
putational Biology, vol. 1, no. 2: e24, doi:10.1371/journal.
pcbi.0010024, 2005.

6. C. Byun, W. Arcand, D. Bestor, B. Bergeron, M. Hub­
bell, J. Kepner, A. McCabe, P. Michaleas, J. Mullen, D. 
O’Gwynn, A. Prout, A. Reuther, A. Rosa, and C. Yee, “Driv­
ing Big Data with Big Compute,” Proceedings of the 2012 
IEEE High Performance Extreme Computing Conference, 
Waltham, Mass., 2012, available online at http://ieee­hpec.
org/2012/agenda.htm.

7. J. Kepner, Parallel Matlab for Multicore and Multinode 
Computers. SIAM Book Series on Software, Environments 
and Tools (Jack Dongarra, series editor). Philadelphia: SIAM 
Press, 2009.

8. J. Kepner, W. Arcand, W. Bergeron, N. Bliss, R. Bond, C. 
Byun, G. Condon, K. Gregson, M. Hubbell, J. Kurz, A. 
McCabe, P. Michaleas, A. Prout, A. Reuther, A. Rosa, and C. 
Yee, “Dynamic Distributed Dimensional Data Model (D4M) 
Database and Computation System,” Proceedings of the 2012 
IEEE International Conference on Acoustics, Speech and Sig-
nal Processing, 2012, pp. 5349–5352.

9. Robert Koch Institute, Final Presentation and Evaluation of 
Epidemiological Findings in the EHEC O104:H4 Outbreak, 
Germany 2011. Berlin: Robert Koch Institute, 2011, available 
online at www.rki.de.

10. N. Bliss, R. Bond, J. Kepner, H. Kim, and A. Reuther, “Inter­
active Grid Computing at Lincoln Laboratory,” Lincoln Labo-
ratory Journal, vol. 16, no. 1, 2006, pp. 165–216.

11. J. Kepner and J. Gilbert, Graph Algorithms in the Language 

10

100

1000

10,000

100 10,000 1,000,000

D4M

100× smaller
10

0
× 

fa
st

er

Ru
nt

im
e 

(s
)

Code volume (lines)

BLAST

D4M+ triple store

FIGURE 11.  Sequence-alignment implementations. The 
D4M implementation requires 100× less code than BLAST. 
D4M+Triple Store reduces run time by 100× compared to 
BLAST. 



 VOLUME 20, NUMBER 1, 2013   LINCOLN LABORATORY JOURNAL 91

JEREMY KEPNER, DARRELL O. RICKE, AND DYLAN HUTCHISON

Dylan Hutchison is pursuing a bachelor’s 
degree in computer engineering and a 
master’s degree in computer science at 
Stevens Institute of Technology. Inspired 
by the logic of computer science, he ral-
lied for technical exposure through intern-
ships from business application design at 
Brown Brothers Harriman to parallel and 

distributed computing research at Lincoln Laboratory. His recent 
focus is on methods to represent and compensate for uncertainty 
in inference systems such as Bayesian networks.

of Linear Algebra. SIAM Book Series on Software, Environ­
ments and Tools (Jack Dongarra, series editor). Philadelphia: 
SIAM Press, 2011.

12. J. Kepner, W. Arcand, W. Bergeron, C. Byun, M. Hubbell, 
B. Landon, A. McCabe, P. Michaleas, A. Prout, T. Rosa, D. 
Sherrill, A. Reuther, and C. Yee, “Massive Database Analy­
sis on the Cloud with D4M,” Proceedings of the 2011 High 
Performance Embedded Computing Workshop, 2011, avail­
able online at http://www.ll.mit.edu/HPEC/agendas/proc11/
agenda.html. 

13. C. Camacho, G. Coulouris, V. Avagyan, N. Ma, J. Papado­
poulos, K. Bealer, and T.L. Madden, “BLAST+: Architec­
ture and Applications,” BMC Bioinformatics, vol. 10, no. 421, 
doi:10.1186/1471­2105­10­421, 2009. 

14. J. Kepner, “Spreadsheets, Big Tables, and the Algebra of 
Associative Arrays,” Mathematical Association of America & 
American Mathematical Society Joint Mathematics Meet­
ings, SIAM Minisymposium on Applied, Computational, 
and Discrete Mathematics at National Laboratories and Fed­
eral Research Agencies, 4–7 Jan. 2012, available online at 
http://jointmathematicsmeetings.org/meetings/national/
jmm2012/2138_program_friday.html.

15. B.A. Miller, N. Arcolano, M.S. Beard, N.T. Bliss, J. Kepner, 
M.C. Schmidt, and P.J. Wolfe, “A Scalable Signal Process­
ing Architecture for Massive Graph Analysis,” Proceedings of 
the 2012 IEEE International Conference on Acoustics, Speech 
and Signal Processing, 2012, pp. 5329–5332. 

16. N. Arcolano, “Statistical Models and Methods for Anomaly 
Detection in Large Graphs,” SIAM Annual Meeting, Minne­
apolis, Minn., 2012, available online at www.graphanalysis.
org/SIAM­AN12/03_Arcolano.pdf.

17. J. Plavka, “Linear Independences in Bottleneck Algebra and 
Their Coherences with Matroids,” Acta Mathematica Univer-
sitatis Comenianae, vol. 64, no. 2, 1995, pp. 265–271. 

18. P. Butkovic, “Strong Regularity of Matrices—a Survey of 
Results,” Discrete Applied Mathematics, vol. 48, no. 1, 1994, 
pp. 45–68. 

19. M. Gavalec and J. Plavka, “Simple Image Set of Linear Map­
pings in a Max­Min Algebra,” Discrete Applied Mathematics, 
vol. 155, no. 5, 2007, pp. 611–622.

Darrell O. Ricke is staff member in the 
Bioengineering Systems and Technologies 
group. His work focuses on bioinformat-
ics, software development, and data 
analysis for biomedical, forensic, and bio-
defense projects. He received bachelor’s 
degrees in computer science and genetics 
and cell biology, and a master’s degree 

in computer science from the University of Minnesota. He holds a 
doctoral degree in molecular biology from Mayo Graduate School.

Jeremy Kepner is a senior staff member 
in the Computing and Analytics Group. 
He earned a bachelor’s degree with 
distinction in astrophysics from Pomona 
College. After receiving a Department of 
Energy Computational Science Gradu-
ate Fellowship in 1994, he obtained his 
doctoral degree from the Department of 

Astrophysics at Princeton University in 1998 and then joined MIT. 
His research is focused on the development of advanced libraries 
for the application of massively parallel computing to a variety of 
data-intensive signal processing problems. He has published two 
books and numerous articles on this research. He is also the co-
inventor of parallel Matlab, Parallel Vector Tile Optimizing Library 
(PVTOL), Dynamic Distributed Dimensional Data Model (D4M), 
and the Massachusetts Green High Performance Computing Cen-
ter (MGHPCC).

About the Authors


