
82 LINCOLN LABORATORY JOURNAL  VOLUME 20, NUMBER 1, 2013

TAMING BIOLOGICAL BIG DATA WITH D4M

Taming Biological Big
Data with D4M
Jeremy Kepner, Darrell O. Ricke, and Dylan Hutchison

The growth of large, unstructured data­
sets is driving the development of new tech­
nologies for finding items of interest in these
data. Because of the tremendous expansion

of data from DNA sequencing, bioinformatics has become
an active area of research in the supercomputing com­
munity [1, 2]. The Dynamic Distributed Dimensional
Data Model (D4M) developed at Lincoln Laboratory, and
available at http://www.mit.edu/~kepner/D4M, has been
used to accelerate DNA sequence comparison, which is a
fundamental operation in bioinformatics.

D4M is an innovation in computer programming
that combines the advantages of five processing tech­
nologies: triple­store databases, associative arrays, dis­
tributed arrays, sparse linear algebra, and fuzzy algebra.
Triple­store databases are a key enabling technology for
handling massive amounts of data and are used by many
large Internet companies (e.g., Google Big Table). Triple
stores are highly scalable and run on commodity com­
puters, but lack interfaces to support rapid development
of the mathematical algorithms used by signal process­
ing experts. D4M provides a parallel linear algebraic
interface to triple stores. Using D4M, developers can
create composable analytics with significantly less effort
than if they used traditional approaches. The central
mathematical concept of D4M is the associative array
that combines spreadsheets, triple stores, and sparse lin­
ear algebra. Associative arrays are group theoretic con­
structs that use fuzzy algebra to extend linear algebra to
words and strings.

The supercomputing community has taken up
the challenge of “taming the beast” spawned
by the massive amount of data available in the
bioinformatics domain: How can these data
be exploited faster and better? MIT Lincoln
Laboratory computer scientists demonstrated
how a new Laboratory-developed technology,
the Dynamic Distributed Dimensional Data
Model (D4M), can be used to accelerate DNA
sequence comparison, a core operation in
bioinformatics.

»

 VOLUME 20, NUMBER 1, 2013  LINCOLN LABORATORY JOURNAL 83

JEREMY KEPNER, DARRELL O. RICKE, AND DYLAN HUTCHISON

from such an outbreak. Accelerated sequence analy­
sis would also support accelerated bioforensic analy­
sis for attribution of the source (e.g., the specific lab
in which the strain originated). Thus, improving
DNA sequencing analysis capabilities has multiple
significant roles to play in enhancing the full spec­
trum response to a bioweapon attack. With the rapid
progress being made in DNA sequencing, operational
use of these technologies is now becoming feasible.
Real­world samples (e.g., environmental and clinical
samples) contain complex mixtures of DNA from the
host or environment, the pathogen(s) of interest, and
symbiotic bacteria and viruses, thereby leading to a
jumble of genomic data. Complete analysis of these
samples requires the application of modern genom­
ics techniques to the study of communities of micro­
bial organisms directly in their natural environments,
bypassing the need for isolation and lab cultivation of
individual species (i.e., metagenomics) [5].

With rapidly expanding sequencing capacity, the
greatest barrier to effective use is efficient and accurate
algorithms to (1) sort through the extremely complex DNA
sequence information present in real­world environmental
and clinical samples, (2) reassemble constituent genomes,
and (3) identify pathogens and characterize them for genes
of interest for antibiotic resistance and toxins. Accelerat­
ing the testing process with high­performance databases
[6] and parallel computing software technologies [7, 8]
will directly impact the ability to field these systems.

Computing Challenges in Bioinformatics
 In 2003, the cost of sequencing the first human genome
was $3 billion. The cost for sequencing has declined
steadily since then and is projected to drop to $1000 by
2013 [3]. The dramatic decrease in the cost of obtaining
genetic sequences (Figure 1) has resulted in an explosion
of data with a range of applications:
•	 Early detection and identification of bioweapons
•	 Early detection and identification of epidemics
•	 Identification of suspects from genetic samples taken

from bomb components
•	 Determination of extended family kinship from refer­

ence and forensic DNA samples
•	 Prediction of externally visible characteristics from

genetic samples
The computational challenges of these applications

require Big Data solutions, such as Apache’s Hadoop
software, for research, development, and testing of algo­
rithms on large sets of data. For example, the Proton II
sequencer used by Lincoln Laboratory’s biomedical engi­
neers can generate up to 600 GB of data per day. In addi­
tion, energy­efficient solutions must be designed and
tested for field deployment; for example, the handheld
Oxford Nanopore sequencer can be connected to a laptop.

The computational requirements for bioinformatics
rely on a variety of string matching, graph analysis, and
database technologies. The ability to test and improve
existing and new algorithms is limited by the compu­
tational requirements necessary to ingest and store the
required data.

Consider the specific use case of identifying a specific
bioweapon after victims experience the onset of symp­
toms. The current state of the art is well illustrated by the
E. coli outbreak that took place in Germany in the sum­
mer of 2011 (Figure 2a). In this instance, while genetic
sequencing played a role in confirming the ultimate
source of the outbreak, it arrived too late to significantly
impact the number of deaths.

Figure 2b shows that there are a number of places
in the “Current” time frames for the sequencing pro­
cess where improved algorithms and computation
could have a significant impact. Ultimately, with the
appropriate combination of technologies, it should
be possible to shorten the timeline for identification
from weeks to less than one day. A shortened time­
line could significantly reduce the number of deaths

FIGURE 1. Advances in DNA sequencing technologies are
rapidly decreasing the costs of DNA sequencing a whole
human genome (blue line). As a result, the number of
humans being sequenced is increasing significantly (red
line). The amount of data being produced is rapidly outpac-
ing computing technology (black line). Together, these drive
the need for more efficient techniques for extracting infor-
mation from DNA sequences.

Re
la

tiv
e

co
st

 p
er

 s
eq

ue
nc

e
($

)

N
um

be
r o

f h
um

an
 g

en
om

es
se

qu
en

ce
d

2000

1M

10K

100

1

100M
Moore’s Law

20102005 2015

1M

10K

100

1

100M

84 LINCOLN LABORATORY JOURNAL  VOLUME 20, NUMBER 1, 2013

TAMING BIOLOGICAL BIG DATA WITH D4M

System Architecture
Sequence algorithm development is often done in high­
level programming environments (e.g., Matlab, Python,
and Java) that interface to large databases. Lincoln Labo­
ratory researchers, who developed and extended a parallel
supercomputing system called LLGrid [10], have exten­

sive experience with high­level environments and have
developed novel technologies that allow an algorithm
analyst to write parallel database programs in these envi­
ronments [6, 7, 11, 12]. Sequence algorithm research often
requires many copies of the data to be constructed (in
parallel) in many formats. A variety of additional statistics

30 2 3 4 5 6 7 8 9 11 12 13 14 15 16 17 18 19 20 21 222324252627 282930 1 2 3 41 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 23242526 2829 31

JuneMay July

DEATHS

DNA sequence
released

Spanish
cucumbers
implicated

Outbreak
identified

Sprouts
identified

50

0

100

150

200

250

N
um

be
r o

f c
as

es

101012722

Diarrhea Kidney failure

E. Coli outbreak, Germany, 2011

Symptoms

Processing pipeline and time frames

1. Complex background 3. Sample preparation
and sequencing

4. Analysis
of sample

5. Time to
actionable data

Human
Infection

Bioweapon
release

Natural
disease

Current:
Goal:

2. Sample collection
and shipment

2–30 days
Onsite

1–30 days
3 hours

7–14 days
<12 hours

10–45 days
<1 day

(a)

(b)

FIGURE 2. Example disease outbreak (a) and processing pipeline (b). In the May to July 2011 virulent E. coli outbreak in Ger-
many, the identification of the E. coli source was too late to have substantial impact on illnesses [9]. Improved computing and
algorithms can play a significant role in reducing the current time of 10–45 days to less than 1 day.

 VOLUME 20, NUMBER 1, 2013  LINCOLN LABORATORY JOURNAL 85

JEREMY KEPNER, DARRELL O. RICKE, AND DYLAN HUTCHISON

are also computed (in parallel) on each copy of the data.
Together, these formats and statistics allow the analyst to
intelligently select the algorithms to explore on the basis
of a particular mission goal.

In the testing phase, an analyst is interactively modi­
fying a selected algorithm by processing all the data (in
parallel) while exploring a range of parameters. The ana­
lyst repeats these tests until an optimal set of parameters
is selected for the particular mission goal. Statistics are
computed to demonstrate the effectiveness and limits of
the selected algorithm. After testing is completed, the
algorithm must be tested on a smaller, energy­efficient
computing system for deployment.

Both the research and testing phases require rapid
data retrieval. The optimal data storage approach
depends upon the nature of the data and the analysis.
Parallel file systems (e.g., Lustre), distributed file systems
(e.g., Hadoop), and distributed databases (e.g., HBase and
Accumulo) are all used. Parallel file systems stripe large
files across many storage devices and are ideal for deliver­
ing high bandwidth to all the processors in a system (i.e.,
sending the data to the compute nodes). Distributed file
systems place files on the local storage of compute nodes
and are ideal for processing many different files with the
same algorithm (i.e., sending the computation to the data
nodes). Distributed databases index the data contents and
are ideal for rapid retrieval of specific pieces of data.

Most sequence algorithms are broken down into a
parse collection, database ingest, and query­compare
pipeline (Figure 3). Each stage presents different technical
challenges and requires different engineering approaches.

Pipeline
The collection step receives data from a sequencer (or
other data source) and parses the data into a format suit­
able for further analysis. This process begins with attach­
ing metadata to the sequence data so that each collected
sequence can be uniquely identified. In addition, many
analysis techniques rely on constructing hash words (or
mers) of the sequences. A typical hash word length can be
10 DNA bases (a 10­mer), 20 DNA bases (a 20­mer), or
even 50 DNA bases (a 50­mer).

The ingestion step takes data from the collection
step and puts them into a database to allow detailed que­
ries based on the specific contents of the data. Recently
developed triple­store databases (e.g., Apache HBase
and Apache Accumulo) are designed to sit on top of the
Hadoop distributed file system. Hadoop is based on the
Google Big Table architecture and is the foundation of
much of the commercial Big Data ecosystem. These data­
bases have been demonstrated on thousands of nodes.
Typical ingest rates for these databases are 100,000
entries per second per node [6].

The query step works on a combination of the outputs
of the collect and ingest steps. In this step, the data are
combined so as to find the sequence matches required
by the specific mission. A complete analysis requires one
query for each DNA base coming out of the sequencer.
Triple stores are designed to support both high ingest and
high retrieval rate, and can sustain 100,000 entries per
second per node. Using 100 compute nodes to retrieve
and analyze the data from the sequencer will allow the
proposed system to meet this requirement.

FIGURE 3. Processing pipeline using the Dynamic Distributed Dimensional Data Model (D4M) and triple-store database
technologies. Sequence data are input as FASTA files (a format commonly used in bioinformatics for representing sequences)
and parsed into row, column, and values triples. The reference-data triples are converted to D4M associative arrays and
inserted into a triple-store database. The sample data are stored as D4M associative arrays and saved to files. A D4M pro-
gram then reads each sample file, selects the relevant triples from the database, and computes the top matches.

D4M
associative

files

FASTA
files

Top
matches

C
parser

Triple
to D4M
associative
array

D4M
comparison

Row sequence ID

Column sequence

Value position

Triple-store
database

Sample sequences

Reference sequences

Collection QueryIngestion

86 LINCOLN LABORATORY JOURNAL  VOLUME 20, NUMBER 1, 2013

TAMING BIOLOGICAL BIG DATA WITH D4M

Computational Approach
Sequence alignment compares two strings to determine
how well they match. Sequence alignment is the core
operation in bioinformatics. BLAST (for Basic Local
Alignment Search Tool) [13] is the standard software
package for sequence alignment and consists of 850,000
lines of mostly C++ code. The runtime of BLAST is a func­
tion of the product of the two sequences being compared.
For example, the single­core execution time of compar­
ing a 20 Megabase (a length of DNA fragments equal to
1 million nucleotides) sample with a 500 Megabase refer­
ence is ~100 minutes. The dominant parallel scheme for
BLAST is to break up the sequences and perform separate
BLAST calculations on each subsequence. Direct use of
BLAST to compare a 600 Gigabase collection with a com­
parably sized reference set requires months on a 10,000­
core system. A key goal for bioinformatics is to develop
faster approaches for rapidly identifying sequences from
samples. One promising approach is to replace computa­
tions with lookups in a database.

Just as important as performance is providing envi­
ronments that allow algorithm developers to be pro­
ductive. BLAST is a very large, highly optimized piece
of software. A typical algorithm developer or biologist
needs additional tools to quickly explore data and test
new algorithm concepts. Lincoln Laboratory’s system
includes the full LLGrid software stack that includes the
GridEngine scheduler; Lustre parallel file system; Apache
Hadoop, Accumulo, and HBase; Matlab, GNU Octave,
MatlabMPI, pMatlab, gridMatlab, LLGridMapReduce,
and the D4M graph analysis package. This software stack
has proven to be effective at supporting developers on a
wide range of applications [10]. Two of these packages are
particularly important for bioinformatics: the D4M graph
analysis package and the triple­store databases (Apache
Accumulo and HBase).

Software Interfaces
Most modern sequence­alignment algorithms use a hash­
ing scheme in which each sequence is decomposed into
short words (mers) to accelerate their computations.
Mathematically, this scheme is equivalent to storing each
set of sequences in a large sparse matrix where the row is
the subsequence identifier and the column is the specific
word (Figure 4). Sequence alignments are computed by
multiplying the sparse matrices together and selecting

those combinations of sequences with the highest num­
bers of word matches.

The sparse matrix multiply approach is simple
and intuitive to most algorithm developers. However,
using sparse matrices directly has been difficult because
of a lack of software tools. D4M provides these tools
that enable the algorithm developer to implement a
sequence­alignment algorithm on par with BLAST in
just a few lines of code. D4M also provides a direct inter­
face to high­performance triple­store databases that
allows new database sequence­alignment techniques to
be explored quickly.

The key concept in D4M is the associative step that
allows the user to index sparse arrays with strings instead
of indices. For example, the associative array entry

A(AB000106.1_1-1343,ggaatctgcc) = 2

shows that the 10­mer ggaatctgcc appears twice in the
sequence AB000106.1_1-1343. D4M provides a full
associative array implementation of the linear algebraic
operations required to write complex algorithms [14, 8].
D4M has also been successfully applied to text analysis
and cyber security applications [15, 16].

Associative arrays provide an intuitive mechanism
for representing and manipulating triples of data and
are a natural way to interface with the new class of high­
performance NoSQL triple­store databases (e.g., Google
Big Table, Apache Accumulo, Apache HBase, NetFlix
Cassandra, Amazon Dynamo). By using D4M, complex
queries to these databases can be done with simple array
indexing operations (Figure 5). For example, to select all
sequences in a database table T that contain the 10­mer
ggaatctgcc can be accomplished with the one­line
D4M statement:

 A = T(:,ggaatctgcc)

Because the results of all queries and D4M functions
are associative arrays, all D4M expressions are composable
and can be directly used in linear algebraic calculations.
The composability of associative arrays stems from the
ability to define fundamental mathematical operations
whose results are also associative arrays. Given two
associative arrays A and B, the results of all the following
operations will also be associative arrays:

 A + B A – B A & B A|B A*B

 VOLUME 20, NUMBER 1, 2013  LINCOLN LABORATORY JOURNAL 87

JEREMY KEPNER, DARRELL O. RICKE, AND DYLAN HUTCHISON

Associative array composability can be further
grounded in the mathematical closure of semirings (i.e.,
linear algebraic “like” operations) on multidimensional
functions of infinite, strict, totally ordered sets (i.e., sorted
strings). In addition, many of the linear algebraic properties
of fuzzy algebra can also be directly applied: linear inde­
pendence [17], strong regularity [18], and uniqueness [19].

Software Performance
Triple­store databases are a new paradigm of database
designed to store enormous amounts of unstructured
data. They play a key role in a number of large Internet
companies (e.g., Google Big Table, Amazon Dynamo,
and NetFlix Cassandra). The open­source Accumulo and
HBase databases (both of which use the Hadoop distrib­

uted file system) are both based on the Google Big Table
design. Accumulo was developed by the National Secu­
rity Agency and is widely used in the intelligence com­
munity. Accumulo has been tested and shown to scale
well on very large systems. The highest published Accu­
mulo performance numbers are from Lincoln Labora­
tory’s LLGrid team [6]. The LLGrid team demonstrated
650,000 inserts per second using eight dual­core nodes
and 4,000,000 inserts per second using eight 24­core
nodes (Figure 6).

Algorithm Performance
High­performance triple­store databases can acceler­
ate DNA sequence comparison by replacing computa­
tions with lookups. The triple­store database stores the

RNA reference set
Reference bacteria Unknown bacteria

Collected sample

A1

A1 A2
'

A2

R
ef

er
en

ce
 s

eq
ue

nc
e

ID

U
nk

no
w

n
se

qu
en

ce
 ID

Sequence word (10-mer)Sequence word (10-mer)

R
ef

er
en

ce
 s

eq
ue

nc
e

ID

Unknown sequence ID

SeqID
G6J0L4R01AUYU3
G6J0L4R01DLKJM
G6J0L4R01D0SEN
G6J0L4R01EOS3L

SeqID
AB000106.1_1-1343
AB000278.1_1-1410
AB000389.1_1-1508
AB000390.2_1-1428

sequence
ggaatctgcccttgggttcgg
caggcctaacacatgcaagt
ttgatcctggctcagattgaa
catgcaagtcgagcggaaac

sequence
TAGATACTGCTGCCTCCCG
TTTTTTTCGTGCTGCTGCCT
TTATCGGCTGCTGCCTCCC
AGGTTGTCTGCTGCCTCTA

FIGURE 4. Sequence alignment via sparse matrix multiplication. DNA sequences hashed into words (10-mers) can
be readily expressed as sparse matrices. The alignment of two sets of sequences can then be computed by multiply-
ing the two matrices together.

88 LINCOLN LABORATORY JOURNAL  VOLUME 20, NUMBER 1, 2013

TAMING BIOLOGICAL BIG DATA WITH D4M

associative array representation of the sequence (see Fig­
ure 4) by creating a unique column for every possible
10­mer. A row in the database consists of the sequence
identification (ID) followed by a series of column and
value pairs. The storage is efficient because only the
nonempty columns are kept for each row. By using this
format, the database can quickly look up any sequence
ID in constant time. By also storing the transpose of the
associative array, it is possible to look up any 10­mer in
constant time. D4M hides these details from the user so
that the database appears to be able to quickly look up
either rows or columns.

The Accumulo triple store used here can tally data
as they are inserted. By creating row and column tal­
lies, it is possible to compute the row and column sums
as the sequences are inserted into the database. The
sequence data can be viewed as a bipartite graph with
edges connecting a set of sequence ID vertices with
a set of 10­mer vertices. The row sums represent the
number of edges coming out of each sequence ID vertex
(i.e., the outdegrees). The column sums represent the
number of edges going into each 10­mer vertex (i.e.,
the indegrees). Figure 7 shows that the vast majority of
edges occur in very popular 10­mers. However, these

D4M
Dynamic Distributed
Dimensional Data
Model

Query:
T (:,ggaatctgcc)

Triple-store distributed database
(Accumulo or HBase)

Triple-store databases are high-performance
distributed databases for heterogeneous data

Associative arrays
Numerical computing environment

A D4M query returns a sparse matrix or graph
from a triple store for statistical signal processing
or graph analysis in Matlab

A

C

D E

B

FIGURE 5. D4M binding to a triple store. D4M binds associative arrays to a triple store (Accumulo or HBase), enabling rapid
prototyping of data-intensive Big Data analytics and visualization. D4M can work with a triple store or directly on files.

Number of concurrent processes
10⁰ 10¹

10⁴

10⁵

10⁶

In
ge

st
io

n
ra

te
 (

en
tri

es
/s

)

Number of processes
10–¹ 10¹ 10² 10³10⁰

10⁴

10⁵

10⁶

10⁷

In
ge

st
io

n
ra

te
 (

en
tri

es
/s

)

Observed
Linear

30 GB
5 GB

4,000,000
entries/s

FIGURE 6. Triple-store insert performance [6]. Left: insert performance into a triple-store database running on eight dual-
core nodes. Right: insert performance into a triple-store database running on eight 24-core nodes. Values in brackets show
the total amount of data inserted during the test.

 VOLUME 20, NUMBER 1, 2013  LINCOLN LABORATORY JOURNAL 89

JEREMY KEPNER, DARRELL O. RICKE, AND DYLAN HUTCHISON

least popular 10­mers are selected because they have the
most power to uniquely identify the sequence. By subsam­
pling the data to the least popular 10­mers, the volume of
data that needs to be directly compared is significantly
reduced. Figures 8, 9, and 10 compare the quality of
the results produced by subsampling 0.5% of the data

popular 10­mers have very little power to uniquely
identify a sequence match.

The procedure for exploiting the distribution of
10­mers stored in the database is as follows. First, the
sample sequence is loaded into a D4M associative array.
All the unique 10­mers from the sample are extracted and
used to query the column tally table. The least popular
10­mers from the reference are then selected from the
full database table and compared with the sample. The

Matches
False negatives
False positives

True 10-mer matches
50

Noise

Signal

100 150 200 250 3000
0

5

10

15

20

25

30

35

40

M
ea

su
re

d
10

-m
er

 m
at

ch
es

FIGURE 8. Selection results for subsampling 0.5% of
data. The 20 MB sample data are compared with a 500 MB
reference dataset. True matches are shown in blue. False
negatives are shown in red and projected just above the
x-axis. False positives are shown in black and projected just
to the right of the y-axis. All strong matches are detected
using 0.5% of data. The black line shows the approximate
boundary between signal and noise.

0 50 100 150 200 250 300
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

C
um

ul
at

iv
e

pr
ob

ab
ili

ty
 o

f d
et

ec
tio

n

True 10-mer matches

FIGURE 9. Cumulative probability of detection. 100%
detection of all true matches >100.

0
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

C
um

ul
at

iv
e

pr
ob

ab
ili

ty
 o

f f
al

se
 a

la
rm

Measured 10-mer matches
5 10 15 20 25 30 35 40

FIGURE 10. Cumulative probability of false alarm. Mea-
sured matches >10 are always matches.

10-mer degree
10¹

10¹

10²

10²

10³

10³

0.5% 5% 50%

10⁴

10⁴

10⁵10⁰
10⁰

C
ou

nt

FIGURE 7. Reference 10-mer distribution. More than
50% of all edges are in 10-mers that appear in over 1000
sequences. Likewise 0.5% of all edges appear in 10-mers
that appear in fewer than 50 sequences.

90 LINCOLN LABORATORY JOURNAL  VOLUME 20, NUMBER 1, 2013

TAMING BIOLOGICAL BIG DATA WITH D4M

with full 100% sampling. Figure 8 shows that all strong
matches are detected. Figure 9 shows that all sequences
with true matches >100 are detected. Figure 10 shows
that a subsampled match of >10 is always a true match.

The benefit of using D4M in this application is that it
can significantly reduce programming time and increase
performance. Figure 11 shows the relative performance and
software size of sequence alignment implemented using
BLAST, D4M alone, and D4M with a triple store. In this
specific example, D4M with a triple store provided a 100×
coding and a 100× performance improvement over BLAST.

Future Directions
D4M has the potential to significantly accelerate the key
bioinformatics operation of DNA sequence comparison.
Furthermore, the compactness of D4M allows an algorithm
developer to quickly make changes and explore new algo­
rithms. D4M brings linear algebra to string­based datasets
and allows the techniques of signal processing to be applied
to the bioinformatics domain. Combined, these capabilities
should result in new techniques for rapidly identifying DNA
sequences for early detection and identification of bioweap­
ons, early detection and identification of epidemics, identi­
fication of suspects from genetic samples taken from bomb
components, determination of extended family kinship
from reference and forensic DNA samples, and prediction
of externally visible characteristics from genetic samples.

Acknowledgments
The authors are indebted to the following individuals
for their technical contributions to this work: William
Arcand, William Bergeron, David Bestor, Chansup Byun,
Matthew Hubbell, Peter Michaleas, David O’Gwynn,
Andrew Prout, Albert Reuther, Antonio Rosa, and
Charles Yee. 

References
1. K. Madduri, “High­Performance Metagenomic Data Clus­

tering and Assembly,” SIAM Annual Meeting, 2012, Min­
neapolis, Minn., available online at www.graphanalysis.org/
SIAM­AN12/07_Madduri.pdf.

2. S Reinhardt, “Graph Analytics for Subject­Matter Experts:
Balancing Standards, Simplicity, and Complexity,” SIAM
Annual Meeting, 2012, Minneapolis, Minn., available online
at http://www.graphanalysis.org/workshop2012.html.

3. R.F. Service, “A $1000 Genome by 2013?” Science-
NOW, July 2011, available online at news.sciencemag.org/
sciencenow/2011/07/a­1000­genome­by­2013.html.

4. K. Wetterstrand, DNA Sequencing Costs, Data from the
National Human Genome Research Institute Large­Scale
Genome Sequencing Program, available online at www.
genome.gov/sequencingcosts, accessed 8 March 2012.

5. K. Chen and L. Pachter, “Bioinformatics for Whole­Genome
Shotgun Sequencing of Microbial Communities,” PLoS Com-
putational Biology, vol. 1, no. 2: e24, doi:10.1371/journal.
pcbi.0010024, 2005.

6. C. Byun, W. Arcand, D. Bestor, B. Bergeron, M. Hub­
bell, J. Kepner, A. McCabe, P. Michaleas, J. Mullen, D.
O’Gwynn, A. Prout, A. Reuther, A. Rosa, and C. Yee, “Driv­
ing Big Data with Big Compute,” Proceedings of the 2012
IEEE High Performance Extreme Computing Conference,
Waltham, Mass., 2012, available online at http://ieee­hpec.
org/2012/agenda.htm.

7. J. Kepner, Parallel Matlab for Multicore and Multinode
Computers. SIAM Book Series on Software, Environments
and Tools (Jack Dongarra, series editor). Philadelphia: SIAM
Press, 2009.

8. J. Kepner, W. Arcand, W. Bergeron, N. Bliss, R. Bond, C.
Byun, G. Condon, K. Gregson, M. Hubbell, J. Kurz, A.
McCabe, P. Michaleas, A. Prout, A. Reuther, A. Rosa, and C.
Yee, “Dynamic Distributed Dimensional Data Model (D4M)
Database and Computation System,” Proceedings of the 2012
IEEE International Conference on Acoustics, Speech and Sig-
nal Processing, 2012, pp. 5349–5352.

9. Robert Koch Institute, Final Presentation and Evaluation of
Epidemiological Findings in the EHEC O104:H4 Outbreak,
Germany 2011. Berlin: Robert Koch Institute, 2011, available
online at www.rki.de.

10. N. Bliss, R. Bond, J. Kepner, H. Kim, and A. Reuther, “Inter­
active Grid Computing at Lincoln Laboratory,” Lincoln Labo-
ratory Journal, vol. 16, no. 1, 2006, pp. 165–216.

11. J. Kepner and J. Gilbert, Graph Algorithms in the Language

10

100

1000

10,000

100 10,000 1,000,000

D4M

100× smaller
10

0
×

fa
st

er

Ru
nt

im
e

(s
)

Code volume (lines)

BLAST

D4M+ triple store

FIGURE 11. Sequence-alignment implementations. The
D4M implementation requires 100× less code than BLAST.
D4M+Triple Store reduces run time by 100× compared to
BLAST.

 VOLUME 20, NUMBER 1, 2013  LINCOLN LABORATORY JOURNAL 91

JEREMY KEPNER, DARRELL O. RICKE, AND DYLAN HUTCHISON

Dylan Hutchison is pursuing a bachelor’s
degree in computer engineering and a
master’s degree in computer science at
Stevens Institute of Technology. Inspired
by the logic of computer science, he ral-
lied for technical exposure through intern-
ships from business application design at
Brown Brothers Harriman to parallel and

distributed computing research at Lincoln Laboratory. His recent
focus is on methods to represent and compensate for uncertainty
in inference systems such as Bayesian networks.

of Linear Algebra. SIAM Book Series on Software, Environ­
ments and Tools (Jack Dongarra, series editor). Philadelphia:
SIAM Press, 2011.

12. J. Kepner, W. Arcand, W. Bergeron, C. Byun, M. Hubbell,
B. Landon, A. McCabe, P. Michaleas, A. Prout, T. Rosa, D.
Sherrill, A. Reuther, and C. Yee, “Massive Database Analy­
sis on the Cloud with D4M,” Proceedings of the 2011 High
Performance Embedded Computing Workshop, 2011, avail­
able online at http://www.ll.mit.edu/HPEC/agendas/proc11/
agenda.html.

13. C. Camacho, G. Coulouris, V. Avagyan, N. Ma, J. Papado­
poulos, K. Bealer, and T.L. Madden, “BLAST+: Architec­
ture and Applications,” BMC Bioinformatics, vol. 10, no. 421,
doi:10.1186/1471­2105­10­421, 2009.

14. J. Kepner, “Spreadsheets, Big Tables, and the Algebra of
Associative Arrays,” Mathematical Association of America &
American Mathematical Society Joint Mathematics Meet­
ings, SIAM Minisymposium on Applied, Computational,
and Discrete Mathematics at National Laboratories and Fed­
eral Research Agencies, 4–7 Jan. 2012, available online at
http://jointmathematicsmeetings.org/meetings/national/
jmm2012/2138_program_friday.html.

15. B.A. Miller, N. Arcolano, M.S. Beard, N.T. Bliss, J. Kepner,
M.C. Schmidt, and P.J. Wolfe, “A Scalable Signal Process­
ing Architecture for Massive Graph Analysis,” Proceedings of
the 2012 IEEE International Conference on Acoustics, Speech
and Signal Processing, 2012, pp. 5329–5332.

16. N. Arcolano, “Statistical Models and Methods for Anomaly
Detection in Large Graphs,” SIAM Annual Meeting, Minne­
apolis, Minn., 2012, available online at www.graphanalysis.
org/SIAM­AN12/03_Arcolano.pdf.

17. J. Plavka, “Linear Independences in Bottleneck Algebra and
Their Coherences with Matroids,” Acta Mathematica Univer-
sitatis Comenianae, vol. 64, no. 2, 1995, pp. 265–271.

18. P. Butkovic, “Strong Regularity of Matrices—a Survey of
Results,” Discrete Applied Mathematics, vol. 48, no. 1, 1994,
pp. 45–68.

19. M. Gavalec and J. Plavka, “Simple Image Set of Linear Map­
pings in a Max­Min Algebra,” Discrete Applied Mathematics,
vol. 155, no. 5, 2007, pp. 611–622.

Darrell O. Ricke is staff member in the
Bioengineering Systems and Technologies
group. His work focuses on bioinformat-
ics, software development, and data
analysis for biomedical, forensic, and bio-
defense projects. He received bachelor’s
degrees in computer science and genetics
and cell biology, and a master’s degree

in computer science from the University of Minnesota. He holds a
doctoral degree in molecular biology from Mayo Graduate School.

Jeremy Kepner is a senior staff member
in the Computing and Analytics Group.
He earned a bachelor’s degree with
distinction in astrophysics from Pomona
College. After receiving a Department of
Energy Computational Science Gradu-
ate Fellowship in 1994, he obtained his
doctoral degree from the Department of

Astrophysics at Princeton University in 1998 and then joined MIT.
His research is focused on the development of advanced libraries
for the application of massively parallel computing to a variety of
data-intensive signal processing problems. He has published two
books and numerous articles on this research. He is also the co-
inventor of parallel Matlab, Parallel Vector Tile Optimizing Library
(PVTOL), Dynamic Distributed Dimensional Data Model (D4M),
and the Massachusetts Green High Performance Computing Cen-
ter (MGHPCC).

About the Authors

