Improved air combat awareness
- with AESA and next-generation signal processing

Main beam jamming rejection
Wide transmit beam
Communication
Side lobe jamming rejection
Active and Passive Search
Increased detection range
Rejection of clutter and jamming
(STRAP)
Ground mapping and measurements of slow ground moving targets
(SAR/GMTI)
The challenge

- The AESA performance should fit in the same “box” as today’s systems, considering
 - Physical size
 - Power dissipation
 - Physical robustness

- The High Speed Signal Processing (HSSP) project
 - A joint project between Ericsson Microwave Systems and Halmstad University, Sweden

- The goal of HSSP: “1 TFLOPS in a shoe box”
• Research for the FUTURE
 – Embedded high speed signal processing computer systems for the next generation fighter aircraft radar.

• Our GOALS
 – Strengthen our competence to ensure realization in the future
 – Find engineer efficient and economic solutions
 – Actively cooperate in a wide competence network
System realization

- A multi-module system concept
 - SIMD compute engines for high performance
 - MIMD on system level for flexibility
 - Identical compute engines

- Realizable with 0.13 μm technology (LSI Logic G13)
- The system is based on in-house SIMD based ASICs (the compute engines)
- The modules are interconnected in a ring topology by a high speed communication network (GLVDS)
- The system scales to >1 TFLOPS
HSSP system

- Five HSSP cards (cassettes)
- High speed ring network
- Utility bus
- Front end (FE) with opto-interface
- Back-end (BE) with utility bus interface
- Performance: >1 TFLOPS
HSSP card (cassette)

- 8 ASIC nodes per board, 4 on each side
- Double direction GLVDS ring network with separate data (1.6 GB/s) and control channel (100 MB/s)
- Utility bus
- DRAM
- Performance: 200 GFLOPS
ASIC node

- Two processor arrays, acting as co-processors
- Master processor, IP-core running a commercial RTOS
- I/O-processor (DMA, data transformations, etc.)
- Support functions (Boot, UART, Timer, etc.)
- 0.13μm technology minimum
- Performance: 25 GFLOPS
Processor array (PA)

- 32 processor elements, 400 MHz, ring topology
- 32 kB memory per element
- Custom control unit w/ memory
- Performance: 12.5 GFLOPS
Processor element (PE)

- 64 32-bit registers, 4 read and 3 write ports
- 4 stage pipelined FPU, IEEE 754
- fmul, fadd, fsub, mask operations
- North/South communication interface
- 64 bit memory access, skewed load and store, 3.2 GB/s BW
- Performance: 400 MFLOPS
Runtime environment

- Commercial RTOS based
- Custom libraries
- Layered architecture

In house development
- Commercial RTOS/IDE
- Hardware

MIMD

HSSP system
VLSI test implementation

• One processor array
• Clock and control distribution
• LSI Logics G12 process (0.18 μm), standard cell
• Total area 227 mm\(^2\)
 – Clearly dominated by memories
 – Memory size can however be substantially decreased
• Control unit and processor elements capable of 335 and 396 MHz, respective
• Top level design capable of 210 MHz
• Control distribution a bottle neck, can however be pipelined