Development Status of the Vector, Signal, and Image Processing Library (VSIPL)

M. Richards1, D. Campbell1 (presenter), R. Judd2, J. Lebak3, and R. Pancoast4

1Georgia Tech Research Institute, Atlanta, GA
2U.S. Navy SPAWAR Systems Center, San Diego, CA
3MIT Lincoln Laboratory, Lexington, MA
4Lockheed-Martin NESS, Moorestown, NJ

1,3 These authors sponsored by the U.S. Navy under GSA contract GS10TF02EBM0528 and Air Force Contract F19628-00-C-0002. Opinions, interpretations, conclusions, and recommendations are those of the authors and are not necessarily endorsed by the United States Air Force, General Services Administration, or United States Navy.
Acknowledgements

U.S. Navy PMS411 & TASP COE

DARPA Defense Advanced Research Projects Agency
VSIPPL Goals

- Portable to workstations, embedded systems, FPGAs with minimal performance cost
- Applicable to simple and complex applications
- Easier upgrade cycle
- Reduced development time and cost
VSIPL API Properties

- **Core Lite Profile**
 - Object Based ANSI C Binding
 - **Functionality**
 - float, complex, signed int types
 - FFT, FIR Filters
 - Vector arithmetic
 - Matrix arithmetic
 - Random numbers
 - Convolution
 - Correlation
 - Matrix decomposition and solvers

- **Core Profile**

- **Two modes of operation**
 - Development mode with extensive error checking
 - Performance mode with minimal error checking
Current VSIPL Forum Products

• Standard API for Vector/Signal Processing
 – Version 1.02 released February 26, 2002
 • minor corrections and updates to VSIPL 1.01
 – Version 1.1 in final edit, expected 4Q 2002

• TASP VSIPL demonstration library
 – Developed by Randy Judd of USN SSC-SD
 – ANSI C production mode implementation
 – Core and Core lite profiles
 – “Core Plus” implementation including additional functionality

• Portable C Test Suite 1.03
 – Developed by Dan Campbell of GTRI
 – Tests compliance with Core Lite Profile of VSIPL 1.01 API
 – Does not test performance (speed or memory)

All may be downloaded from VSIPL web site
<http://www.vsipl.org>
Major Resources Available at vsipl.org

• VSIPL 1.02 API document
• Feb 2002 VSIPL Tutorial/User’s Group presentations
• Supporting documents
 – VSIPL basic requirements
 – VSIPL profile definitions
 – and more …
• VSIPL Reference Implementation Software
 – three builds: Core Lite, Core, “Core Plus”
 – VSIPL Compliance Test Suite 1.03
• Links to VSIPL Product Vendors
• VSIPL Forum Information

http://www.vsipl.org
Changes in VSIPL 1.1

• Correction of various errata
• New functions
 – Singular value decomposition, $A = USV^H$
 • includes functionality to extract subspaces corresponding to the highest or lowest singular values
 • supports pre- and post multiplication of a matrix by U or V
 – Windowed FFT
 • Defines window as part of the FFT object
 • Integrates data taper and FFT calculation
 – New I/O functions to
 • Operate on VSIPL vendor-dependent objects (e.g., FFT, QR, LUD)
 • differ from block objects because the data associated with them is implementation-dependent
 • Allow objects to be communicated, saved to files, etc.
Current Commercial Implementations (Aug. 2002)

<table>
<thead>
<tr>
<th>Vendor</th>
<th>Implementation*</th>
</tr>
</thead>
<tbody>
<tr>
<td>CSPI</td>
<td>Core Lite also resell VSI-Pro for Core</td>
</tr>
<tr>
<td>DNA Computing Solutions</td>
<td>Core</td>
</tr>
<tr>
<td>MCCI Autocoding Toolset</td>
<td>Core Lite</td>
</tr>
<tr>
<td>Mercury Computer Systems</td>
<td>Core Lite + some 2D</td>
</tr>
<tr>
<td>MPI Software Technology, Inc.</td>
<td>Core</td>
</tr>
<tr>
<td>Sky Computers</td>
<td>“Core Plus”, multiple data types</td>
</tr>
<tr>
<td>Synergy Microsystems</td>
<td>Core Lite</td>
</tr>
<tr>
<td>Transtech DSP</td>
<td>Core</td>
</tr>
</tbody>
</table>

Most vendors also accommodate specific customer requirements
VSIPL Activities

Recent

1st VSIPL User’s Group Meeting (Feb 2002)

Near- to Mid-term

VSIPL 1.1 Extension (4Q 2002)

Long-term

C++ Binding

Parallel VSIPL

VSIPL Forum
HPEC-SI seeks to bridge the gap between high level tools and embedded hardware by building and extending on existing open standards such as VSIPL, MPI, DRI, etc.

- HPEC-SI extensions will extend VSIPL into embedded niches not currently addressed
 - C++ binding
 - parallel data distribution and computational algorithms
VSIPL++

- C++ binding offers benefits over C binding
 - much more compact code
 - drastic reduction in number of function prototypes
 - enables use of template and generic programming
 techniques to gain performance improvements
 similar to early binding

- HPEC-SI program serving as forum for defining
 VSIPL++ concepts and 0.1 spec
 - CodeSourcery implementing detailed specification
 and reference library

- Goal is to have a 0.1 draft specification and
 prototype software in Fall 2002
Parallel VSIPL

- Standard VSIPL machine model is a single threaded uniprocessor
- Efficient parallel algorithms require
 - coordinated data distribution and parallel algorithms strategies
 - user control of data distribution
 - scalability of algorithm to different machine sizes and layouts

![Conceptual View](image)

Figure courtesy of Dennis Cottel, USN SSC-SD
Parallel VSIPL Status

• HPEC-SI is researching approaches to development of parallel VSIPL
 – key issue is memory management strategy (blocks and views)

• Candidate components to build on include:
 – Data Reorganization Interface (DRI)
 – MIT/LL-Lockheed Martin Parallel Vector Library (PVL)
 – USN SSC-SD Scalable Programming Environment (SPE)
 – Commercial products such as GEDAE, MCCI Autocoder, Raytheon Sage

• Goal is to have a 0.1 draft specification and prototype software in Spring – Summer 2003
Summary

• VSIPL 1.02 is available
• VSIPL 1.1 in final edit, due 4Q CY2002
• Implementations are here
• VSIPL development is continuing
 – HPEC-SI leading extension to VSIPL++ and “Parallel VSIPL”