Session 4: Reconfigurable Computing

Session Chair: David Cousins
Division Scientist
High Performance Computing Dept
BBN Technologies
It’s always been about Performance

- “Civilization advances by extending the number of important operations which we can perform without thinking.”

 Alfred North Whitehead (1861 - 1947) Introduction to Mathematics (1911)

- “Never promise more than you can perform.”

 Publilius Syrus (~100 BC), Maxims
Increasing performance is the common thread in this session

• Increasing Performance with Reconfigurable Computing through:
 – Algorithm decomposition
 – Arithmetic bit-width manipulation
 – A new SIMD on-a-die architecture
 – Morph-able computing architecture
 – *Stability* across multiple kernels and data sizes
Custom Reduction of Arithmetic in Linear DSP Transforms

Smarahara Misra, James C. Hoe, Markus Püschel, Electrical and Computer Engineering, CMU

- Performance through algorithm decomposition
- Defines a process for generating cost optimal multiplier-less algorithms with SPIRAL
 - Manipulate SPIRAL output to increase numerical stability
 - Use constrained optimization to reduce the number of operations while still satisfying quality threshold
 Evolutionary and greedy search algorithms
 - Map to Verilog
- Presents experimental results: DCT8 and DFT16
Precision Modeling and Bit-width Optimization of Floating-Point Applications

Zhihong Zhao, Alternative System Concepts
Miriam Leeser, Northeastern University

- Performance through bit-width manipulation
- Optimal FP bit-widths are the smallest bit-widths that satisfy accuracy requirements.
- Apply an FP precision modeling approach
 - Avoids computational intensity of simulation-based approaches
 - Models takes the form: error = f(op, bit-width)
 - Models are built by profiling a Control and Data Flow Graph of the application
 - Application Precision model is then optimized using Grid Steepest Descent
• Performance through a new SIMD processing architecture:
 – Multi-Threaded Array Processor
 – Array of processing elements on a single die.
 – Packet switched bus architecture

• HPEC application performance benchmarks
 – Cycle-accurate simulator
DARPA PCA for Embedded Defense Signal and Image Processing Applications

Michael Koch, Joe Racosky, Mike Iaquinto, Rick Pancoast, Lockheed Martin
Steve Crago, Matt French, University of Southern California

• Performance through morphable architectures
• Describes an embedded processing application
 – Radar waveform signal processing
 – Architecture morph
 – Non-coherent integration processing
• Processing functions:
 – Radar pulse compression, magnitude computation, range-walk compensation, and non-coherent integration
• Benchmark results compare conventional PowerPC, PCA simulation, and actual PCA hardware
Kernel Benchmarks and Metrics for Polymorphous Computer Architectures

James Lebak, Hank Hoffmann, Janice McMahon; MIT Lincoln Laboratory

- Performance measurement across seven kernel benchmarks
 - Considerable variation in throughput
 - Stability? Minimum/maximum throughput
- A chief goal of PCA is for stable performance across a range of kernels and data sizes.
- Presents performance results for several kernels on the MIT RAW simulator
Invited Speaker: Robert Graybill
Program Manager DARPA IPTO
Data Intensive Systems,
Power Aware Computing and Communications,
Polymorphous Computing Architectures,
High Productivity Computing Systems

Topic: Are we adrift in the sea of COTS?
– Review HPEC technology directions from an historical perspective
 • DARPA ITO-IPTO and MTO
– Future suggestions