Power Variable Training STAP

Jacob Griesbach
Steven Krich
Nicholas Pulsone
Charles Rader
MIT Lincoln Laboratory

March 16, 2004

This work is sponsored by the Defense Advanced Research Projects Agency (DARPA), under Air Force contract F19628-00-C-0002. Opinions, interpretations, conclusions and recommendations are those of the authors, and are not necessarily endorsed by the United States Government.
Acknowledgements

Work developed for KASSPER program
Sponsored by DARPA SPO

Lydia Chen
Steve Kogon
Amy Lehan
Bipin Mathew
Paul Monticciolo
Dan Rabinkin
Glenn Schrader
Ali Yegulalp
Current GMTI Issues

Current GMTI System Performance Limitations

- Heterogeneous clutter
- Clutter discretes
- Dense target backgrounds
- Low Doppler targets
- Area coverage rate
- Lack of “smart” radar system adaptivity

Scheduling, waveforms, algorithms, processing, \textit{a priori} knowledge

Problems can be addressed with simple, logical ideas that utilize external knowledge
Outline

• Current STAP challenges
• Power variable training with excision algorithm
• Detection and angle estimation
• Tuxedo data results
• Conclusions
Desirable Features for STAP Training

- Training statistics must match the cell under test
 - Angle/Doppler relationship
 - Clutter type (vegetation / mountain / desert)
 - Power

- The training set should **NOT** include targets or other moving objects

Train STAP in Range

```
Train

Range
```
Localized Training Impact

- Overnulled clutter degrades MDV
- Undernulled clutter degrades P_D and increases P_{FA}
- Targets in training set degrades P_D
- Windblown clutter degrades MDV
SINR Loss in 50% Wind-Blown Clutter

Target in the clear (no foliage)
Train with 50% wind blown clutter from foliage

Platform velocity = 150 m/sec
Altitude = 10 km
CNR = 35 dB
f0 = 10 GHz
PRF = 2 kHz
50% mixture (wind-blown & stationary)

Wind blown foliage training degrades performance in clear
Distributed Training

Random Training
- Undernulls strong clutter
- Training samples

Power Selective Training
- Overnulled clutter degrades MDV
- Training samples

Locus of Constant Cone Angle
- Clutter steering vector changes with range

STAP Training Issues:
- Windblown clutter
- Angle/Doppler relationship
- Targets included in training
- Correct power

Neither localized nor distributed training address these issues which affect MDV, P_D, and P_{FA}
Outline

• Current STAP challenges
• Power variable training with excision algorithm
• Detection and angle estimation
• Tuxedo data results
• Conclusions
Regionalized Training

TRAINING SAMPLES

- No windblown clutter for targets in clear
- Right angle-Doppler relationship for clutter
- Eliminate targets from training data
- Correct clutter power

- Classify ground swath regions
 - Foliage
 - No foliage
 - Urban

- Apply STAP separately for each region
Doppler Warping and Power Selected Training

Doppler Warping Aligns Clutter

\[e^{j2\pi f(\rho)t} \]

Range varying phase ramp in pulse dimension

Locus of Constant Cone Angle

\[\rho = \text{Range} \]

\[\text{Clutter Doppler} \]

\[f(\rho) \]

Power Selective Training

TRAINING SAMPLES

- No windblown clutter for targets in clear
- Right angle-Doppler relationship for clutter
- Eliminate targets from training data
- Correct clutter power
Mapped Discretes and Tracker Feedback

- Don’t train or detect on problematic clutter discrete range gates
 - High Doppler sidelobes
- Clutter discretes may be provided by tracker or external NGA map data

- Tracker predicts where targets will exist in future CPIs
- This knowledge is utilized to prevent known targets from being included in STAP training data

TRAINING SAMPLES
- No windblown clutter for targets in clear
- Right angle-Doppler relationship for clutter
- Eliminate targets from training data
- Correct clutter power
Target Excision

Power Selective Training

- Select strongest clutter returns as candidate training samples

Excision

- Excise samples away from clutter ridge (potential targets)

TRAINING SAMPLES

- No windblown clutter for targets in clear
- Right angle-Doppler relationship for clutter
- Eliminate targets from training data
- Correct clutter power
Power Variable Training with Target Excision

Power Selective Training
- Select strongest clutter returns as candidate training samples

Excision
- Excise samples away from clutter ridge (potential targets)

Adjust Clutter Power
- Scale training samples to estimated CNR for Tile

Training Samples
- No windblown clutter for targets in clear
- Right angle-Doppler relationship for clutter
- Eliminate targets from training data
- Correct clutter power

Mathematical Expression:

\[R_M = \beta \left(\frac{1}{K} \sum X_i X_i^H \right) + \lambda I \]

\[\beta = \frac{\text{Tile M power}}{\text{Training power}} \]

\[\beta < 1 \]
Power Variable Training for STAP

Covariance Matrix: \[R_S = \frac{1}{K_S} \sum x_i x_i^H \]

Tile Power: \[e_M = \frac{1}{K_M} \sum x_i^H x_i \]

Estimate Pure Clutter Covariance Matrix
\[R_C = R_S - \lambda I \]
\[\lambda = \text{Estimated Noise Floor} \]

Covariance Matrix for Tile “M”
\[R_M = \beta R_C + \lambda I \]
\[\beta = \frac{e_M - N\lambda}{\text{tr}[R_S] - N\lambda} \]

Diagonally Loaded Covariance for Tile “M”
\[R_M = \beta R_C + (\lambda + \delta)I \]
\[\delta = \text{Diagonal Load Level} \]

Adaptive Weight for Tile “M” with AMF Normalization
\[w_M = \frac{R_M^{-1} v}{\sqrt{v^H R_M^{-1} v}} \]
Outline

• Current STAP challenges

• Power variable training with excision algorithm

• Detection and angle estimation

• Tuxedo data results

• Conclusions
Lesser-Of CFAR Target Detection with ACE

- Choose *lesser of* training window means for noise estimate
 - Stencil with lesser mean will be least likely to include targets
- Two pass architecture
 - First pass identifies targets
 - On second pass, exclude first-pass targets from stencils
- Small ACE values implies target is better suited by another beam or is associated with sidelobes
- Targets must satisfy CFAR threshold and ACE threshold for detection

\[\frac{w^H x_i}{x_i^H R_M^{-1} x_i} \geq \chi_{\text{ACE}} \]
Knowledge Aided Detection Management

- Estimate arrival angle for each detection:

 Spatial Steering Vector:

 \[a(\theta) = \begin{bmatrix} 1 \\ e^{j\theta} \\ \vdots \\ e^{j(N-1)\theta} \end{bmatrix} \]

 Apply linear transformations to match STAP output:

 \[h(\theta) = W(Fb \otimes a(\theta)) \]

 Find angle that maximizes inner-product:

 \[\angle = \arg \max_{\theta} |h(\theta)^H x_{STAP}| \]

- Delete or flag detections with angle estimates that closely match clutter ridge location
- Use knowledge of road locations to discriminate angle ambiguities
Outline

• Current STAP challenges
• Power variable training with excision algorithm
• Detection and angle estimation
• Tuxedo data results
• Conclusions
Tuxedo Data
Recorded Data

System Parameters for GMTI Mode

- Center Freq.: 9.6 GHz
- Bandwidth: 66 MHz
- PRF: 1,400 Hz
- Tx Apertures: 1
- Rx Apertures: 3
- Horiz. Aperture: 1.83 m
- Vert. Aperture: 0.18 m
- Az BW: 3.6 deg
- El BW: 9.1 deg
- Polarization: HH
- A/C Heading: 290 deg
- Depr. Angle: 15 deg
- Recorded Time: 40-60 sec

Limited targets in data (up to 5) and uniform terrain type (desert)
Demonstrated GMTI Enhancements

Demonstrated:
- Power Variable Training with Excision
- Tracker feedback of target locations
- Doppler Warping to account for aircraft crab
 - Near broadside collection
- Angle estimation rejection of clutter discretes
- Prior knowledge of problematic clutter discrete locations
- Use of platform inertial data to estimate clutter ridge location
- Use of road locations to discriminate angle ambiguities

Not Demonstrated:
- Separate training for windblown clutter
 - No significant foliage present in data
- DTED enhanced clutter ridge estimation
 - Flat terrain
Range-Doppler Image

(map cropped and stretched to match data)

Railroad track

(Railroad train (wheels))

Strong clutter discretes
Power Variable Training Comparison: STAP Output

Locally Trained STAP

Knowledge Aided Power Variable Training

Railroad train self-nulled with localized training
Power Variable Training Comparison: Detector Output

Power variable training dramatically reduces false alarm rate
SINR Loss
Simulation and Data Results

Simulation

Clutter Ridge

Normalized Spatial Frequency

Radial Velocity (m/s)

-10 dB Null Width = 2.26 m/s

SINR Loss (dB)

Radial Velocity (m/s)

Knowledge Aided Power Variable Training
Power Variable SINR Loss Effects

- Tile SINR loss approaches 0 dB as tile power decreases
- Significantly improved MDV for lower power range gates
ROC Comparison

- Overall ROC curve illustrates performance increase
- Significant P_{FA} benefits demonstrated
- Performance gain primarily from P_{FA}
Comparison Movie

Detection
Angle Localization
Conclusions

• Use of internal and external knowledge improves performance
 – Tracker feedback
 – External data maps

• Simple, “smart” enhancements significantly improve overall performance
 – Validated improvements with tuxedo data

• Enhanced algorithm data results
 – Probability of false alarm significantly decreased
 – SINR Loss closely matches predicted performance
 – Targets of interest consistently detected
 – Low MDV observed
 – “Convoy-like” railroad train easily detected and not self-nulled