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The detection of  communicable 
pathogens responsible for major outbreaks 
often relies on health care professionals’ 
recognition of symptoms manifesting in 

infectious individuals. Early warning of such commu-
nicable diseases before the onset of symptoms could 
improve both patient care and public health responses. 
MIT Lincoln Laboratory’s PRESAGED (Presymptomatic 
Agent Exposure Detection) algorithm uses host-based 
physiological signals to detect an individual’s exposure 
to pathogens, such as viruses and bacteria, before overt 
symptoms emerge and infectiousness is peak. 

Researchers in the PRESAGED program have used 
data from non-human primate studies to demonstrate 
that the algorithm can provide two to three days of early 
warning before the onset of incipient symptoms (e.g., 
fever), independent of the particular pathogen, exposure 
route, pathogen dose, or animal species [1]. These results 
are consistent with recent findings of Speranza et al. that 
show presymptomatic upregulation in biomarkers poten-
tially linked to pathogen exposure around the same time 
in non-human primates exposed to Ebola [2]. 

The PRESAGED algorithm relies on data that could 
be collected noninvasively, such as heart electrical activity 
(electrocardiography, or ECG), to predict the probability 
that an individual has been exposed to a pathogen. This 
system addresses fundamental limitations of existing 
highly sensitive and specific bioassays: specifically, that 
these tests require the collection of blood or other biofluids 
and that samples are only collected and analyzed when 
there is a high suspicion of exposure. Furthermore, most 
assays focus on detecting proteomic or genetic signatures 

Lincoln Laboratory researchers investigated 
how early warning of exposure to pathogens 
could shape health care responses to 
disease outbreaks. Basing their analysis on 
the capability of an innovative algorithm that 
enables the detection of pathogen exposure 
in individuals before symptoms of disease 
occur, the research team evaluated the effects 
of such early warning on various strategies 
for mitigating a widespread outbreak. While 
not specifically focused on COVID-19, this 
effort lays the foundation for understanding 
the impact of early warning technology in 
combination with other nonpharmaceutical 
interventions.
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of a pathogen itself, at which time an individual will likely 
already have symptoms and thus be infectious [3]. 

PRESAGED offers potential applications in health 
care responses to emerging pathogens on two fronts. The 
first would be improved individual patient care; medical 
countermeasures are nearly always more effective when 
deployed before overt indications of infection [4–6]. The 
second would be faster and more confident implementa-
tion of public health measures to mitigate the spread of 
disease outbreaks. Lincoln Laboratory researchers have 
been focusing on the latter, investigating how host-based 
early warning capabilities could lead to effective pathogen 
surveillance systems and public health interventions. 
Although much work has focused on predicting disease 
outbreaks based on environmental and vector-related 
data, such as weather patterns, geography, and vegeta-
tion conditions [7, 8], less work has explored using the 
conditions of the host itself for predictive purposes. 

This research is of particular interest to the 
Department of Defense because U.S. servicemembers 
deployed worldwide can potentially come in contact with 
a huge variety of communicable diseases, ranging from 
rarely encountered Ebola to annual influenza. Previously 
unknown emerging pathogens, such as Chikungunya 
and Zika, have the potential to disproportionally affect 
military personnel who are often deployed to regions 
where such pathogens are prevalent. 

Numerous papers have applied epidemiological 
models to characterize the disease transmission dynamics 
and the effectiveness of public health interventions 
of past outbreaks [9–13]. A few papers have incorpo-
rated a hypothetical early diagnostic capability (based 
on advancements in bioassay tests) in their models and 
evaluated its effectiveness in controlling the spread of 
disease outbreaks [14]. However, there has yet to be an 
effort that assesses the potential impact of a host-based 
early warning system. 

We have developed a series of epidemiological models 
that quantify the potential impact that a host-based early 
warning capability would have in mitigating pathogen 
transmission during an outbreak. Our epidemiolog-
ical models reflect a variety of traditional public health 
policies related to nonpharmaceutical interventions, such 
as quarantine and patient isolation, and novel policies 
enabled by host-based early warning capabilities. For each 
policy-dependent model, we simulated outbreak scenarios 

and calculated the size of the outbreak (total number of 
infections) and the operational burden (total number of 
lost duty days resulting from quarantine or isolation). 
These metrics were used to understand the trade space for 
the different policies. Our simulations demonstrate the 
utility of host-based early warning systems in controlling 
an outbreak under various outbreak conditions, further 
motivating discussion about the potential benefits and 
limitations of population-wide implementation in the 
U.S. armed forces or the broader civilian population.

Models for Disease Outbreak Simulation
The SEIR Model
One of the most common epidemiological models for 
simulating disease outbreak scenarios is the deterministic 
SEIR model. This approach splits a given population into 
separate compartments defined by their relationship to a 
disease outbreak [15]:
1.	 Susceptible: healthy individuals who can be exposed 

to the pathogen
2.	 Exposed: individuals who are in the incubation phase; 

they have been exposed to the pathogen but are not 
yet showing symptoms and are not infectious

3.	 Infectious: individuals who are infectious to the 
susceptible population and will eventually display 
overt symptoms

4.	 Recovered: those who have recovered from illness and 
acquired immunity to further infection

These compartments are then linked with a system 
of ordinary differential equations (ODEs) to characterize 
how individuals transition into and out of each compart-
ment over time. A variety of scenarios can be simulated 
by changing the rate parameters of the ODEs linking the 
population compartments. Furthermore, this approach 
allows quantitative projections of how many people are 
exposed to a pathogen and become sick under different 
outbreak conditions. 

While the SEIR model is mathematically rigorous 
and often has good predictive utility during an outbreak, 
the SEIR model requires several assumptions. First, the 
model assumes there is a fixed population N, with no 
births or deaths other than those resulting from the infec-
tious disease. The next assumption is that the population 
is homogeneously mixing, meaning that transmission 
between any two individuals is equally likely. The model 
also assumes that exposed individuals become infectious 
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after a fixed incubation period, thus not accounting for 
individual variability of disease progression for the young, 
elderly, or immunocompromised. Finally, it is assumed 
that all recovered individuals are immune to further infec-
tion and thus do not re-enter the susceptible class. While 
any of these assumptions may fail to hold in particular 
contexts, abiding by them allows for greater mathematical 
tractability and offers similar relative output trends. 

Baseline SEIR Model
The SEIR model consists of a system of four ODEs that 
describe the rate of change of individuals in each compart-
ment over time (Figure 1). The differential equations for 
Susceptible, St , Exposed, Et , Infectious, It , and Recovered, 
Rt , are as follows, where dependence on time, t, is omitted 
in the notation below for simplicity:

Table 1 describes all of the parameters we use 
for our models. At the start of the model, a subset of 
the population is exposed to a pathogen (E0), and the 
remainder are susceptible to infection. Susceptible 
individuals enter the exposed compartment at a rate 
of βI/N, which is known as the normalized transmis-
sion rate. The parameter β is the contact rate, which 
accounts for how often susceptible-infectious contacts 
result in a susceptible individual becoming exposed to 
the pathogen. Exposed individuals become infectious at 
a rate of σ, which is the inverse of the incubation period. 
Infectious individuals stay infectious at a rate of γ (the 
inverse of the infectious period) until they recover or die. 
We define the recovery rate, ρ, as (1 – f) γ where the case 
fatality rate f  is the proportion of infected individuals 
who die from the disease. Note that we do not specify a 
mortality compartment in this analysis, though for some 
pathogens spread through the handling of remains (such 
as Ebola during the 2014 West Africa outbreak), this 
compartment would be a critical addition.

dS
dt

=− βSI
N

dE
dt

=
βSI
N

−σ E

dI
dt

=σ E −γ I

dR
dt

= 1− ƒ( )γ I

Another important value given by this model is 
the basic reproduction number R0 , which is often 
included as a basic property of any given pathogen [15]. 
R0 represents the average number of additional infec-
tions caused by each infectious individual, assuming 
there are no control interventions. In a fixed popula-
tion represented in the SEIR model, the reproduction 
number can be calculated from parameters in the model 
as R0 = β/γ . 

The solutions of the SEIR model are functions of the 
number of individuals in each compartment with respect 
to time, i.e., St , Et , It , and Rt . We solve this numerically 
by using an ODE solver in MATLAB®, and with these 
results, we may now answer some of the initial questions 
posed. For example, if we want to know the number of 
people who are not showing symptoms (visibly healthy 
individuals), we could plot S + E + R. 

An example output of the full SEIR model is 
shown in Figure 2a. Here, we begin with a popula-
tion of N = 1000 people (roughly equivalent to a large 
battalion), and consider a scenario in which 300 
individuals are exposed to some pathogen at time, 
t = 0 (St=0 = 700, Et=0 = 300, It=0 = Rt=0 = 0). If we assume a 
particular infectious pathogen has a contact rate, β = 0.75, 
with an incubation period of two days, σ = 0.5, and an 
infectious period of five days, γ = 0.2 (similar proper-
ties to a highly contagious flu virus), the solution to the 
SEIR model shows that nearly the entire population will 
contract the disease over the course of a month. Figure 2b 
focuses on the number of cumulative infections, a metric 
for assessing the overall size of the outbreak over time. 
This baseline condition, in which no public health policy 
is in effect, represents the most severe outcome from an 
infectious disease outbreak. 

Policy-Dependent SEIR Models
In the previous section, we considered the standard 
SEIR model, which describes disease spread without 
any public health interventions. To quantitatively 
evaluate an outbreak scenario with additional measures, 
the parameters and compartments of the SEIR model 
may be modified to reflect policy choices or new early 
warning technologies. Two policies currently consid-
ered as standards in handling possible outbreaks rely 
on self-monitoring to implement voluntary isolation or 
quarantining all individuals that may have been exposed 
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however, it does not require the logistical and financial 
cost of quarantine. The second policy, quarantining the 
entire population, is effective in reducing additional 
transmissions but requires prohibitively onerous costs 
for large populations. In an effort to explore an alterna-
tive to these two policies, we modified our SEIR model 
to simulate a third policy, quarantine-on-alert, in which 

to a pathogen. Isolation applies to individuals who are 
already ill, whereas quarantine applies to individuals who 
may have been exposed but have not shown symptoms. 
The first policy, self-monitoring and reporting, which 
assumes individuals self-report when they develop 
symptoms, allows for additional infections during the 
time delay between the onset of symptoms and isolation; 

TABLE 1. Parameter Definitions and Values for Baseline and Policy-Dependent Models

PARAMETER DEFINITION VALUE FOR THIS ANALYSIS

N Total population 1000

E0 Initially exposed population 300

β Contact rate 0.75

σ Incubation rate 0.5 (2-day incubation period)

Y Infectious rate 0.2 (5-day infectious period)

ρ Recovery rate 0.18

ƒ Case fatality rate 0.1

θ Self-reporting probability 1 (all ill individuals self-report)

α Self-reporting rate 0.5 (2-day self-report) delay

TQ Time of quarantine 0

ε Release rate 0.2 (5-day quarantine period)

κ False-alarm rate 1/365 (1 false alarm per year)

λ Early detection rate 1 (1-day early detection time)

PD Probability of early detection 0.8

! !

ƒ!

= Incubation rate = Infectious rate
= Case fatality rate
= Recovery rate

(Death)

S
(Susceptible)

I
(Infectious)

E
(Exposed)

R
(Recovered)

!!= Contact rate
= Total population

! 1! f( )!
!
N ƒ

!I N

FIGURE 1. In this schematic diagram of the SEIR model, each box represents a compartment of the population, and arrows show 
the progression of individuals through those compartments. Expressions above arrows are rate coefficients showing progression 
through compartments. Note that the dashed boxed portion, indicating individuals leaving the population because of death, will not 
be included in future diagrams for simplicity.
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individuals are only quarantined when prompted by a 
host-based early warning system. We hypothesized that 
the early notification of incipient illness will allow for 
reductions in pathogen transmission while minimizing 
the number of quarantined individuals. We then assessed 
each of these three new policy-dependent SEIR models.

Self-Monitoring and Reporting: Isolation after 
Symptoms
In the course of an infectious disease outbreak, most 
individuals will self-monitor for symptoms of the 
pathogen. If individuals start to develop symptoms, 
they can self-report to a medical facility and may be 

immediately isolated until they recover. A new compart-
ment, isoLated (L), was added to the model to reflect 
this symptomatic and infectious population, which 
has limited contact with the rest of the population and 
therefore reduced transmission potential (Figure 3). The 
self-reporting probability θ is defined as the proportion of 
symptomatic individuals who are compliant in reporting 
their symptoms and enter the L compartment, while the 
self-reporting rate α is derived from the delay between 
developing symptoms and self-reporting (i.e., the inverse 
of the average time delay). For our model, we assumed 
that isolation is 100 percent effective in preventing 
transmission, and individuals in the L compartment 
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FIGURE 2. A numeric solution for the baseline SEIR model shows the population of each compartment versus time (a), which 
indicates that for an initial exposure of 300 individuals, nearly the entire population will eventually fall ill; the cumulative number of 
infections (Cumulative I) versus time is shown in (b).
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FIGURE 3. The model diagram for a self-monitoring and self-reporting policy includes an additional compartment (L) for individuals 
who are isolated after developing symptoms. Note that fatalities are left out for simplicity.
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are unable to infect the susceptible population. While 
a self-monitoring policy reduces transmission rates by 
isolating the self-reported sick, both the latency α and an 
imperfect self-reporting probability (θ < 1) will still lead 
to opportunities for transmission.

Outputs for the SEIR model with self-reporting and 
isolation are shown in Figure 4. This policy addition leads 
to both fewer total individuals contracting the disease and 
fewer individuals acutely symptomatic at the height of 
the outbreak. The new isolated compartment L, however, 
has other costs associated with lost duty days, mandated 
isolation, medical facilities, and treatment. The choices 
of self-reporting probability and rate are critical in this 
scenario, and, in reality, may have such broad distribu-
tions that relying on this policy in an acute outbreak may 
do little to prevent additional infections.

Quarantining the Entire Population
Another possible, though draconian, public health 
response to an outbreak is to quarantine currently 
healthy individuals with some likelihood of pathogen 
exposure. In outbreaks with a large population subset 
having some exposure likelihood, a quarantine-all policy 
would separate all individuals in the population from 

contact with one another. Our model assumes that 
quarantined individuals, represented by the Q compart-
ment, are monitored and immediately isolated once they 
develop symptoms (Figure 5). If quarantined individ-
uals do not become symptomatic after the maximum 
incubation time of the suspected pathogen (often several 
weeks), they are released and re-enter the S compartment 
at a rate of ε (the inverse of the maximum incubation 
time). As shown in Figure 6, the quarantine-all policy 
eliminates opportunities for further pathogen transmis-
sion; however, it also results in the quarantine of healthy 
individuals who have not been exposed, contributing to 
immense productivity losses, extreme logistic burdens 
associated with providing accommodations for an entire 
population, and acute civil rights concerns. Furthermore, 
the assumption that transmission is zero within the Q 
compartment may not be realistic because transmission 
for some pathogen may occur before overt symptoms 
and isolation. This quarantine-all policy could result 
in the illness of people who, if not for the quarantine, 
would never have been exposed to the pathogen. Blanket 
quarantine policies are extreme examples of public 
health interventions and represent a clear scenario that 
new technologies may improve.
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FIGURE 4. In this numeric solution for our SEIR model with a self-monitoring and isolation policy enacted, the population of each 
compartment versus time is shown in (a), and the active working (S + E + I + R) and inactive (L) populations versus time with the 
cumulative infections versus time are shown in (b). The self-monitoring policy has effectively reduced the total number of disease 
cases and blunted the outbreak’s peak severity (number of cases in I and L peak at approximately 7 days).
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Quarantine on Alert
The third model we explored simulates a novel policy that 
could potentially be enabled by future host-based early 
detection capabilities. Here, a host-based early warning 
system could prompt a quarantine only on alert when the 
system detects presymptomatic signs of exposure. We 
integrated the early warning performance metrics from 
our PRESAGED algorithm—population-wide proba-
bility of early detection, daily false-alarm rate, and early 

detection time—into a base SEIR model. As shown in 
Figure 7, a host-based early warning system would trigger 
exposed individuals to transition into quarantine at a rate 
characterized by the product of the parameters λ and PD. 
The parameter λ is an early detection rate defined as the 
inverse of the system’s average early detection time for a 
given pathogen. The parameter PD is the population-wide 
probability of early detection, i.e., the fraction of the 
exposed population that will present early detections of 
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FIGURE 5. The model diagram for a quarantine-all policy moves all susceptible and exposed individuals to the quarantined 
compartment (Q) at the time tQ = 0 days. Quarantined individuals who do not develop symptoms are returned to the susceptible 
compartment after a maximum incubation time.

FIGURE 6. In the numeric solution for our SEIR model with a quarantine-all policy enacted, the population of each compartment 
versus time, which notably does not include an exposed compartment, is shown in (a). In (a) are individuals suspected to be 
exposed and quarantined initially, until they either fall ill (and are isolated) or are released after the quarantine duration (21 days). 
The active working (S + R) and inactive (Q + L) populations versus time with the cumulative infections versus time are shown in (b). 
The quarantine-all policy has very effectively reduced the total number of disease cases but has vastly increased the burdens of 
quarantine and isolation.
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pathogen exposure prior to becoming infectious. Missed 
detection cases, when the system fails to produce an 
early warning, occur with a probability of 1 – PD across 
the exposed population. For this policy, false alarms of 
the host-based early warning system would cause healthy 
individuals to be incorrectly quarantined. Our model 
takes this notion into account by adding a transition rate 
from the susceptible to the quarantined compartment, 
characterized by a daily false-alarm rate κ, the probability 
of an individual’s early warning system presenting a false 
alarm on a given day. 

While the self-monitoring and quarantine-all policies 
present clear trade-offs between cumulative number of 
infections and number of people isolated or quarantined, 
as shown in Figure 8, this quarantine-on-alert policy 
offers a hybrid approach that could optimize for both. 
Quarantine-on-alert vastly reduces quarantine costs by 
selectively identifying likely exposed individuals through 
physiologically based predictions. Furthermore, once 
quarantined, these high-risk individuals can be immedi-
ately isolated, thus limiting the opportunities of additional 
infections and enabling more focused medical care. 

SEIR Model Reproduction Numbers by Policy 
Choice
Modifications made to the baseline SEIR model result in 
changes to the reproduction number (R) associated with 
each policy-dependent SEIR model [16]. Our example 
scenario assumes that every symptomatic person will 

self-report and thus the self-reporting probability, θ, is 
1. Table 2 summarizes equations to calculate R values 
for each policy, the R values given the parameter values 
in Table 1, and the cumulative cases of infection for 
each policy choice after 50 days. The policies with the 
lower R values (quarantine-all and quarantine-on-alert) 
are associated with minimal pathogen spread, while 
the policies with higher R values (self-monitoring and 
baseline) yield a greater number of infection cases. The 
number of cumulative infections as the ODE reaches 
equilibrium illustrates how the reproduction number 
would affect the final size of the outbreak. Note that the 
number of cumulative infections for baseline saturates 
around the population size (N = 1000) when the number of 
individuals in the susceptible compartment is exhausted.

Policy Trade-Space Analysis
The policy-dependent SEIR models provide a founda-
tion for a trade-space analysis of different quarantine, 
isolation, and treatment (QIT) policies as a function of 
disease transmission characteristics, exposure scenarios, 
and performance of early warning systems. The analysis 
captures both the potential benefits (reduction in quaran-
tine costs, more focused use of medical resources) and 
risks (increase in infections) for each policy. 

To demonstrate the potential utility of the early 
warning–enabled quarantine-on-alert model in a 
more comprehensive QIT policy analysis, we compare 
outcomes over a range of disease transmission rates, 
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FIGURE 7. This hybrid model diagram illustrates the final quarantine-on-alert policy. The performance of the PRESAGED-like early 
warning system is now explicitly added, including the probabilities of early detection and false alarm, as well as an expected early 
detection time before symptom onset and infectiousness. This hybrid between quarantine-all and self-monitoring with isolation 
seeks to leverage the epidemic-limiting behavior of both policies while reducing the cost and burdens of each.
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initial exposure conditions, and early warning perfor-
mance parameters. We vary these parameters in 
simulations of a mass exposure to an infectious pathogen 
occurring in a population of 1,000 people. All scenarios 
were simulated over 50 days. Because we fix the exposure 
time for all cases to t = 0, rather than using the quaran-
tine release rate ε, all individuals in quarantine are 
returned to the susceptible compartment at t = 21 days 
(the maximum incubation period).

Policy outcomes are defined by two metrics that are 
derived from the policy-dependent SEIR model outputs 
as shown in Figure 9. The first, lost duty days, is expressed 
as a percentage of total number of days of work produc-
tivity that are lost because of quarantine and isolation in 
the 50-day simulation; this percentage is proportional to 
the integral of the curves in Figure 9a. The second metric, 
cumulative infections, is the percentage of the popula-
tion that has been infected by the end of the simulation 
(Figure 9b). These two metrics characterize a trade space 
for evaluating QIT policies under different circumstances, 
because any measure that reduces the number of people 

in quarantine and isolation may be expected to increase 
the likelihood of infection in the population. While these 
metrics are helpful for evaluating the impact of various 
policy choices, they are by no means comprehensive and 
particularly do not consider the financial or other costs 
associated with quarantine. 

Five QIT policy sets were evaluated: quarantine-all, 
isolate upon self-reporting, and quarantine-on-alert with 
three different levels of early detection performance—
high sensitivity (PD = 0.8, κ =0.10), high specificity 
(PD = 0.4, κ = 1/365), and a near-ideal early-detection 
system (PD = 0.8, κ = 1/365). These five QIT policy options 
were then tested against four different outbreak scenarios 
with high or low disease transmission (where β = 0.6 
or 0.3, respectively) and high or low initial population 
exposures (where E0 = 600 or 50, respectively). Figure 10 
shows the QIT policy trade-offs for these 20 independent 
outbreak and policy combinations.

For all scenarios, a quarantine-on-alert policy 
coupled with the near-ideal early warning capability 
reduces quarantine needs with only a small increase in 
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FIGURE 8. This numeric solution for our SEIR model with a quarantine-on-alert policy enacted shows the population of each 
compartment versus time (a); the plot shows how such an early warning technology could limit the outbreak size. As the initially 
exposed individuals receive alerts, they enter the quarantine-on-alert compartment and are unable to infect the susceptible 
compartment. The active working (S + E + I + R) and inactive (Q + L) populations versus time are shown with the cumulative 
infections versus time in (b). The quarantine-on-alert policy has effectively reduced the additional disease cases and has largely 
limited those in quarantine to those individuals who were initially exposed.
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the number of additional infections. The cost of focusing 
on a high-specificity early detection system (i.e., a reduc-
tion in false alarms and thus quarantine costs) is an 
increase in additional infections relative to the near-ideal 
system. Conversely, a high-sensitivity system increases the 
percentage of the population in quarantine compared to 
both the ideal and high-specificity early detection system 
while also reducing the number of additional infections 
to nearly the number seen by quarantining the entire 
population a priori. 

For scenarios with low initial exposure, the impact of 
early warning–enabled QIT policies varies dramatically 
with transmissibility. For low-transmissibility and small 
initial exposures (Figure 11a), an early warning capability 
demonstrates the least utility because the outbreak seems 
to be effectively contained with just self-monitoring. 
However, for a pathogen with high transmissibility 
(Figure 11b), the cumulative infections are reduced signifi-
cantly with any of the notional early warning systems. A 
high-specificity system offers a particularly promising 
result, showing comparable infection reduction to the 
near-ideal system while also minimizing the number of 
days lost to quarantine.

In the scenarios of high initial exposure (Figure 11c 
and Figure 11d), the costs of imperfect early detection 
are more pronounced compared to those for scenarios 
of low initial exposure. Because a high initial exposure 
greatly increases the likelihood of infectious individuals 

transmitting the pathogen to those susceptible, even a 
short delay in isolating infectious individuals will lead 
to more infections. The reduction of cumulative infec-
tions for all notional early warning systems, relative to the 
self-monitoring policy, is less prominent than in scenarios 
of low initial exposure because the initial exposed popula-
tion is close to saturation. In effect, for these extreme 
cases of mass exposures, the more aggressive policies (i.e., 
a high-sensitivity early detection system or quarantining 
everyone) may be more effective. 

Discussion and Future Work
The results for the early warning–enabled and 
policy-dependent SEIR models allowed for a quantitative 
analysis of the QIT trade space and provided guidance 
on priorities for the future development of early warning 
technology. However, this illustration of QIT risk analysis 
captures only a subset of the factors that must be consid-
ered in the formulation of a rational, effective QIT policy. 
The context of the scenario will ultimately inform where 
the ideal operating point would be. For example, the 
number of total infections may be interpreted differently 
depending upon the virulence of the disease. The toler-
ance for new infections may be low if the consequences 
are high, such as if the infection is almost always fatal or is 
associated with severe symptoms and long-term compli-
cations. Additionally, the availability of diagnostic tests 
may further refine the use of early warning capabilities; 

TABLE 2. Reproduction Number (R ) Equations and Nominal R Values for Our Example Scenario

POLICY R EQUATION R VALUE CUMULATIVE INFECTIONS 
AFTER 50 DAYS

Baseline 0 =R 3.75 986

Self-monitoring R = 1.5 846

Quarantine-all R =0 0 300

Quarantine-on-alert R =
1 PD( )

1 PD( ) +PD
0.167 347

In a population of N = 1000, the number of initially exposed individuals is E0 = 300. The nominal R Value and Cumulative Infections were 
calculated using parameter values from Table 1.
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a more sensitive early detection capability could be 
combined with a cued use of diagnostic testing to form 
a much more targeted approach, reducing costs and 
the likelihood of a false detection. While the results we 
presented are a first attempt at understanding the poten-
tial utility of a host-based early warning system during 
an outbreak, a comprehensive risk assessment of a QIT 
policy must consider a range of factors:
•	 Disease characteristics: prevalence, transmissibility, 

incubation period, and severity 
•	 Response options: reliable diagnostic tests, vaccines, 

or treatments
•	 Resources: cost and availability of QIT measures
•	 Early warning capability: performance characteristics 

of early warning systems
•	 Public health infrastructure: ability to implement an 

effective public health campaign
An element that we do not include in this model is 

patient care measures, which are nearly always more 
effective when deployed earlier than overt indications 
of infection (e.g., fever). For instance, antiviral drugs 
(such as zanamivir and oseltamivir/Tamiflu) are most 
effective in the first ~48 hours of symptoms [8, 17, 18]; 
PRESAGED-enabled early warning would allow much 
faster prescription, use, and potentially more profound 

therapeutic impact for current dosage recommendations. 
Triggering the use of diagnostics early would allow clini-
cians to target drug-based interventions, such as using 
the precise antibiotic for bacterial infections rather than 
relying on broad-spectrum versions that contribute to 
the evolution of drug-resistant bacteria (“superbugs”). 
Finally, simple supportive care for mild infections, 
e.g., having rehydrating solutions or over-the-counter 
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FIGURE 9. The model outputs compare consequences of self-monitoring, quarantine-all, and quarantine-on-alert outbreak response 
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symptom-relieving medications available, could ease 
the burden on health care workers in hospitals, nursing 
homes, or college campuses. All of these exciting possibil-
ities could be enabled or improved with earlier detection.

Future modeling efforts will focus on improve-
ments to this model, especially as more is known about 
the mechanistic basis for host-based early warning of 
pathogen exposure. Several additional aspects of QIT 
policy that will be considered include the following:
1.	 Consequences of infection, or a cost function of being 

in the infectious compartment. Adding a more explicit 
fatality compartment is straightforward. However, 
more complex models incorporating significantly 
time-delayed or nonlinear costs are much more accurate 
for measuring the effectiveness of QIT policies.

2.	 Early quarantine release. When the maximum incuba-
tion period may result in long quarantine periods 
that lead to unacceptably high quarantine costs, the 
absence of an exposure detection in individuals who 
have not been exposed to the pathogen may trigger an 
early release from quarantine. This early quarantine 
release approach could significantly reduce costs and 
civil rights issues associated with quarantine.

3.	 Modeling of additional QIT responses. Incorporating 
diagnostic tests into the models could refine the 
quarantine trigger and release policies. Additionally, 
future models could include specific treatments upon 
early warning to modulate infection outcomes. Such 
options may be particularly important in circum-
stances when quarantine and isolation resources are 
limited.

4.	 Movement among populations. The policy-dependent 
SEIR model addresses a single, isolated population 
being homogeneously mixed. However, in many 
circumstances, QIT policy is driven by a concern for 
the spread of the pathogen into connected populations. 
To address these circumstances, the policy-dependent 
SEIR model may be further extended to incorpo-
rate changes in each population compartment that 
result from the movement of people into (or out of) 
individual population compartments from (or to) 
other populations. In this formulation, individual 
populations are modeled with the extended SEIR 
mode as nodes in a migration network. Network 
edges are characterized by migration rates between 
the connected subpopulations.

5.	 Stochastic modeling. In a more realistic model, each of 
the SEIR parameters may be modeled in greater detail 
as a probability distribution rather than a fixed value. 
Stochastic modeling would support a more compre-
hensive risk analysis that includes insights about the 
likely range of potential outcomes, as well as rare but 
high consequence “edge” cases. 

In conclusion, we have shown the epidemiological 
value of host-based early warning systems in a variety of 
pathogen outbreaks. By adjusting the underlying assump-
tions, both of the outbreak and the system performance 
metrics of a notional early detection system, we show in 
which scenarios early detection is most impactful. The 
results of this work emphasize the value of early detec-
tion in modulating public health responses, though future 
efforts will also include the value to individual patients. 
Current efforts at Lincoln Laboratory are focusing on the 
ability to monitor pathogen exposure of annual influenza, 
the ability to measure pathogen transmissibility non- 
invasively, and the impact this detection capability will 
have on patient care, public health responses, and service 
member readiness.  
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