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Preface  
The Director’s Office at MIT Lincoln Laboratory (MIT LL) requested a comprehensive study on 
artificial intelligence (AI) focusing on present applications and future science and technology 
(S&T) opportunities in the Cyber Security and Information Sciences Division (Division 5). This 
report elaborates on the main results from the study.  

Since the AI field is evolving so rapidly, the study scope was to look at the recent past and 
ongoing developments to lead to a set of findings and recommendations. It was important to 
begin with a short AI history and a lay-of-the-land on representative developments across the 
Department of Defense (DoD), intelligence communities (IC), and Homeland Security. These 
areas are addressed in more detail within the report.  

A main deliverable from the study was to formulate an end-to-end AI canonical architecture 
that was suitable for a range of applications. The AI canonical architecture, formulated in the 
study, serves as the guiding framework for all the sections in this report.  

Even though the study primarily focused on cyber security and information sciences, the 
enabling technologies are broadly applicable to many other areas. Therefore, we dedicate a full 
section on enabling technologies in Section 3. The discussion on enabling technologies helps the 
reader clarify the distinction among AI, machine learning algorithms, and specific techniques to 
make an end-to-end AI system viable. 

In order to understand what is the lay-of-the-land in AI, study participants performed a fairly 
wide reach within MIT LL and external to the Laboratory (government, commercial companies, 
defense industrial base, peers, academia, and AI centers).  

In addition to the study participants (shown in the next section under acknowledgements), 
we also assembled an internal review team (IRT). The IRT was extremely helpful in providing 
feedback and in helping with the formulation of the study briefings, as we transitioned from data- 
gathering mode to the study synthesis.  

The format followed throughout the study was to highlight relevant content that 
substantiates the study findings, and identify a set of recommendations.  
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An important finding is the significant AI investment by the so-called “big 6” commercial 

companies. These major commercial companies are Google, Amazon, Facebook, Microsoft, 
Apple, and IBM. They dominate in the AI ecosystem research and development (R&D) 
investments within the U.S. According to a recent McKinsey Global Institute report, cumulative 
R&D investment in AI amounts to about $30 billion per year1. This amount is substantially 
higher than the R&D investment within the DoD, IC, and Homeland Security. Therefore, the 
DoD will need to be very strategic about investing where needed, while at the same time 
leveraging the technologies already developed and available from a wide range of commercial 
applications.  

As we will discuss in Section 1 as part of the AI history, MIT LL has been instrumental in 
developing advanced AI capabilities. For example, MIT LL has a long history in the 
development of human language technologies (HLT) by successfully applying machine learning 
algorithms to difficult problems in speech recognition, machine translation, and speech 
understanding. Section 4 elaborates on prior applications of these technologies, as well as newer 
applications in the context of multi-modalities (e.g., speech, text, images, and video). An end-to-
end AI system is very well suited to enhancing the capabilities of human language analysis. 

Section 5 discusses AI’s nascent role in cyber security. There have been cases where AI has 
already provided important benefits. However, much more research is needed in both the 
application of AI to cyber security and the associated vulnerability to the so-called adversarial 
AI. Adversarial AI is an area very critical to the DoD, IC, and Homeland Security, where 
malicious adversaries can disrupt AI systems and make them untrusted in operational 
environments. 

This report concludes with specific recommendations by formulating the way forward for 
Division 5 and a discussion of S&T challenges and opportunities. The S&T challenges and 
opportunities are centered on the key elements of the AI canonical architecture to strengthen 
the AI capabilities across the DoD, IC, and Homeland Security in support of national security. 
 
  

                                                
1 McKinsey Global Institute, AI The Next Digital Frontier?, June 2017 
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Artificial Intelligence Study Motivation (D. Martinez) 
 

“The greater danger for most of us lies not in setting our aim too high and falling  
short, but in setting our aim too low and achieving our mark.”—Michelangelo 

 
Artificial intelligence (AI) is not a new technology. The algorithms used today have been in 
existence for several decades. What is new is the confluence of three key elements: 

1. Advent of voluminous amounts of data. Estimates indicate that 90% of all data have been 
created in the past two years [1]. 

2. The ability to train the existing algorithms with vast amounts of data samples. 
3. The use of modern computing, particularly Graph Processing Units (GPUs), that are very 

well matched to parallel computations. GPUs were initially developed for the gaming 
industry for rapid rendering of videos at low power. Researchers recognized that in many 
problems of interest—for example, image recognition and understanding—the same 
computing engine could be used for machine learning. 

National security is faced with a number of challenges where AI can be instrumental, 
particularly in the role of augmenting human capabilities. As shown in Figure A, there is a need 
to employ intelligent systems and autonomy to keep U.S. armed forces out of harm’s way. 
Similarly, the nation needs to maintain information superiority both at home and abroad. AI can 
accelerate the decision-making process performed by humans by leveraging machine 
intelligence. The human-machine teaming will result in actionable intelligence with a higher 
degree of confidence in environments where the consequence of an inappropriate action is high. 
Ultimately, the decision to take an action resides with well-trained humans in the loop. 

 

 

Figure A. National challenges and the role of AI. 
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In military and intelligence missions against radical extremists, terrorists, and peer threats, 
U.S. forces deal with massive amounts of both structured data (like those data provided by 
physical assets such as satellites, airplanes, surface platforms, and undersea platforms when 
supported with metadata) and unstructured data (such as data available from social media). Both 
of these data types must be curated through a data conditioning step before AI algorithms can 
ingest them. Modern computing is an enabler to rapidly process these data to reach timely 
decisions. Effective data conditioning of vast amounts of data, leading to the leveraging of AI 
algorithms, and timely processing, presents significant challenges. 

Another important challenge in the proper use of AI for national security applications is trust 
in intelligent machines. In this report, we refer to this topic as robust AI. Any AI system 
employed in military and intelligence campaigns must be trusted by the operational users. Trust 
has many different elements, including explainability of the algorithm results, performance 
metrics, system validation and hardware/software verification, physical and cyber security, plus 
compliance with policy, ethics, and safety. All these topics are further discussed in the report. 

At the start of the study, we felt it was very important to formulate an operative AI 
definition. Figure B depicts the AI definition used in the study. The emphasis is on augmenting 
human intelligence for important functions routinely performed by humans (such as perceiving, 
learning, classifying, abstracting, reasoning, and/or acting). This definition falls under the 
category of “narrow AI.” Other researchers and practitioners refer to this definition as “specific 
AI” in contrast to “general AI.”  

There is significant angst about the advent of general AI—also referred to as artificial 
general intelligence (AGI). Many well-respected entrepreneurs, academics, and thought leaders 
have signed a manifesto on the dangers of AI on humankind [2-5]. In this report, we do not 
significantly address AGI. The definition we used during the course of the study is shown in 
Figure B. This definition focuses on narrow AI. The operative word in this definition is augment 
[6, 7]. We focused our study on the theory and development of computer systems that augment 
human intelligence. It has been very well documented that machines augmenting humans 
provide an immense value in accelerating the decision-making cycle.  

 

 
Figure B. Operative AI definition for the study. 

By all accounts, AI is predicted to have a dramatic impact to all industries to the same 
degree that the internet revolutionizes the way we work today. As described by Thomas Malone 
in his recent article “How Human-Computer ‘Superminds’ are Redefining the Future of Work”, 
[8] very powerful forms of collaboration will emerge by leveraging smart technologies into 
traditional human processes. Figure C graphs the AI domain of impact. The vertical axis is a 
spectrum from a limited amount of labeled data to a large amount of labeled data. The horizontal 
axis is a spectrum from a low consequence of action to a high consequence of action.  
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Figure C. AI domain of impact. 

In Figure C, we illustrate different examples of narrow AI applications. Proceeding 
clockwise, the lower left-hand corner shows applications where labeled data are not significant 
since, for the most part, it is not needed to achieve desirable performances. In the top left-hand 
corner of the graph, we commonly find commercial applications, such as advertisement, data 
center analysis, and even driverless cars, which benefit from having abundant amounts of labeled 
data from social media and physical sensors. Both of these quadrants are well suited to 
automation—at least to date. It is true that there have been accidents with driverless cars, for 
example, the Uber accident in March 2018 [9]. After preliminary analysis [10], it was 
determined that the AI algorithms interpreted the scenario as a false positive regarding the 
pedestrian and the bicycle. This was caused due to a number of circumstances outside of the 
norm (for both the pedestrian and the vehicle). Several AI practitioners believe that self-driving 
cars are further away than industry admits [11]. This is one reason why, for government 
applications, we recommend a high level of investment in the development of robust AI.  

On the other side of the vertical axis in Figure C, we show applications where the 
consequence of action is high. This means people can lose their lives. On the top right-hand 
corner, a very good representation is the application of AI to health sciences, as IBM Watson is 
doing with many hospitals [12]. In government applications—for example, in the DoD and IC—
lives are at stake if the AI system recommends the wrong courses of action (CoAs) with a high 
degree of confidence. It is for this reason that many professionals in these communities believe 
that AI needs to be augmenting humans and humans are then responsible for making the final 
decision, as we do today. Therefore, these types of applications are better suited to augmentation 
of human decision making. 

In national security applications, AI will have a profound effect. By AI augmenting human 
capabilities, routine tasks can be accelerated, leading to decisions and ultimately CoAs at speeds 
vastly faster than the speeds of the traditional warfare [13].  
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This study report was motivated by the need to identify areas where Division 5 can more 
significantly apply narrow AI to important national problems. The report begins with a short AI 
history where we address the changes that have happened in the past almost 70 years. We then 
present the lay-of-the-land across the commercial, academia, and the national security sectors. 
On the section on emerging technologies, we devote significant emphasis to the advances in key 
areas critical to a successful operational deployment of end-to-end AI systems. We address two 
application areas that are central to Division 5:  

1. AI applied to human language technology 
2. AI applied to cyber security 
We conclude the study report with a section on future outlook. There we formulate a set of 

recommendations for areas the government should invest in for science and technology (S&T). 
The S&T recommendations are divided into three horizons: 

1. Horizon 1 spans the next two years and focuses on using AI systems to deliver 
capabilities that augment humans by providing content-based insight. 

2. Horizon 2 spans the subsequent three to four years and focuses on using AI systems to 
deliver capabilities that augment humans by providing more effective collaboration-
based insight. 

3.  Horizon 3 looks at five years and beyond, and focuses on AI systems delivering 
capabilities that augment humans by providing context-based insight. 

We identified our recommendations across the three horizons using the AI canonical 
architecture developed as part of the study. We also highlight the need to recognize that effective 
application of AI systems requires more than advances in S&T capabilities. The U.S. 
government must also consider improvements in existing processes to enable effective use of AI 
capabilities, and establish an environment of constant training of the military and civilian 
workforce. Toward this end, we propose an AI business model that facilitates rapid prototyping 
and insertion into operational systems with users intimately involved from the start.  

This report provides readers with the following main contributions: 
1. Increased clarity on what is the state of narrow AI relevant to national security problems 
2. A description of AI enabling technologies 
3. Areas for advancing AI applied to human language technology (HLT) 
4. Areas for advancing AI applied to cyber security 
5. Specific S&T recommendations anchored on an AI canonical architecture 
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1 History of Artificial Intelligence and Trends (D. Martinez) 
1.1 Notable Events in AI During the Last Seven Decades  
AI developments, in the last 70 years, have shown many successes but also failures. As shown in 
Figure 1.1, one of the seminal papers was published by Alan Turing in 1950 and was titled: 
“Computing Machinery and Intelligence” [1]. Turing’s main discussion centered on the key 
question: Can machines think? This led to the famous Turing test where a machine and a human 
are compared to determine—blindly—if a machine is unrecognizable from a human [2].  

During this time at MIT LL, there were several researchers who were experimenting with 
pattern recognition techniques and their implementation in modern computers. This research 
work was published in the Western Joint Computer Conference under the session on Learning 
Machines [3]. The participants at this conference from MIT LL at the time were Wes Clark 
(from Group 63; Digital Development Group), Gerald Dineen (from Group 24; Data Processing 
Group), and Oliver Selfridge (from Group 34, Communication Techniques Group) [4]. 

The Dartmouth summer research project is considered the dawn of AI [5]. The actual 
summer gathering took place in 1956 after funding for 10 researchers was provided by the 
Rockefeller Foundation. John McCarthy is credited with coining the name “artificial 
intelligence”. As shown in Figure 1.2, in addition to the AI giants who submitted the project 
proposal, there were others who participated in this important summer project, including Oliver 
Selfridge. Selfridge was Marvin Minsky’s supervisor during the early years of Minsky’s career. 
During the late 1950s and early 1960s, while at MIT LL, Minsky wrote the paper titled “Steps 
Towards Artificial Intelligence”, which established an initial vision leading to the famous MIT 
AI Laboratory—where Minsky served as its first director [6].  
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Figure 1.1. Important AI milestones from 1950 to 2017. 
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Figure 1.2. The Dartmouth summer research project on AI (1956) and Prof. Marvin Minsky early days at MIT LL. 

 

In the 1950s and 1960s, there was significant activity in AI. Frank Rosenblatt, faculty at 
Cornell University and lead of the cognitive systems effort, published one of the first papers on 
the perceptron [7]. The perceptron is a simple, one-stage predecessor to what we now know as a 
neural network. Marvin Minsky and Seymour Papert wrote a book titled Perceptrons: An 
Introduction to Computational Geometry, where they elaborated on the mathematics of 
perceptrons as one of the first illustrations of a machine that could be taught to perform simple 
tasks by using training data as examples [8]. Perceptrons are considered an example of models 
within the rubric of “connectionists.” Another AI model in the 1960s began to show impressive 
results leveraging serial reasoning of symbolic expressions—these techniques belong under the 
rubric of “symbolists”. Minsky and Papert, in their later edition of their book [8], clarified that 
both connectionist learning (like perceptrons) and symbolists reasoning are important techniques 
within the scope of machine intelligence. In 1988, they emphasized that connectionist 
approaches would flourish (“…and we expect the future of network-based learning machines to 
be rich beyond imagining”).  

Another important AI milestone was the demonstration of an intelligent machine that could 
play checkers against a human [9]. In 1959, Arthur Samuel, at the time at IBM, showed that a 
machine can be programmed to play better than the human who programmed the machine. 
Samuel was one of the first AI researchers to introduce the term “machine learning.” These were 
the early days of machine learning mostly built on rule-based decision trees. Although simple in 
comparison to today’s standards, this demonstration provided an initial indication that machines 
could be built to exhibit a capability to learn.  

Despite all the initial successes achieved during the 1950s and 1960s, in the late 1970s and 
again in the late 1980s, as shown in Figure 1.1, there were two so called “AI winters”, when 
R&D funding came to a halt. These AI winters, described in Figure 1.3, were driven by the hope 
of achieving artificial general intelligence (AGI), mentioned earlier in this report. Although R&D 
funding came to almost a complete halt during those periods, there were significant 
accomplishments achieved, primarily based on expert systems [10]. Ed Feigenbaum, faculty at 
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Stanford University, demonstrated a functional expert system—DENDRAL project—applied to 
organic chemistry to help with the identification of organic molecules from their spectra. 
Although the project began in the mid-1960s, by the 1980s there were impressive results of using 
an expert system based on a rule-based decision process. Many more academic papers were 
published during the 1980s leveraging expert systems. David Martinez published a paper titled: 
“Systems Analysis Techniques for the Implementation of Expert Systems” [11]. The paper 
addressed the application of system analysis tools for designing knowledge-based expert 
systems; the tools were illustrated with a simplified example drawn from the oil and gas 
exploration application. A rigorous system analysis approach will continue to be important in 
many present and future applications to ascertain the robustness of AI, a concept discussed 
further in Section 3.  

 

 
Figure 1.3. AI winters. 

In 1997, there was a fundamental shift in recognizing what AI could do when IBM Deep 
Blue defeated reigning chess champion Gary Kasparov [12]. The chess playing program was 
written in the C programming language. It was capable of evaluating 200 million positions per 
second. In June 1997, Deep Blue was the 259th most powerful supercomputer in the world 
according to the well-known LINPACK benchmark used for evaluating the TOP500 list 
(delivering 11.38 billion floating point operations/sec) [13]. Kasparov points out that it was the 
ability of a computer to evaluate those 200 million positions per second that caused him to lose 
to IBM Deep Blue. In addition to the incredible demonstration of a machine defeating a human 
at as difficult a game as chess, which was revolutionary, it was also very important for the field 
of AI to simultaneously leverage powerful AI algorithms with a powerful computing platform, 
resulting in a major milestone in AI.  
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 Since the 2000s, there has been a significant acceleration in AI milestones, as shown in 
Figure 1.1. In addition to advances in AI algorithms, the availability of so-called “big data” and 
high-performance computing have led to many important AI accomplishments in a relatively 
short time. The 2007 DARPA Grand Challenge demonstrated the ability of autonomous cars to 
navigate in an urban environment. In classical DARPA fashion, this successful grand challenge 
demonstration spun off a whole industry and the interest in driverless cars that we are 
experiencing today. We in the S&T community need more investments in AI grand challenges 
modeled after DARPA’s successful demonstrations. 

Another important AI milestone, shown in Figure 1.1, was IBM Watson defeating former 
Jeopardy champions Brad Rutter and Ken Jennings. This demonstration was impressive because, 
in contrast to the early IBM Deep Blue defeating the world chess champion through analysis of 
massive combinatorial chess moves, the challenge for the IBM machine was to search a massive 
database in real-time to find the correct question to the answer.  

In 2016, the company DeepMind Technologies Limited (acquired by Google in 2014 [14]) 
demonstrated the ability for a machine to defeat the top Go player, Lee Sedol. This major AI 
accomplishment integrated advances in deep neural networks through supervised reinforcement 
learning trained from many examples of human plays. The AI system was named AlphaGo and 
consisted of more than 1200 CPUs in a distributed processing architecture and 48 Tensor 
Processing Units (TPUs). As described in the Nature paper [15], DeepMind introduced a new AI 
system called AlphaGo Zero with the ability to defeat the previous system, AlphaGo, by self-
play reinforcement learning. AlphaGo Zero was also remarkable because instead of depending 
on a large number of CPUs and TPUs in a distributed computing architecture, it used a single 
machine with four TPUs.  

Many of the breakthroughs in AI in the past several decades were based on algorithms  
that existed many years before the AI achievement was demonstrated. As shown in Figure 1.4, 
from the time an AI algorithm was first proposed to the time a breakthrough happened, on 
average, was 18 years. In addition to advances in computing, another important factor was the 
availability of relevant datasets. It took approximately three years from the time the datasets 
were available for building models and cross-validating the algorithms to the time the AI 
breakthrough happened. These gaps did not mean that algorithms were not advanced in the 
intervening years. In most cases, the algorithms were adapted to meet the need of the 
application [16]. 
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Figure 1.4. Representative breakthroughs in AI. 
 
These notable AI accomplishments of the last few decades illustrate the potential future for 

AI applicable to many different classes of user needs. The major drivers are the availability of a 
variety of sensors and sources of data, rapid advances in algorithm models, and significant 
improvement in modern computing. This trend will continue as Internet of things (IoT) devices 
become prolific as another source of data, algorithms and simulation models get advanced, and 
computing continues to accelerate. We elaborate on these enabling technologies later in the 
report in Section 3. 

1.2 AI Global Trends  
Since AI can have major economic and national security implications, there is a fierce 
competition worldwide to dominate in AI advances [17]. As pointed out by Michael Horowitz, 
from the Center for a New American Security, in the national security sector, the range of 
applications span defending our military forces, providing timely intelligence, Homeland 
Security, diplomacy, and humanitarian missions. Unfortunately, AI can also be used by 
adversaries to inflict damage to our citizens and military forces. 

 As shown in Figure 1.5, China has published its short-term and longer-term plans for 
promoting developments in AI [18-20]. For both gaining economic advantage and for its national 
security strategic vision, China wants to demonstrate major breakthroughs in AI by 2025, and it 
wants to be the envy of the world by 2030 [21]. Toward this vision, the Chinese government has 
indicated its plan to create an ecosystem by 2030, together with small and large commercial 
companies, approximating an investment value of $150 billion. This level of ecosystem 
investment in AI can have a concerning implication to the United States both economically and 
in national security.  
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Figure 1.5. China declares AI as a strategic priority. 

 
Cumulative across 2011–2016, China reached the largest number of issued patents in AI, 

as shown in Figure 1.6 [22, 23]2. Figure 1.6 also shows the top 15 patent holders in AI per 
patent assignee, cumulative over 2011–2016. IBM Corporation has been in the lead, with a 
total of 542 patents issued under their name. The State Grid of China achieved 283 patents 
issued to their name.  

 

 

Figure 1.6. Top 15 patent holders in AI per country (2011–2016). 

Many universities in the United States continue to dominate in AI research across the world. 
Figure 1.7 illustrates the top 15 universities/organizations from 2011–2018 [22]. CMU 

                                                
2 Source: Scopus is the largest abstract and citation database of peer-reviewed literature: scientific journals, books, and conference proceedings. 



1.  History of Artificial Intelligence and Trends 

 
20 

dominates in the number of published articles relating to topics within the rubric of AI3. MIT and 
Stanford are a close second and third, respectively.  

Across the world, there has been significant progress made by other countries as well. As 
illustrated in Figure 1.8 [24], China ranked first for absolute AI citations in 2015. The United 
States was in the lead if self-citations were not taken into account. A better metric, as reported by 
G. Fabre [24], is the H-index4, also depicted in Figure 1.8. The H-index illustrates a measure of 
publication influence. In 2015 the United States was in a clear lead followed by the United 
Kingdom. Most recently, as stated during the recent Association for the Advancement of AI 
conference, held in 2018, China had 290 papers accepted for publication at the conference, 
compared to 293 papers from the United States. There is clearly a scientific race by world 
powers to dominate in the field of AI.  

Apart from patents and publications, as discussed later in the report, there are several other 
factors that come into play in advancing the AI field. One important one is in the advancement of 
computing technologies. As of June 2018, Oak Ridge National Laboratory is officially the home 
of the fastest supercomputer in the world. Its computing system, named Summit, achieved 122.3 
petaflops on the TOP500 benchmark [25]. The system is based on the IBM architecture using 
POWER9 3.07 GHz CPUs, NVIDIA Volta GV100 GPUs, and Infiniband interconnect 
technologies. Google also continues to advance TPUs for its datacenters.  

Advanced computing, together with advances worldwide in algorithms, will enable fast 
acceleration of AI adaption to a large number of applications. Each application will be required 
to ingest the appropriate datasets that are “AI ready” for effective integration with the AI 
algorithms and modern computing.  

Inventions in AI algorithms are originating from both commercial organizations (such as 
Google, Amazon, and Facebook) as well as small commercial companies. Several of these 
organizations are providing the algorithms to the AI community via openly accessible 
frameworks—for example, Google’s TensorFlow and Facebook’s PyTorch [26]. For the 
applications discussed in this report, our recommendation is to leverage all these available 
inventions and adapt them, via our own innovations, to our critical national security applications. 
As Dr. Eric Schmidt, former executive chairman of Alphabet, expressed during his testimony to 
the House Armed Services Committee on April 17, 2018, “success no longer goes to the country 
that develops a new technology first, but rather to the one that better integrates it and adapts its 
way of fighting.”  

 
 

                                                
3 Terms searched in the title and/or abstract of the publication: AI, cognitive computing, machine learning, deep learning, neural networks, pattern 
recognition, fuzzy logic, support vector machine. 
4 H-index, suggested by Jorge Hirsch (also known as the Hirsh number), attempts to measure productivity and citation impact of a scholar. 
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Figure 1.7. Top 15 publishing universities in the US (2011 to 2018). 

 

 

Figure 1.8. Top countries with widely cited AI-related papers (2015). 
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2 Lay-of-the-Land (D. Martinez)  
2.1 Study Outreach 
The organizations involved in the application of AI and/or developing capabilities in this field 
are growing very rapidly. During the course of the study, the study team interacted with a wide 
and diverse number of these organizations. In some instances, the interactions were in person and 
in other instances, it was via attendance to meetings, where several government representatives 
spoke about their efforts, or through emails and teleconferences.  

Figure 2.1 highlights organizations from both the DoD and IC that we spoke with. These 
organizations are advancing capabilities ranging from R&D to operational use. Their focus in 
almost all cases is in augmenting human capabilities—what we defined earlier in the report as 
narrow AI. DARPA is looking at what it calls Wave 3, focusing on context and stronger human-
machine symbiosis. DARPA defines Wave 1 as knowledge-based systems typically based on a 
set of rules (i.e., expert systems). It defines Wave 2 as AI systems that are based on statistical 
learning, as we typically find today at the S&T levels and in earlier demonstrations at the 
operational levels (e.g., supervised learning based on structured and unstructured data). The 
future is clearly in the ability to achieve context-based reasoning (Wave 3), and where machines 
are not just tools but partners with humans to achieve the desired mission. 

The Under Secretary of Defense for Intelligence (USDI) has demonstrated a series of sprints 
through Project Maven [1] with the objective of introducing AI capabilities based on the 
application of deep neural networks (Wave 2). Project Maven is showing the ability to employ 
machine-learning techniques, in real time, to identify objects of interest that would normally take 
a significant amount of time by human analysts to classify. Project Maven is enabling image 
analysts to devote more of their time to higher cognitive tasks. It is very important to clarify that 
Project Maven is not trying to automate military weapons. The decision to undertake a military 
task is left to the military men and women responsible for deciding the courses of action.  

 

 
Figure 2.1. Study outreach to government organizations. 

Since the study was led out of Division 5—the Cyber Technology and Information Sciences 
division—the organizations we contacted were primarily working on AI for cyber security or AI 
for information sciences (e.g., human language technology and computing). Figure 2.2 illustrates 
organizations from the defense industrial base working on AI applied to national security 
problems, commercial sector, our peer laboratories, and AI centers. 

Intelligence CommunityDoD

IARPA Under Secretary of Defense 
for Intelligence (USDI)
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The defense industrial base organizations were primarily advancing capabilities for their 
national security customers. As capability providers, their interests range from data conditioning 
and algorithms adaptation to decision support systems enabled by AI.  

As we all know, much of the rapid acceleration in AI has been a result of significant R&D 
investments in the commercial sector. As shown in Figure 2.2, companies like NVIDIA are in 
the forefront of computing, leveraging their GPUs. IBM Watson has started, in the last few 
years, a whole business unit leveraging the original IBM Watson demonstrations used in the 
game of Jeopardy! Their applications range from addressing important societal problems to 
advances in computing technology [2]. Similarly, Google and Microsoft are leaders in both AI 
algorithms and computing technologies.  

Many of our peer organizations, shown in Figure 2.2, are pursuing R&D in the application 
of AI. NASA Jet Propulsion Laboratory (JPL) has established a center for data science and 
technology to coordinate R&D for data intensive systems, methods, and technologies across the 
JPL organization. As we discussed earlier under the section on AI trends, Oak Ridge National 
Laboratory just received the TOP500 award for the fastest supercomputer in the world; in 
addition to nuclear weapon modeling, they are planning to leverage the immense computing for 
AI developments. Thus, the advances ongoing in the United States at national laboratories are 
accelerating rapidly, both in the application of AI to national security problems and in 
strengthening the talent pool. 

Another important set of capabilities toward the advancement of AI is available through 
research centers or consortia. For example, the USC Center for AI in Society is conducting 
research in AI to help solve the most difficult social problems facing our world [3]. One 
successful application is its demonstration of game theory in critical infrastructure protection 
against terrorist threats. An example of a consortium is Partnership on AI, which is bringing 
together diverse, global voices to realize the promise of AI [4]. These are a few of the examples 
of advances that we can leverage in the adoption of techniques to solve challenging problems in 
the DoD, IC, and Homeland Security communities.  

 

 
Figure 2.2. Study outreach to representative organizations from the defense industrial base, commercial, peers, and 
AI centers. 
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Shivon Zilis (advisory board member at OpenAI) published a survey of commercial 
organizations in the machine intelligence field [5]. Zilis points out that just in the course of one 
year, from 2015 to 2016, there was a growth of 30% in commercial companies that have had a 
significant play in AI. Figure 2.3 depicts the commercial companies broken down by different 
types of business sectors (the original paper appeared in the Harvard Business Review) [6]. By 
breaking down the commercial companies working in the machine intelligence field as shown in 
Figure 2.3, it gives us a very good perspective on how important it is for our applications to 
leverage the large investment that commercial companies have devoted to the field of AI—
including open source content we can leverage.  

 

 
Figure 2.3. Spectrum of commercial organizations in the machine intelligence field. 

The study team reached out to many scholars in academia. In Figure 2.4, we identified the 
principal researchers in academia that provided inputs to the study team. The breadth of research 
spans theoretical developments, algorithms, hardware, and applications to both cyber security 
and information sciences. One effort that we at MIT LL are planning to be heavily involved with 
is the recently announced MIT Quest for Intelligence (launched on February 1, 2018 [7]) with 
the objective of advancing human and machine intelligence research. MIT LL can leverage this 
effort by transitioning new innovations from MIT faculty and students to solve important 
national security problems. 
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Figure 2.4. Study outreach to scholars from academia. 

2.2 AI Canonical Architecture  
Since AI requires many different key enablers, the AI study team formulated an end-to-end AI 
canonical architecture. The AI canonical architecture is shown in Figure 2.5. Centering the study 
on an AI canonical architecture served several purposes: 

1. To identify the key enablers needed to address an end-to-end AI system 
2. To highlight where machine learning fits relative to the overall AI system 
3. To categorize areas where the DoD should either lead, adopt/adapt, or follow relative to 

ongoing investments in other parts of the federal government, commercial sector, and 
academia 

4. To formulate areas where an organization should focus its resources to rapidly advance 
its AI capabilities 

5. To unify the enabling technologies and applications discussed in this report under one 
end-to-end system architecture 

6. To serve as the guiding framework for organizing the study recommendations 
  

As many AI practitioners predict, AI will continue to have a significant impact in many 
areas including medicine, agriculture, energy, transportation, manufacturing, financial services, 
human resources, logistics, national security, etc. These impacts are going to result in a change to 
our economic landscape, education, workforce, and global competitiveness. Therefore, there will 
be a need for close coupling between the AI technical community and the branches of the 
government establishing policies. As pointed out during a recent AI summit chaired by the 
Office of the President for Technology Policy [8], AI has tremendous potential to benefit the 
American people. Therefore, the White House has established a Select Committee on AI, under 
the National Science and Technology Council, to improve coordination of federal efforts and 
continuing U.S. leadership in AI. During this AI summit, it was pointed out that the top eight 
universities in AI are in the United States. It was also emphasized that the U.S. ecosystem 
addressing the AI challenges and developments is also very strong, with roughly three-quarters 
of the world’s top 100 AI startups residing in the United States. The challenge to our nation will 
be in leveraging the commercial sector, academia, government laboratories, and the industrial 
base to garner all the sources of AI innovation in a coherent way.  

In this AI report, we focus on the technical aspects of end-to-end AI systems in support of 
national security—more specifically, AI for cyber security and AI for human language 
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technology. However, the same AI canonical architecture and associated enabling technologies 
discussed in Section 3 can be used for addressing other AI application domains. We also 
emphasize, later in the report, the importance of sound government policies, ethics, safety, and 
training when we discuss robust AI as depicted in Figure 2.5.  

 

 
Figure 2.5. AI canonical architecture. 

As discussed in the U.S. National Defense Strategy [9], the DoD will invest broadly in 
autonomy, AI, and machine learning, including rapid application of breakthroughs from the 
commercial sector, academia, and defense industrial complex, to gain a competitive military 
advantage. We strongly believe that AI will be a game changer, similar to other technologies, 
such as precision weapons, Global Positioning System (GPS), stealth, etc., developed in support 
of the so-called second offset strategy. However, in the case of AI, it is imperative that we think 
of this game-changing capability as an end-to-end system and not as a single-point solution, 
therefore requiring key subsystems to effectively be integrated together.  

Recently, Prof. Andrew Moore, Dean of the School of Computer Science at CMU, 
envisioned and defined what he refers to as the AI stack [10]. As shown in Figure 2.6, Moore’s 
AI stack shares many of the same key subsystem components of the AI canonical architecture 
shown in Figure 2.5. As Moore points out, “AI isn’t just one thing or a single piece of software; 
it is a massive collection of interrelated technology blocks called the AI stack…” This 
perspective is very important for any organization investing in R&D and transitioning the AI 
capabilities into operational systems. The AI stack, similar to our AI canonical architecture, can 
provide a framework for identifying and organizing all of the technologies and capabilities 
required of an end-to-end AI system. Later in this section, we elaborate in detail on each of the 
subsystems shown in Figure 2.5. However, we felt it was also important to highlight key 
differences between the commercial sector compared to national security applications to get a 
better appreciation of the challenges surrounding the implementation of AI.  
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Figure 2.6. AI Stack formulated by Dean Andrew Moore of the School of Computer Science at CMU. 

Many of the AI applications in the commercial sector (as it applies to Facebook, Google, 
Amazon, IBM Watson, Microsoft, and Apple) depend on data with high dimensionality (so 
called variety), as well as massive amounts of data (large volume). These are also true of 
applications in support of national security. As shown in Figure 2.7, there are some similarities 
between the commercial sector when compared to the national security domain, but there are 
significant differences as well. Some of the notable differences are in amounts of labeled data 
needed for supervised learning. Another important difference is needing to operate in a contested 
environment with low capacity/intermittent datalinks, reducing the access to the vast set of 
resources available at the enterprise level. For national security applications, we must also 
recognize that countermeasures will be necessary to defend against malicious uses of AI (more 
on this when we discuss the topic of robust AI). 

However, we believe that for DoD, IC, and Homeland Security applications, the most 
effective way to accelerate adoption of AI capabilities is to adopt/adapt commercial techniques, 
since they are evolving at a very fast pace. The large number of available tools, high productivity 
languages, high performance databases, etc., facilitates leveraging of commercial AI advances. 
Some examples of available tools, discussed further in Section 3, are: 
• Machine-learning frameworks: Caffe (developed at UC Berkeley), TensorFlow (from 

Google), PyTorch (from Facebook), Keras (open source neural network library), etc. 
• High productivity languages: Matlab Simulink, Julia, Python, R, etc. 
• High performance databases: SciDB, accumulo, etc. 

AI prototyping and experimentation with speed and agility are also of paramount importance 
since AI capabilities, complementing humans in the decision cycle, can save lives when 
confronted with radical extremists (“finding a needle in a haystack”), terrorists networks, and 
defending our homeland and those abroad against peer threats. In Section 6 under Future 
Outlook, we recommend that the federal government implement an AI capability business model 
for rapid experimentation with close collaboration between researchers and users. 
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Figure 2.7. Key similarities and differences between the commercial sector and the national security sector in the 
application of AI. 

Another aspect of effective AI implementation to our domain is in the use of both simulated 
and real data. The machine-learning algorithms require a significant amount of data, at least 
today, to create a model through the training step. Therefore, as pointed out by Dr. Eric Schmidt 
during a visit in May 2017 to MIT CSAIL, we need to improve our computational resources by 
100×–1000× from what we have today.  

Waymo, a self-driving development company and subsidiary of Alphabet Inc., acquired 2.5 
million real-world miles in several cities by operating driverless vehicles in 2016. They also 
modeled 1 billion virtual miles in the same year [11]. The modeling of virtual miles requires 
substantial amounts of compute power. This is one reason why Google developed the Tensor 
Processing Unit (TPU) computing hardware, which it uses in its data centers. The United States 
is also devoting significant federal investment to the development of exascale supercomputers 
(billion billion, or a quintillion, calculations per second) through the Department of Energy. 
These supercomputer systems are needed to enable modeling of AI algorithms for a broad range 
of applications.  

2.3 High-Level Description of Subsystem Components in the AI Canonical 
Architecture 

In this section, we describe, at a high-level, the key subsystem components of the AI canonical 
architecture shown in Figure 2.5. Section 3 elaborates in more detail on the main enabling 
technologies. The format we follow is to describe the flow starting from input data through the 
insight stage delivered to the users. An important subsystem component is what we referred to as 
robust AI shown in Figure 2.5, which is a critical area to ascertain acceptance by the DoD, IC, and 
Homeland Security users. If an end-to-end AI system fails to deliver trustful results with high 
confidence, the user will opt to revert back to the prior approaches he or she has used without the 
benefit of AI. This is true because we hold AI systems to a higher standard in avoiding errors 
compared to errors made by humans—until we get to be comfortable with the benefits provided 
by AI augmenting humans cognitive tasks. 

In the effective application of AI, data are one of three drivers evolving this field. As 
discussed earlier, the other two drivers are modern computing and the algorithms. In a recent 
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online article, award-winning author Alexander Wissner-Gross stated very accurately: “Perhaps 
the most important news of our day is that datasets—not algorithms—might be the key limiting 
factor to development of human-level artificial intelligence” [12]. Although in this report we are 
not on a quest to achieve human-level artificial intelligence, as defined earlier under general AI, 
the statement applies equally to narrow AI, where the goal is to augment human intelligence. 

We begin our high-level description of the subcomponents shown in the AI canonical 
architecture by providing a short description as follows. 

Sensors and Sources: Data provided by physical sensors—like satellites, airplanes, 
submarines, and IoT devices—and cyber sources, such as different forms of social media, news 
articles, standard open web, plus the deep web and dark web, etc.  

Often data from sensors are categorized as structured data because the raw digital data are 
accompanied by metadata. Metadata describes the characteristics of the incoming data; for a 
radar system it might be radar frequency, transmitter power, number of receiving channels, 
sampling frequency of an analog-to-digital converter, etc. In contrast, what we call data sources 
are accessible in the cyber domain and are categorized as unstructured data. There is, typically, 
no source of metadata contained with those data. For example, reports from a platoon in a 
mission are written text void of any description of what is in the report until a human reads it. AI 
techniques in the field of natural language processing are advancing rapidly to determine what is 
contained in these types of reports. 

Data Conditioning: Both structured and unstructured data need to go through a data 
conditioning stage before algorithms can be applied to the data. Data conditioning, also referred 
to as data munging in the data scientist community, is quite involved. More than 90% of all data 
available in the world has been generated in the past two years [13]. Figure 2.8 depicts the 
exponential data growth in data originating from open sources. The chart illustrates the amount 
of open source data generated every minute of the day in 2018. 

The main objective for this subcomponent is to transform data into information. An example 
of information is a new sensor image (after data labeling) that we need to use to classify if the 
object of interest is present in that image or not (like a vehicle of interest). Typical functions 
performed under this subcomponent are: standardization of data formats complying with a data 
ontology, data labeling, highlights of missing or incomplete data, errors/biases in the data, etc. 

Algorithms: This subcomponent is also commonly referred to as machine learning. It is the 
stage where an end-to-end system is able to transform information into knowledge. Knowledge is 
more specific than information. For example, using the same example as used earlier in the data 
conditioning description, knowledge is the classification of what is in the image (a vehicle of 
specific make, model, and color). 

There are many types of machine-learning algorithms, including unsupervised and 
supervised learning techniques, as shown in Figure 2.5. One of the watershed moments in AI 
(see Figure 1.4) happened when the AI community experienced the confluence of labeled data 
and the demonstration of dramatic improvement in image classification. The labeled dataset was 
created by Prof. Fei-Fei Li (presently at Stanford University) and students [14]. They have 
created to date 15 million labeled images (in 2010, they had labeled 1.5 million images) by 
formulating a well-defined ontology and employing Amazon’s Mechanical Turk to have humans 
go through and label each image according to the ontology. In 2012, Geoffrey Hinton (now at 
University of Toronto and Google), et al., [15] used the labeled data from ImageNet and applied 
a deep convolutional neural networks algorithm, using multiple GPUs for training, and were able 
to demonstrate an error rate of 15.3% in image classification—compared to the 28% error rate 
achieved in 2010. The demonstration was part of the annual competition called ImageNet Large-
Scale Visual Recognition Challenge (ILSVRC). In 2016, the error rate was reduced down to 3%, 
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compared to humans at about 5% error rate. This was an impressive demonstration of the 
confluence among big data, algorithms, and modern computing. 

Modern Computing: This subcomponent addresses classes of modern computing suitable 
for the AI training and the inference stage. One of the leading processing engines is Google’s 
TPU. It leverages variable precision to gain in performance per unit watt. Similar techniques 
have been used for other applications where matrix–matrix and matrix–vector multiplies are of 
the essence for both training and application of the weights [16]. These linear algebra 
operations require not just high-speed computations, but also high-performance interconnects, 
and access to memory.  

Human-Machine Teaming: A subcomponent that allows a strong collaboration between 
humans and machines will be paramount to any AI system. This collaboration will achieve 
operational speed by providing timely insight to users, increasing scale, and reducing the level  
of the consequence of actions. Collaborative intelligence will permeate across many different 
application domains beyond national security [17-19].  

Robust AI: There are many elements within the rubric of robust AI as shown in Figure 2.5. 
For users to trust and depend on AI, the overall system has to include the ability to explain how 
the machine-learning algorithms arrive at their output (information to knowledge).  

Similarly, there needs to be better metrics, not just for the algorithms, but for the end-to-end 
AI system. Every system will need to undergo verification (verifying that the software does what 
it was designed to do), and validation that system performs as expected. Security, both physical 
and cyber, will be an important aspect for protecting the AI system. Finally, any AI capability 
will need to be cognizant of policy, ethics, and safety. In this context, there will need to be an 
active effort in training our people, both military and civilians, in the use and understanding of 
AI systems. As shown in Figure 2.9, AI systems will be used routinely in operation when we are 
able to demonstrate a high confidence level vs. an acceptable level in consequence of actions.  

In Figure 2.10, we illustrate examples of AI system capabilities, either as early prototypes or 
use in operation. In cyber security, spam filtering routinely employs rudimentary machine-
learning techniques to identify potential phishing attacks. Similarly, keyword searching, as an 
example of an information sciences application, is well matched to machines. These are 
examples of high confidence with low levels of consequence of actions. Most cases, as shown in 
Figure 2.10, fall in the center where machines augment humans in the decision cycle. 

Users: Although this stage in the overall AI canonical architecture is not a subcomponent, 
per se, the users are ultimately the beneficiaries of an end-to-end AI system. Users must be able 
to provide feedback to the system to enable increased refinement and improvements. There are 
many types of users ranging from users in an enterprise environment, at the tactical edge, as well 
as autonomous systems. Autonomous systems will only be able to operate without the aid of a 
human if, and only if, the confidence in the decisions made by the machine is high and the 
consequence of the action is low. For most other cases, the humans are ultimately the ones 
making the final decisions at least as envisioned for the near future.  

In the following sections, we elaborate in more detail on several important enablers in the 
development and advancement of AI systems. For clarity, the reader should note that in several 
sections we reuse or illustrate similar charts to emphasize different concepts within the AI report. 
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Figure 2.8. Exponential growth in open sources of data. Estimates are that the world generates 2.5 quintillion bytes of 
data per day. 

 

 
Figure 2.9. Robust AI: preserving trust in AI systems. 
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Figure 2.10. System capability space. 
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3 Enabling Technologies (V. Gadepally) 
 

 
Figure 3.1. Canonical AI architecture consists of sensors, data conditioning, algorithms, modern computing, robust AI, 
human-machine teaming, and users (missions). Each step is critical in developing end-to-end AI applications and 
systems. 

AI has the opportunity to revolutionize the way the DoD and IC address the challenges of 
evolving threats, data deluge, and rapid courses of action. AI solutions involve a number of 
different pieces that must work together in order to provide capabilities that can be used by 
decision makers, warfighters, and analysts. Consider the canonical architecture of an AI system 
in Figure 3.1. This figure outlines many of the important components needed when developing 
an end-to-end AI solution. While much of the popular press surrounds advances in algorithms 
and computing, most modern AI systems leverage advances across numerous different fields. 
Further, while certain components may not be as visible to end-users as others, our experience 
has shown that each of these interrelated components play a major role in the success or failure 
of an AI system. 

On the left side of Figure 3.1, we have data coming in from a variety of structured and 
unstructured sources. Often, these structured and unstructured data sources together provide 
different views of the same entities and/or phenomenology. For example, a satellite image that 
indicates people in a particular region may be complemented by unstructured reports from social 
media or news outlets. These raw data are often fed into a data conditioning step in which they 
are fused, aggregated, structured, accumulated, and converted to information. 

The information generated by the data conditioning step feeds into a host of supervised and 
unsupervised algorithms such as neural networks. These algorithms are used to extract patterns, 
predict new events, fill in missing data, or look for similarities across datasets. These algorithms 
essentially convert the input information to actionable knowledge. In our definition, we use the 
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term knowledge to describe information that has been converted into a higher-level 
representation that is ready for human consumption.  

 

With the knowledge extracted in the algorithms phase, it is important to include the human 
being in the decision-making process. While there are a few applications that may be amenable 
to autonomous decision making (e.g., email spam filtering), recent AI advances of relevance to 
the DoD have largely been in fields where a human is either in- or on- the-loop. The phase of 
human-machine teaming is critical in connecting the data and algorithms to the end user and in 
providing the mission users with useful and relevant insight. Human-machine teaming is the 
phase in which knowledge can be turned into actionable intelligence or insight by effectively 
utilizing human and machine resources as appropriate. 

Underpinning all of these phases is the bedrock of modern computing systems made up of 
a number of heterogenous computing elements. For example, sensor processing may occur on 
low power embedded computers whereas algorithms may be computed in very large data 
centers. With the end of Moore’s law [1], we’ve seen a Cambrian explosion of computing 
technologies and architectures. Understanding the relative benefits of these technologies is of 
particular importance to applying AI to domains under significant constraints such as size, 
weight, and power.  

Another foundational technology underpinning AI development is robust or trusted AI. In 
this area, researchers are looking at ways to explain AI outcomes (for example, why a system is 
recommending a particular course of action); metrics to measure the effectiveness of an AI 
algorithm (going beyond the traditional accuracy and precision metrics for complex applications 
or decisions); verification and validation (ensuring that results are provably correct under 
adversarial conditions); security (dealing with malicious or counter-AI technology); and policy 
decisions that govern the safe, responsible, and ethical use of AI technology. While traditional 
academic and commercial players are looking at these issues, some non-profit initiatives such as 
OpenAI or the Allen Institute are taking a leading role in this area. 

In the following sections, we highlight some of the salient technical concepts, research 
challenges, and opportunities for each of these core components of an AI system. In order to 
elucidate these components, we also use a running example based on research applying high 
performance computing (HPC) to video classification. We would also like to note that each of 
the components of the AI architecture are vast academic areas with rich histories and numerous 

Figure 3.2. Example categories and video screen shots from the Moments in Time Dataset. 
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well published results. In order to provide readers with an overall view of all the components 
within this section, we concentrate on high-level concepts and also include vignettes of select 
research highlights or application examples.  

 
3.1.1 Video Classification Example Overview 

Over the course of this section, in order to provide concrete examples of components of the 
AI architecture being discussed, we use a running example based on our research of using high 
performance computing for video classification purposes. Specifically, we concentrate on the 
recently developed Moments in Time Dataset [2] developed at the Massachusetts Institute of 
Technology (MIT) Computer Science and Artificial Intelligence Laboratory (CSAIL). This 
dataset consists of 1 million videos given a label corresponding to an action being performed in 
the video. Each video is approximately three seconds in length and is labeled according to what a 
human observer believes is happening in the video. For example, a video of a dog barking is 
classified as “barking” and a video of people clapping would be labeled as “clapping.” Figure 3.2 
shows a few screenshots of videos from the dataset and associated labels. Of course, there are 
many areas where a particular label may not be as precise. For example, videos with the action 
label “cramming” could imply a person studying before an exam or someone putting something 
into a box. As of now, each video in the Moments in Time Dataset is labeled with one of 
approximately 380 possible labels. Some of the video clips also contain audio, but it is not 
necessarily present for all videos.  

The Moments in Time Dataset is an example of a well-curated dataset that can be used to 
conduct research on video classification. To this effect, the creators of the dataset held a 
competition in 2018 to encourage dataset usage and share results that highlight the state of the 
field. Information about this competition can be found at: 
https://moments.csail.mit.edu/challenge2018/ 

As a metric to present the quality of a particular algorithm, the competition called for 
presentation of a top-k accuracy score. This metric is defined as follows: An algorithm will label 
each of the videos with one of k labels. The top-k accuracy says that a video was correctly 
identified if one of its top k labels is the correct label. For example, a video may be classified (in 
decreasing probability) as: (barking, yelling, running, …). If the correct label (as judged by a 
human observer) is “yelling”, the top-5 accuracy for this would be 1. The top-1 accuracy would 
be 0. As of June 2018, competition winners had top-1 accuracies of approximately 0.3 and top-5 
accuracies of approximately 0.6 [3-5]. 
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3.2 Data Conditioning 
Many AI application developers typically begin with a dataset of interest and a vision of the 

end analytic or insight they wish to gain from the data at hand. While these are two very 
important components of the AI pipeline, one often spends the first few weeks (sometimes 
months) in the phase we refer to as data conditioning. This step typically includes tasks such as 
figuring out how to store data, dealing with inconsistencies in the dataset, and determining which 
algorithm (or set of algorithms) will be best suited for the application. Larger, faster, and messier 
datasets such as those from IoT sensors, medical devices or autonomous vehicles only amplify 
these issues. These challenges, often referred to as the three V’s (Volume, Velocity, Variety) of 
Big Data, require low-level tools for data management and data cleaning/pre-processing. In most 
applications, data can come from structured and/or unstructured sources and often includes 
inconsistencies, formatting differences, and a lack of ground-truth labels. 

By some accounts, data conditioning can account for nearly 80% of the time consumed in 
developing a data science or AI application [6]. Within the realm of data conditioning, specific 
tasks include data discovery, data linkage, outlier detection, data management, and data labeling.  

At a high level, the concept of data conditioning is the effort required to go from raw sensor 
data to information that can be used in further processing steps. Sometimes this phase is also 
referred to as data wrangling. Typically, each of these data conditioning tasks can be 
cumbersome, require significant domain knowledge, and represent a significant hurdle in 
developing an AI application. Many of the recent algorithmic advances have, in fact, occurred in 
areas where “conditioned” data can be found. For example, advances in image classification 
were largely driven by the availability of the ImageNet dataset [7], advances in handwriting 
recognition by the MNIST dataset [8], and advances in video recognition by the Moments in 
Time Dataset [2]. Other popular datasets such as CIFAR-10 [9], ATARI games [10], and Internet 
traces [11] have also played their role in advancing certain classes of algorithms and genres of 
applications. 

There are a number of research efforts and organizations aiming to reduce the data 
conditioning barrier to entry. In this section, we will focus on three particular aspects of data 
conditioning: data management, data curation, and data labeling (for supervised learning).  The 
input to this phase is typically raw data from heterogenous sources. This step aims to convert 
these data by aggregating them in a single place, designing a schema that relates all the 
components and often performs rudimentary anomaly detection/outlier detection. In the 
following subsections, we describe a few approaches to these tasks. 
 
3.2.1 Data Management 

AI and machine-learning systems are highly dependent on access to consistent and 
formatted data. However, it is rare that a collection of sensors such as those used in the AI 
pipeline directly provide this information in a consistent manner. For example, in the video 
classification example, certain cameras may be turned off, may have different metadata, have 
different compression techniques, have different frame rates, have different color normalization 
schemes, etc. Further, fusing different pieces of data coming from disparate sources can be a 
major challenge—like fusing the information contained in audio streams with video streams in 
the video classification example. One of the first challenges is providing a uniform platform in 
which data can be fused and managed. 

Traditionally, database systems are seen as the natural data management approach. A 
database is a collection of data and supporting data structure. Traditionally, databases are 
exposed to users via a database management system. Users interact with these database 
management systems to define new data structures, schemas (data organization), to update data, 
and retrieve data. Beyond databases, developers may store data as files leveraging parallel file 
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systems such as Lustre [12]. For the remainder of this section, however, we will focus on 
database systems such as those shown in Figure 3.3. 

 

Traditional database management systems such as Oracle [13] and PostGRES [14], 
sometimes referred to as relational databases, while compliant with ACID [15] guarantees, are 
unable to scale horizontally for certain applications [16]. To address these challenges, large 
internet companies such as Google and Facebook developed horizontally scalable database 
technologies such as BigTable [17] and Cassandra [18]. These NoSQL [19] (not-only SQL) 
technologies enabled rapid ingest and high performance even on relatively modest computing 
equipment. BigTable inspired databases such as Apache Accumulo [20] extended the NoSQL 
model for application specific requirements such as cell-level security. NoSQL databases do not 
provide the same level of guarantees on the data as relational databases [16]; however, they have 
been very popular due to their scalability, flexible data model, and tolerance to hardware failure. 
In the recent few years, spurred by inexpensive high performance hardware and custom hardware 
solutions, we have seen the evolution of a new era in database technologies, sometimes called 
NewSQL databases [21]. These data management systems largely support the scalability of 
NoSQL databases while preserving the data guarantees of SQL-era database systems. Largely, 
this is done by simplifying data models, such as in SciDB, or leveraging in-memory solutions 
such as in MemSQL and Spark. Looking towards the future, we see the development of new data 
management technologies that leverage the relative advantages of technologies developed within 
the various eras of database management technologies. A very high-level view of this evolution 
is presented in Figure 3.3. Looking towards the future, it is clear that no single type of database 
management systems is likely to support the kinds of data being collected from heterogenous 
sources of structured and unstructured data. In order to address this challenge, one example of an 
active area of research in data management is in multi-database systems [22] such as Polystore 
databases and a specific example is the BigDAWG system described below. 
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A Relational Model of Data for 
Large Shared Data Banks 
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Future users of large data banks must be protected from 
having to know how the data is organized in the machine (the 
internal representation). A prompting service which supplies 
such information is not a satisfactory solution. Activities of users 
at terminals and most application programs should remain 
unaffected when the internal representation of data is changed 
and even when some aspects of the external representation 
are changed. Changes in data representation will often be 
needed as a result of changes in query, update, and report 
traffic and natural growth in the types of stored information. 

Existing noninferential, formatted data systems provide users 
with tree-structured files or slightly more general network 
models of the data. In Section 1, inadequacies of these models 
are discussed. A model based on n-ary relations, a normal 
form for data base relations, and the concept of a universal 
data sublanguage are introduced. In Section 2, certain opera- 
tions on relations (other than logical inference) are discussed 
and applied to the problems of redundancy and consistency 
in the user’s model. 

KEY WORDS AND PHRASES: data bank, data base, data structure, data 
organization, hierarchies of data, networks of data, relations, derivability, 

redundancy, consistency, composition, join, retrieval language, predicate 
calculus, security, data integrity 

CR CATEGORIES: 3.70, 3.73, 3.75, 4.20, 4.22, 4.29 

1. Relational Model and Normal Form 

1 .I. INTR~xJ~TI~N 
This paper is concerned with the application of ele- 

mentary relation theory to systems which provide shared 
access to large banks of formatted data. Except for a paper 
by Childs [l], the principal application of relations to data 
systems has been to deductive question-answering systems. 
Levein and Maron [2] provide numerous references to work 
in this area. 

In contrast, the problems treated here are those of data 
independence-the independence of application programs 
and terminal activities from growth in data types and 
changes in data representation-and certain kinds of data 
inconsistency which are expected to become troublesome 
even in nondeductive systems. 

Volume 13 / Number 6 / June, 1970 

The relational view (or model) of data described in 
Section 1 appears to be superior in several respects to the 
graph or network model [3,4] presently in vogue for non- 
inferential systems. It provides a means of describing data 
with its natural structure only-that is, without superim- 
posing any additional structure for machine representation 
purposes. Accordingly, it provides a basis for a high level 
data language which will yield maximal independence be- 
tween programs on the one hand and machine representa- 
tion and organization of data on the other. 

A further advantage of the relational view is that it 
forms a sound basis for treating derivability, redundancy, 
and consistency of relations-these are discussed in Section 
2. The network model, on the other hand, has spawned a 
number of confusions, not the least of which is mistaking 
the derivation of connections for the derivation of rela- 
tions (see remarks in Section 2 on the “connection trap”). 

Finally, the relational view permits a clearer evaluation 
of the scope and logical limitations of present formatted 
data systems, and also the relative merits (from a logical 
standpoint) of competing representations of data within a 
single system. Examples of this clearer perspective are 
cited in various parts of this paper. Implementations of 
systems to support the relational model are not discussed. 

1.2. DATA DEPENDENCIES IN PRESENT SYSTEMS 
The provision of data description tables in recently de- 

veloped information systems represents a major advance 
toward the goal of data independence [5,6,7]. Such tables 
facilitate changing certain characteristics of the data repre- 
sentation stored in a data bank. However, the variety of 
data representation characteristics which can be changed 
without logically impairing some application programs is 
still quite limited. Further, the model of data with which 
users interact is still cluttered with representational prop- 
erties, particularly in regard to the representation of col- 
lections of data (as opposed to individual items). Three of 
the principal kinds of data dependencies which still need 
to be removed are: ordering dependence, indexing depend- 
ence, and access path dependence. In some systems these 
dependencies are not clearly separable from one another. 

1.2.1. Ordering Dependence. Elements of data in a 
data bank may be stored in a variety of ways, some involv- 
ing no concern for ordering, some permitting each element 
to participate in one ordering only, others permitting each 
element to participate in several orderings. Let us consider 
those existing systems which either require or permit data 
elements to be stored in at least one total ordering which is 
closely associated with the hardware-determined ordering 
of addresses. For example, the records of a file concerning 
parts might be stored in ascending order by part serial 
number. Such systems normally permit application pro- 
grams to assume that the order of presentation of records 
from such a file is identical to (or is a subordering of) the 
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Abstract
Bigtable is a distributed storage system for managing
structured data that is designed to scale to a very large
size: petabytes of data across thousands of commodity
servers. Many projects at Google store data in Bigtable,
including web indexing, Google Earth, and Google Fi-
nance. These applications place very different demands
on Bigtable, both in terms of data size (from URLs to
web pages to satellite imagery) and latency requirements
(from backend bulk processing to real-time data serving).
Despite these varied demands, Bigtable has successfully
provided a flexible, high-performance solution for all of
these Google products. In this paper we describe the sim-
ple data model provided by Bigtable, which gives clients
dynamic control over data layout and format, and we de-
scribe the design and implementation of Bigtable.

1 Introduction

Over the last two and a half years we have designed,
implemented, and deployed a distributed storage system
for managing structured data at Google called Bigtable.
Bigtable is designed to reliably scale to petabytes of
data and thousands of machines. Bigtable has achieved
several goals: wide applicability, scalability, high per-
formance, and high availability. Bigtable is used by
more than sixty Google products and projects, includ-
ing Google Analytics, Google Finance, Orkut, Person-
alized Search, Writely, and Google Earth. These prod-
ucts use Bigtable for a variety of demanding workloads,
which range from throughput-oriented batch-processing
jobs to latency-sensitive serving of data to end users.
The Bigtable clusters used by these products span a wide
range of configurations, from a handful to thousands of
servers, and store up to several hundred terabytes of data.
In manyways, Bigtable resembles a database: it shares
many implementation strategies with databases. Paral-
lel databases [14] and main-memory databases [13] have

achieved scalability and high performance, but Bigtable
provides a different interface than such systems. Bigtable
does not support a full relational data model; instead, it
provides clients with a simple data model that supports
dynamic control over data layout and format, and al-
lows clients to reason about the locality properties of the
data represented in the underlying storage. Data is in-
dexed using row and column names that can be arbitrary
strings. Bigtable also treats data as uninterpreted strings,
although clients often serialize various forms of struc-
tured and semi-structured data into these strings. Clients
can control the locality of their data through careful
choices in their schemas. Finally, Bigtable schema pa-
rameters let clients dynamically control whether to serve
data out of memory or from disk.
Section 2 describes the data model in more detail, and
Section 3 provides an overview of the client API. Sec-
tion 4 briefly describes the underlying Google infrastruc-
ture on which Bigtable depends. Section 5 describes the
fundamentals of the Bigtable implementation, and Sec-
tion 6 describes some of the refinements that we made
to improve Bigtable’s performance. Section 7 provides
measurements of Bigtable’s performance. We describe
several examples of how Bigtable is used at Google
in Section 8, and discuss some lessons we learned in
designing and supporting Bigtable in Section 9. Fi-
nally, Section 10 describes related work, and Section 11
presents our conclusions.

2 Data Model

A Bigtable is a sparse, distributed, persistent multi-
dimensional sorted map. The map is indexed by a row
key, column key, and a timestamp; each value in the map
is an uninterpreted array of bytes.

(row:string, column:string, time:int64) → string
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ABSTRACT 
 In this paper, we examine a number of SQL and so-
called “NoSQL” data stores designed to scale simple 
OLTP-style application loads over many servers.  
Originally motivated by Web 2.0 applications, these 
systems are designed to scale to thousands or millions 
of users doing updates as well as reads, in contrast to 
traditional DBMSs and data warehouses. We contrast 
the new systems on their data model, consistency 
mechanisms, storage mechanisms, durability 
guarantees, availability, query support, and other 
dimensions.  These systems typically sacrifice some of 
these dimensions, e.g. database-wide transaction 
consistency, in order to achieve others, e.g. higher 
availability and scalability. 
Note: Bibliographic references for systems are not 
listed, but URLs for more information can be found in 
the System References table at the end of this paper.  

Caveat: Statements in this paper are based on sources 
and documentation that may not be reliable, and the 
systems described are “moving targets,” so some 
statements may be incorrect. Verify through other 
sources before depending on information here. 
Nevertheless, we hope this comprehensive survey is 
useful!  Check for future corrections on the author’s 
web site cattell.net/datastores. 
Disclosure: The author is on the technical advisory 
board of Schooner Technologies and has a consulting 
business advising on scalable databases. 

1. OVERVIEW 
In recent years a number of new systems have been 
designed to provide good horizontal scalability for 
simple read/write database operations distributed over 
many servers.  In contrast, traditional database 
products have comparatively little or no ability to scale 
horizontally on these applications.  This paper 
examines and compares the various new systems. 
Many of the new systems are referred to as “NoSQL” 
data stores.  The definition of NoSQL, which stands 
for “Not Only SQL” or “Not Relational”, is not 
entirely agreed upon.  For the purposes of this paper, 
NoSQL systems generally have six key features: 

1. the ability to horizontally scale “simple 
operation” throughput over many servers,  

2. the ability to replicate and to distribute (partition) 
data over many servers, 

3. a simple call level interface or protocol (in 
contrast to a SQL binding), 

4. a weaker concurrency model than the ACID 
transactions of most relational (SQL) database 
systems, 

5. efficient use of distributed indexes and RAM for 
data storage, and 

6. the ability to dynamically add new attributes to 
data records. 

The systems differ in other ways, and in this paper we 
contrast those differences.  They range in functionality 
from the simplest distributed hashing, as supported by 
the popular memcached open source cache, to highly 
scalable partitioned tables, as supported by Google’s 
BigTable [1].  In fact, BigTable, memcached, and 
Amazon’s Dynamo [2] provided a “proof of concept” 
that inspired many of the data stores we describe here: 
• Memcached demonstrated that in-memory indexes 

can be highly scalable, distributing and replicating 
objects over multiple nodes. 

• Dynamo pioneered the idea of eventual 
consistency as a way to achieve higher availability 
and scalability: data fetched are not guaranteed to 
be up-to-date, but updates are guaranteed to be 
propagated to all nodes eventually. 

• BigTable demonstrated that persistent record 
storage could be scaled to thousands of nodes, a 
feat that most of the other systems aspire to. 

A key feature of NoSQL systems is “shared nothing” 
horizontal scaling – replicating and partitioning data 
over many servers.  This allows them to support a large 
number of simple read/write operations per second.  
This simple operation load is traditionally called OLTP 
(online transaction processing), but it is also common 
in modern web applications 
The NoSQL systems described here generally do not 
provide ACID transactional properties: updates are 
eventually propagated, but there are limited guarantees 
on the consistency of reads.  Some authors suggest a 
“BASE” acronym in contrast to the “ACID” acronym: 
• BASE = Basically Available, Soft state, 

Eventually consistent 
• ACID = Atomicity, Consistency, Isolation, and 

Durability 
The idea is that by giving up ACID constraints, one 
can achieve much higher performance and scalability.   

NewSQL
Cattell (2010)

SQL Era NoSQL Era NewSQL Era Future
Polystore, high 

performance 
ingest and 
analytics

Fast analytics inside databasesCommon interface Rapid ingest for internet search
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Databases
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Madden, 

Stonebraker
(2018)

Figure 3.3. Evolution of database management systems. 
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Data Management Research Example—BigDAWG 
BigDAWG [16, 23, 24], short 

for the Big Data Working Group, is 
an implementation of a polystore 
database system designed to simplify 
database management for complex 
applications. For example, modern 
decision support systems are 
required to integrate and synthesize a 
rapidly expanding collection of real-
time data feeds: sensor data, analyst 
reports, social media, chat, 
documents, manifests, logistical 
data, and system logs (to name just a 
few). The traditional technique for 
solving a complex data fusion 
problem is to pick a single general-
purpose database engine and move 
everything into this system. 
However, custom database engines 
for sensors, graphs, documents, and transactions (just to name a few) provide 100× better 
performance than general-purpose databases. The performance benefits of custom databases 
have resulted in the proliferation of data-specific databases, with most modern decision support 
systems containing five or more distinct customized storage systems. Additionally, for 
organizational or policy reasons, data may be required to stay in disparate database engines. For 
an application developer, this situation translates to developing his or her own interfaces and 
connectors for every different system. In general, for N different systems, a user will have to 
create nearly !" different connectors. BigDAWG allows users to access data stored across 
multiple databases via a uniform common interface. Thus, for a complex application in which 
there is scientific data, text data, and metadata, a user can store each of these components in the 
storage technology best suited to each data type, but also develop analytics and applications that 
make use of all of this data without having to write custom connectors to each of these storage 
technologies. The end-to-end architecture of the BigDAWG polystore system is described in 
Figure 3.4. This architecture describes how applications, visualizations, and clients at the top 
access information stored in a variety of database engines at the bottom. At the bottom, we have 
a collection of disparate storage engines (we make no assumption about the data model, 
programming model, etc., of each of these engines). These storage engines are organized into a 
number of islands. An island is composed of a data model, a set of operations, and a set of 
candidate storage engines. An island provides location independence among its associated 
storage engines. A shim connects an island to one or more storage engines. The shim is basically 
a translator that maps queries expressed in terms of the operations defined by an island into the 
native query language of a particular storage engine. A key goal of a polystore system is for the 
processing to occur on the storage engine best suited to the features of the data. We expect in 
typical workloads that queries will produce results best suited to particular storage engines. 
Hence, BigDAWG needs a capability to move data directly between storage engines. We do this 
with software components we call casts.  

 
  

Figure 3.4. BigDAWG architecture. 
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Database and Storage Engines 
A key design feature of BigDAWG is the support of multiple database and storage engines. 

With the rapid increase in heterogeneous data and the proliferation of highly specialized, tuned, 
and hardware-accelerated database engines, it is important that BigDAWG support as many data 
models as possible. Further, many organizations already rely on legacy systems as a part of their 
overall solution. We believe that analytics of the future will depend on many distinct data 
sources that can be efficiently stored and processed only in disparate systems. BigDAWG is 
designed to address this need by leveraging many vertically integrated data management 
systems. The current implementation of BigDAWG supports a number of popular database 
engines: PostGRES (SQL), MySQL (SQL), Vertica (SQL), Accumulo (NoSQL), SciDB 
(NewSQL), and S-Store (NewSQL). The modular design allows users to continue to integrate 
new engines as needed. 

 
BigDAWG Islands 

The next layer of the BigDAWG stack is its islands. Islands allow users to trade off between 
semantic completeness (using the full power of an underlying database engine) and location 
transparency (the ability to access data without knowledge of the underlying engine). Each island 
has a data model, a query language or set of operators, and one or more database engines for 
executing them. In the BigDAWG prototype, users determine the scope of their query by 
specifying an island within which the query will be executed. Islands are a user-facing 
abstraction, and they are designed to reduce the challenges associated with incorporating a new 
database engine. The current implementation of BigDAWG supports islands with relational, 
array, text, and streaming models. Our modular design supports the creation of new islands that 
encapsulate different programming and data models. 
 
BigDAWG Middleware and API 

The BigDAWG “secret sauce” lies in the middleware that is responsible for developing 
cross-engine query plans, monitoring previous queries and performance, migrating data across 
database engines as needed, and physically executing the requested query or analytic. The 
BigDAWG interface provides an API to execute polystore queries. The API layer consists of 
server- and client-facing components. The server components incorporate islands that connect to 
database engines via lightweight connectors referred to as shims. Shims essentially act as an 
adapter to go from the language of an island to the native language of an underlying database 
engine. In order to identify how a user is interacting with an island, a user specifies a scope in the 
query. A scope of a query allows an island to correctly interpret the syntax of the query and 
allows the island to select the correct shim that is needed to execute a part of the query. Thus, a 
cross-island query may involve multiple scope operations.  
 
3.2.2 Data Curation 
Data curation, within the context of our AI architecture, is used to refer to the process of 
maintaining data from creation (sensor collection) to usage in the machine-learning algorithm. In 
contrast to data management in the previous section, data curation typically involves some form 
of data normalization, data cleaning, data enrichment, and/or data discovery. Figure 3.5 describes 
where such curation activities may sit in relation to the data management and polystore 
technologies described in the previous section. 
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While this is often a largely 
manual process with a human expert 
looking at data and determining if there 
are errors, there are machine-learning 
techniques that can significantly reduce 
the amount of manual work needed. To 
do this, one may employ some form of 
unsupervised learning to look for 
obvious anomalies and outliers in the 
data. For example, in a medical dataset, 
one may incorrectly encode a field that 
is supposed to use inches as feet (thus 
allowing for people that are 60 feet 
tall!). This step may also look at 
simplifying data via dimensionality 
reduction techniques. Finally, this step 
often does some form of normalization 
and weighting in order to ensure that 
the further processing steps are acting 
on the right data. 
 
Anomaly and Outlier Detection 

A particular task in data curation is the process of converting data, often with noisy inputs, 
to a version of the data that is amenable to further processing. The overall goal is to improve the 
signal-to-noise ratio such that further algorithms are likely to learn from the correct components 
of the data. The source of these errors can be due to a variety of factors such as sensor error, 
human error, etc. While this is a very wide field in which significant human expertise is often 
used, one can also make use of machine-learning techniques such as unsupervised learning to 
automate or simplify the process. For example, a human analyst may set rules that are used on 
the data to ensure sufficient quality (such as height must be less than 8 but greater than 0 feet).  

As an example of a more automated technique, for example, given noisy data from a 
sensor, one may cluster the various data points into a set of clusters. Outliers from these 
clusters may be data points that are likely to be important—either because they are anomalous 
or otherwise. As noted in [25], there are three general approaches to outlier detection: 1) 
leverage unsupervised learning to look for outliers such as in the example above, 2) leverage  
a set of labels that correspond to normal or abnormal data in order to look for outliers, and  
3) model only normal behavior with the intention of looking for samples that do not fit within 
the bounds of normal behavior. 

The task of anomaly and outlier detection is a very important step and is often the limiting 
factor in quality of algorithmic performance in further processing steps. 
 
Dimensionality Reduction 

Often in a dataset, it is necessary to condense the amount of information that will be 
processed by the subsequent pipeline. This can be done for a variety of reasons such as improved 
computational performance, removal of redundant dimensions, or removal of features 
(dimensions) that will not play a part in further processing. In an image, for example, 
dimensionality reduction could be converting a color image with three channels to a single 
channel grayscale version that maintains important features of the original image such as edges 
or shapes without the additional red, green, and yellow channel information.  
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Figure 3.5. Notional overview of data curation activities on top 
of data management. 
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Techniques for dimensionality reduction look for variance in features within a dataset along 
with correlations across features. Through algorithms such as principal component analysis, 
users can quickly determine which features (or dimensions) of their dataset have the greatest 
variance and look for features that are closely correlated with other features. Using this 
information, it may be possible to keep only high-variance features and remove features that are 
closely correlated with other features. Thus, it may be possible to remove a large set of features 
within a dataset without adversely affecting future algorithmic performance. 
 
Data Weighting and Normalization 
Another technique for data conditioning is often referred to as data weighting or normalization. 
This process involves bringing various features, or dimensions, within a dataset to a common 
frame of reference or common dynamic range. If particular features have very high rates of 
change and/or very high dynamic range, it is possible that further processing steps will tend to 
overweight these changes compared to other features that may not have as high a range. 
Alternatively, there may be certain features in the dataset that should, in fact, have an outsized 
role in determining the output. In such cases, one may weigh these features higher than other 
features. 
 
3.2.3 Data Labeling 

 
Figure 3.6. Examples of popular curated datasets ImageNet, COCO, MIT Places, Moments in Time. 

One of the most time-consuming tasks in applying supervised learning techniques (such as 
neural networks) is in providing useful labels in the data. This task, sometimes referred to as data 
annotation, aims to provide the machine-learning algorithm with a set of labels that can be used 
to train the classification or regression model. Essentially, in supervised learning, the machine 
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learns the pattern that associates an input with an output label. A multitude of labeled data points 
can provide a robust and repeatable training process. Of course, data collected from a sensor is 
rarely given clear labels and there has been a great deal of effort in the wider community to come 
up with techniques that can be used to simplify data labeling. 

One obvious method to label a large quantity of data is to use human evaluators. A human 
evaluator (sometimes referred to as an “oracle”) is often considered as the gold standard for 
labeling. While a developer of an algorithm or AI application can label a few images, this may 
not scale to thousands or millions of data samples. Further, a single evaluator can introduce bias 
(perhaps the evaluator has difficulty judging particular colors that may bias their labels). Figure 
3.6 describes a few well-curated labeled datasets that are used widely in the community. For 
example, ImageNet [26] is a dataset that has helped spur the growth of recent computer vision 
advances. Other datasets such as MIT Places [27], Microsoft COCO [28], and the previously 
mentioned Moments in Time are also widely used by AI researchers. 

One common technique for manual data labeling used across the commercial world is to 
leverage a service such as Amazon’s Mechanical Turk [29, 30]. Using such a service, a user 
can upload a dataset of interest and quickly leverage a pool of users who can provide labels for 
the dataset. While popular for tasks such as labeling of images or transcription of spoken 
languages, such crowdsourcing techniques often suffer quality issues [31] or do not scale to 
sensitive or proprietary datasets that require significant domain expertise such as those used 
across the DoD/IC. Within the DoD, one example of “crowdsourced” data labeling is being 
done via the Air Force’s Project MAVEN [32]. This project aims to leverage the domain 
expertise of service members to label data where current techniques fail or cannot be applied 
due to the sensitivity of data. 

Beyond manual annotation of data, the research community has been actively looking at 
techniques that provide varying levels of automation in the data labeling process by leveraging a 
human selectively or by leveraging machine intelligence on a small set of labeled data points. 

In general, there are a number of algorithmic techniques that can still be used in cases where 
labels for data do not exist. For example, in the semi-supervised learning paradigm, a small 
subset of labeled data can be used in conjunction with unlabeled images. These semi-supervised 
techniques essentially infer the labels on data using a number of different techniques. For 
example, generative techniques assume that the subset of labeled data consists of labels for all 
classes of importance and attempts to learn statistical patterns of the labeled data. Then, 
assuming the unlabeled data looks similar to the labeled samples, it is possible to deconstruct the 
unlabeled data into the statistical components and compare with the labeled data. One particular 
instance is in the cluster and learn paradigm where the unlabeled data is clustered along with the 
labeled data. Unlabeled data is then assigned a label based on its proximity to a labeled sample. 
Another technique, referred to as self-training, may instead attempt to create a classifier using the 
labeled datasets and then iteratively apply the classifier to the unlabeled data. After application, 
instances where the classifier was very confident on the classification can now be added back to 
the pool of labeled data and the process can be repeated. Other techniques may use graph-based 
methods to represent the dataset where both labeled and unlabeled datasets form parts of the 
graph. Then, one can use graph matching techniques to apply labels to particular instances. 

Another expanding area of research is in active learning. In this area, one attempts the above 
techniques as possible, but also makes use of a human observer to help the system. These 
techniques essentially allow both humans and machines to work together, with the machine 
applying labels to straightforward samples and focusing human attention on difficult samples.  

Very generally, there are a number of ways in which one could still perform supervised 
learning in cases where labels are either nonexistent, limited, or difficult to collect: 
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1. Semi-supervised learning. In this paradigm, an algorithm is designed to leverage 
some labeled and some unlabeled data. For example, for a DoD/IC specific use-case, 
one may leverage a different but related dataset (using publicly available datasets on 
cars [34] to train models that can look for military vehicles).  

2. Active learning. In this paradigm, a user is in the loop of the data preprocessing and 
labeling. In this technique, the system can apply labels to particular observations in 
which the confidence is high and can also leverage a human oracle for difficult or 
previously unseen samples. 

3. Self-supervised learning. In this paradigm, the system does not need any explicit 
labels on the data samples to be provided. Rather than use labels, the algorithm can 
automatically extract metadata, encoded domain knowledge or other such 
correlations that can be used in place of explicit labels. For example, in [35], the 
authors learn the task of image colorization as a means to learn tracking. 

4. Automated labeling. This technique leverages statistical techniques to apply labels 
to data. For example, in [36], the authors propose a technique using conditional 
random fields to build models that can be used to label data sequences. 

 
3.2.4 Data Conditioning within the Context of Exemplary Application 

While the Moments in Time Dataset is a well curated dataset with high quality labels, there 
are still a number of preprocessing steps that need to be taken. In developing our pipeline, the 
first thing we need to do is convert the MPEG-4 encoded video files to arrays that are easy for 
future processing steps. In the dataset provided, each video is 3 seconds long and consists of 30 
frames per second (for a total of 90 frames per video). Each frame is 256×256 pixels and has 
three floating point values that correspond to the red, green, and blue (RGB) channels. Thus, for 
each video represented in tensor format, this corresponds to a shape of 90×256×256×3 for a total 
of approximately 17.5 million integers per video. For 1 million videos, this corresponds to 
approximately 70 terabytes of raw video data. As a next step, we resize all of the frames to be a 
specific size—224×224 pixels in our case. Finally, we normalize the data so that all frames have 
a similar distribution of pixel intensities. First, we divide by 255 (the maximum range of pixel 
intensities) from each pixel intensity from each frame. Then we find the mean pixel intensity 
across all video frames and subtract this from the previous value. Next, we divide each pixel 
intensity by the standard deviation of pixel intensities. As a final step, in order to remove 
potential outlier frames, we remove all frames that contain pixel intensities below or above a 

Figure 3.7. Data Conditioning within the context of Video classification example. Data starts as raw compressed .mp4 
videos, are converted to individual frames and resized to consistent dimension arrays across RGB channels. 
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certain threshold (in order to get rid of frames that are all black or white). This process is 
described pictorially in Figure 3.7. 

At the end of this step, the raw videos are now cleaned up in a consistent format and stored 
on the file system as arrays that can be read in for further processing. 
 

3.3 Algorithms 
In the past decade, much of the hype 

around AI has come from advances in 
performance of machine-learning 
algorithms applied to various problems 
such as image classification. In this 
section, we will describe some of the 
popular machine-learning developments 
while highlighting a few salient 
algorithms. 

From our perspective, machine-
learning algorithms form the core of AI 
algorithms (with a few exceptions such 
as with expert systems). Figure 3.8, 
adapted from [37] describes, at a high 
level, the relationship between AI, 
machine learning, supervised learning 
and neural networks. While a lot of 
recent focus has been on neural 
networks, it is important to understand 
that there a multitude of machine-learning algorithms beyond neural networks that are used 
widely in AI applications. It is also interesting to note that many current and historical AI 
systems such as [38] actually leveraged techniques outside of traditional machine learning such 
as expert systems [39, 40] or the more general knowledge-based systems [41]. Knowledge-based 
systems leverage a knowledge base of information and an inference engine to apply the 
knowledge base to a particular application. Expert systems, a form of knowledge-based systems, 
utilize human experts to formulate a knowledge base that can be applied via an inference engine 
for decision making. Knowledge-based and expert systems continue to be used in a variety of 
applications such as tax software and were even included in early autonomous vehicles [42]. For 
domains in which collection of data is limited, rules are complex and there is significant human 
expertise, expert systems can still play a major role in building an end-to-end AI system. Further, 
knowledge-based systems are often inherently explainable and interpretable, which can make 
them amenable to applications in which trust is critical.  

At a high level, one can think of a tradeoff that exists between the ease of codifying human 
knowledge, compute power, and data availability. In cases with significant codified knowledge, 
limited compute power, and limited data availability, knowledge-based systems can play an 
important role in AI systems. While the majority of our discussion is on machine-learning 
algorithms, knowledge- and expert-based systems are an important class of algorithms that still 
have wide applicability to DoD/IC applications. 

With the ability to collect large quantities of data, coupled with greater computational 
resources, the shift in technology has been toward the world of machine learning. In the 
machine-learning paradigm, a user provides a system with (varying amounts of) data along with 
a set of rudimentary guidelines (such as generative model, number of classes, etc.). Using this 

Figure 3.8. Relationship between artificial intelligence, 
machine learning, and neural networks. Figure 
adapted from Deep Learning by Ian Goodfellow. 
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input, the machine “learns” a mapping that can be applied to the data in order to generate the 
required output. With this paradigm, machine-learning algorithms essentially learn the 
relationship between inputs and outputs. 

To highlight the many techniques for machine learning, we use the taxonomy presented in 
Figure 3.9. Other taxonomies, such as those from [43], are alternate ways of organizing the 
variety of machine-learning algorithms. In our taxonomy, machine-learning algorithms are 
broadly broken into supervised, unsupervised, and reinforcement learning techniques. Supervised 
learning techniques have labels that relate inputs and outputs; unsupervised techniques typically 
do not; and reinforcement learning algorithms are provided with reward signals rather than 
explicit labels. While this is a good first-order break-up of the landscape, we would like to note 
that these boundaries are not meant to be rigid and in practice, there are a number of algorithms 
that cross these boundaries. In the remainder of this section, we provide a brief overview of each 
of these learning paradigms along with a discussion of where these techniques may be used in 
the development of AI systems. 
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Figure 3.9. Popular machine-learning algorithms and taxonomy. We acknowledge Lauren Milechin (MIT EAPS) and 
Julie Mullen (MIT LLSC) for contributing to the development of this figure. 
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3.3.1 Supervised Learning 
Supervised algorithms start with 

labeled data (or ground truth) and aim to 
build a model that can be used to predict 
labels for data in which labels (or 
classifications) do not exist. As shown in 
Figure 3.10, supervised learning makes 
use of data and labels to train a model 
that can be applied on test data in order to 
predict future labels. Thus, the video 
classification task we present is a 
supervised learning problem because we 
are given labels of the video samples that 
are used to train a model that we use to 
classify new data samples. Generally, 
supervised learning algorithms attempt one of the following goals: regression (to predict a future 
continuous variable) or classification (to predict a new class or label). In most cases, the majority 
of computing time in supervised learning is spent training a model from training examples. The 
model generated by the algorithm is essentially the representation of what the system believes 
relates the inputs to the corresponding outputs. After training, the model can now be applied for 
inference tasks. During inference, the trained model is applied to previously unseen test data to 
predict labels in the case of classification or future values in the case of regression.  

To further explain supervised learning, consider the versatile k-nearest neighbors algorithm 
[44]. This algorithm can be applied to both classification and regression problems and relies on 
the assumption that similar points (data points that are close to each other in a feature space) 
have similar labels/outputs. To use this algorithm, each data point in a dataset is represented in a 
multi-dimensional feature space that corresponds to data features (for example, in an image, this 
could be the pixel intensities and/or pixel locations) that represent each individual data point. 
With this representation, it is possible to predict values or apply labels to new data points. For a 
new data point represented in the same feature space, we find the k-closest neighbors (i.e., we 
look for all data points that are close by in the multi-dimensional space). If performing 
regression, the predicted value is an average of the neighboring values. For classification, the  
k-nearest neighbors vote with their label and the predicted class label for the new data point is 
the label held by a majority of the k-nearest neighbors. While this algorithm is very easy to 
implement and has been used in a variety of applications, it can be sensitive to too many features 
(or dimensions) or in feature spaces where the closeness assumption or definition does not hold. 
Figure 3.11 describes an example of applying the k-nearest neighbors algorithm to a two-
dimensional dataset. On the left side of the figure, we describe how one would classify a data 
point when we have labels corresponding to three labels. The new data point in this figure is 
represented by the star-shaped dot. The k=7 nearest neighbors are highlighted with circles. On 
the right side, we describe how one could use the same algorithm for regression. In this example, 
we are trying to predict the value of the second dimension. Similar to the classification example, 
for a new data point, we find the k=7 closest neighbors and the predicted second dimension value 
is given as an average of the second dimension value of the seven nearest neighbors.  

 

Figure 3.10. Supervised learning makes use of data and 
labels in order to train a model that automates this process. 
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Figure 3.11. Using a k-means supervised learning technique for classification and regression. 

Supervised learning algorithms play an outsized role in many of the recent machine-learning 
advances. The quality of supervised learning algorithms, however, largely relies on access to 
high quality labeled data. While there are a number of labeled datasets that have yielded 
breakthrough advances in fields such as image classification, voice recognition, game play, and 
regression, in DoD/IC applications, this may not be available. In such cases, unsupervised 
learning provides a means to analyze data. 

 
3.3.2 Unsupervised Learning 

Unsupervised learning is a technique that applies statistical analysis techniques to data in 
which explicit labels are not provided. Very often, upfront data conditioning is done via 
unsupervised learning with the aim of looking for outliers or reducing the dimensionality of data. 
Without data labels, it is difficult to classify data points, and unsupervised learning techniques 
are limited to clustering or dimensionality reduction. More formally, if we observe data points 
X1, X2, X3,…,XN, we are interested in looking for patterns that may occur among these data 
points. In this example, each data point X can be made up of a number of features or dimensions. 
For example, in an image, each data point X may corresponds to a single pixel and each data 
point can be represented by three features—the RGB value associated with a single pixel.  

In unsupervised learning, there are often no clear metrics such as accuracy or recall for the 
algorithm. However, given that unsupervised learning algorithms can work on unlabeled data, 
they are often an important first step in any AI pipeline.  

Typically, unsupervised learning is used for clustering and data projection. Clustering 
algorithms group objects or sets of features such that objects within a cluster are more “similar” 
than those across clusters. The definition of similarity is often highly dependent on the 
application. For example, in an image processing application, similarity may imply the 
difference in pixel intensities across different image channels; in other applications, similarity 
may be defined as Euclidean distance. Measuring intra-cluster similarity is often done via 
measures such as squared error (se): 
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Many clustering algorithms work by iteratively trying to minimize error terms, such as the 

squared error term defined above, by placing different data points in different clusters and 
measuring the error. Within clustering, common algorithms include k-means, nearest neighbor 
search, Spectral clustering. Figure 3.12 shows a pictorial example of a notional clustering 
algorithm applied to data within a two-dimensional space. For the purpose of this figure, the 
“similarity” is defined to be Euclidean distance (the geometric distance between two points). 

 

 
Figure 3.12. Notional clustering example for data represented by two features. 

 
Within data projection/preprocessing, typical tasks include principal component analysis 

(PCA), dimensionality reduction, and scaling. Dimensionality reduction is used to reduce a large 
dataset into a more efficient representation comprised of high variance dimensions. These 
techniques can be especially useful to simplify computation or represent a dataset. Typically, one 
uses these techniques for selecting a subset of important features or representing data in a lower 
number of dimensions. 

Consider the example of using PCA for dimensionality reduction. In this technique, a set of 
possibly correlated variables are converted to a set of uncorrelated variables using orthogonal 
transformations. In essence, through this technique, we are looking for a lower dimensional 
space representation of a dataset that still maintains some of the broad trends in the data. 

 

 
Figure 3.13. Principal component analysis. In this example, Y1 is the first principal component and Y2 is the second 
principal component. 
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For example, Figure 3.13 describes an example two-dimensional dataset that was originally 

represented by the axes X1 and X2. After applying PCA, the axes Y1 and Y2 are found to be the 
principal components. Using this new representation, the PCA technique says that if you would 
like a lower dimensional (in this case, one-dimension) representation of the dataset, you can 
convert it to the axes of Y1. As can be seen in the Figure 3.13, axis Y1 does a good job of 
representing the spread in the data and would be the best 1D representation of the data. 
 
3.3.3 Supervised and Unsupervised Neural Networks 

Neural networks are a popular machine-
learning technique that are largely used for 
supervised learning but can be applied to 
unsupervised learning problems as well. The 
biologically inspired computing systems learn 
by repetitive training to do tasks based on 
examples (training data). A neural network 
consists of inputs, layers, outputs, weights, and 
biases. Deep neural networks (DNNs) differ 
from traditional neural networks by having a 
large number of hidden layers. DNNs have had 
much success in the past decade in a variety of 
applications and are supported by a number of 
toolboxes [45-47] and hardware platforms. 
Popular extensions of the neural network 
computation model include convolutional neural networks [7], recursive neural networks [48], 
and deep belief networks [49]. The network shown in Figure 3.14 in an example of a 
feedforward neural network that consists of one input layer, one hidden layer and one output 
later. The arrows in the figure indicate connections across neurons. 

In general, for a neural network of k layers, the following expression describes the input-
output behavior between any two layers (l and l+1): 
 

4563 = 7(9545 + ;5) 
 
Where yl corresponds to the outputs of layer l, Wl the weights between layers l and l+1 and 

bl the corresponding biases. In this equation, the function f(.) corresponds to a non-linear 
activation function such as the sigmoid, rectified linear unit or tanh function [50]. During the 
training phase of a neural network algorithm, the weights W and biases b are iteratively adjusted 
in order to represent the often non-linear relationship between inputs and outputs. The training 
phase consists of the following steps: 

 
1. Forward Propagation: A training example (or set of examples) is fed through the network 

with some initialized weights and biases. The output is computed and an error term is 
calculated as the difference between the computed output(s) and the intended (ground-
truth) output(s). 

2. Backward Propagation: Given the error from the previous step, network weights are 
adjusted to better predict the labels of future unlabeled examples. This is done by adjusting 
each weight in proportion to its individual contribution to the overall error. As the 
contribution to the error from weights in earlier layers depends on the contribution from 
weights in later layers, the error signal is described as “backward propagating” through the 

+1
+1

fW,b(X)
X=x1,x2,..

Figure 3.14. Notional neural network. 
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network. Iterative optimization techniques built on this idea, such as the popular stochastic 
gradient descent (SGD), are thus known collectively as “Back Propagation.” 

 
The above procedure is repeated for as many training examples as possible and when a 

particular convergence criterion (such as accuracy) is met, the model is considered trained and 
can be used for inference. In practice, it is common to split the total training set into training and 
validation subsets. This can help reduce the likelihood of overfitting in which the trained model 
works especially well on the training data but does not generalize to new unseen samples. 
Typically, the training phase is where the majority of computation takes place. Once a model is 
trained and validated, it is ready to be used for inference. 

Inference is the phase in which a trained model is applied to new data in order to predict 
new values (i.e., a forward pass through the network with weights and biases set by the training 
step). In this step, the model computes an output for a previously unseen input. If the model was 
trained well, the output should correspond to the correct output for a given input example. 

While many uses of neural networks focus on supervised learning problems, there are many 
ways to use neural networks for unsupervised learning. Network architectures such as 
autoencoders or self-organizing maps are often used as techniques to use neural networks for 
unsupervised learning problems. Another technique, generative adversarial networks (GANs) 
[51] (not to be confused with adversarial AI discussed later in this section), uses two neural 
networks—a generator and discriminator—to train a model. In this architecture, the generator 
creates artificial samples meant to represent data from the training dataset. These artificial 
samples are then passed to the discriminator, which decides whether the sample is real or fake. 
Continuing this process iteratively allows the generator to improve the quality of its artificial 
samples and the discriminator to improve its discriminative capabilities. GANs can be an 
important tool in understanding the structure and patterns present in unlabeled datasets.  

At present, the theory behind deep neural networks—why they work, how to estimate 
performance, performance bounds, etc.—is not well understood and is an active area of 
fundamental research. A user wishing to develop a neural network solution will typically be 
faced with a number of choices such as model architecture (what type of network), number of 
layers, activation functions, learning rate, batch size (for memory limited applications), etc. 
While there are some high-level guidelines that can be used by practitioners developing networks 
for their application, much of the state-of-the-art relies on exploration of parameters. There are 
also techniques such as in [52] that can leverage high performance computing to look at this vast 
parameter space more efficiently, but much of the current state-of-the-art relies heavily on 
domain knowledge and experience. Understanding the theory behind DNNs is particularly 
important for DoD and IC applications where we will need to adopt solutions from other 
applications. At present, without a clear understanding of the theory behind DNNs, this process 
is largely ad-hoc and relies on costly trial-and-error solutions.  

One generally accepted finding is the notion that deeper neural networks (more layers) 
typically perform better. This is likely due to the fact that more layers allow for the network to 
provide decision boundaries that are more non-linear and much more complex decisions. Current 
state of the art networks such as ResNet and Inception [53] often consist of hundreds of layers. 
As the community looks toward even deeper networks (105–109 layers) it is likely that we will 
see the emergence of a new type of neural networks—sparse neural networks [54]. As opposed 
to the commonly used dense equivalent, sparse deep neural networks will consist of a large 
number of weights that are zero. This can be quite advantageous for hardware platforms where 
memory or computations are resource constrained. 
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3.3.4 Transfer Learning 
As described in [31], traditional machine-learning techniques assume that the data used to 

train and deploy a model are of the same domain. The framework of transfer learning allows the 
training of models in a source domain or feature space and the deployment of this model to a 
target domain in which sufficient training data may not be available and domain or feature space 
are different. Transfer learning can happen in different settings. The first, inductive transfer 
learning, occurs in cases where there are labels in the source and target domain; on the other 
hand, transductive transfer learning is used in cases where only source labels are available but 
target labels are not (similar to the unsupervised learning case), and unsupervised transfer 
learning is a case in which neither source nor target labels are available [31].  

Transfer learning may be of particular interest to DoD/IC applications where training data 
within domains or tasks of interest is scarce. Thus, within the framework of transfer learning, it 
may be possible to find domains or tasks that are related to the target domain or task with 
abundant training information. Then, using inductive, transductive, or unsupervised transfer 
learning techniques, it may be possible to transfer the knowledge gained from the source domain 
and task to the target domain and task with significantly less effort than trying to train a model 
for the target domain and task from scratch. Although a promising avenue for applications such 
as those in the DoD and IC where we are data rich but truth (labeled) poor, a theoretical 
understanding of how well transfer learning works for arbitrary applications is still limited. 

 
3.3.5 Semi-Supervised Learning 

In many cases, one has access to a small set of labeled data but wishes to make additional 
use of large quantity of unlabeled data to improve the training of their models. Semi-supervised 
learning algorithms are a class of algorithms designed to work within this paradigm. The authors 
of [55] provide a good overview of the variety of techniques that fall within semi-supervised 
learning. Semi-supervised learning differs from supervised learning, which works on all labeled 
data and unsupervised learning in which none of the data is labeled. Further, it should be noted 
that semi-supervised learning has certain assumptions about the quality and relationship between 
labeled and unlabeled samples. For example, it is assumed that the labeled samples provide 
coverage over the possible classes and are related in some feature space to unlabeled samples 
that should have the same label. Thus, it is an important paradigm, but simply having access to a 
dataset with labeled and unlabeled samples is not necessarily sufficient to implementing a semi-
supervised algorithm. As noted in [55], a few of the many ways in which semi-supervised 
learning can be used include: 

 
1. Generative models. In this case, it is assumed that your dataset can be well represented by 

some sort of statistical mixture model. Then, if you have at least one labeled sample for 
each mixture component, it is possible to leverage the unlabeled samples to improve model 
quality. This process can also be extended to use any clustering algorithm to apply labels 
to the unlabeled samples. 

2. Self-training. In this case, we use the labeled samples to create a classifier that can be then 
used to classify the unlabeled samples. High confidence classifications are then added to 
the labeled sample pool and a new classifier is trained. This process is repeated until 
satisfactory results are achieved 

3. Graph-based. In this class of semi-supervised learning algorithms, data points (both 
labeled and unlabeled) are represented as a graph. Using techniques such as graph 
similarity, it is possible to infer labels on the unlabeled samples. 
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While at first glance it seems that semi-supervised learning may be a natural fit to DoD and 
IC problems by greatly reducing the burden on labeling samples, it should be noted that the use 
of unlabeled samples in conjunction with labeled samples provides no guarantee of improving 
supervised learning techniques on the labeled samples alone. Further, using semi-supervised 
learning typically involves significant manual design of features and models in order to achieve 
meaningful results [56]. 

 
3.3.6 Reinforcement Learning 

Reinforcement learning is another machine-learning paradigm that has received significant 
interest in the recent past [57]. Major breakthroughs of reinforcement learning can be seen in 
robotics [58], learning to play Atari games [59], and improving computer performance in the 
game of Go [60]. 

In contrast to other learning paradigms, reinforcement learning leverages a reward signal in 
order to learn a model. Thus, this reward signal can provide much higher level “labels” that the 
system can eventually use to learn from and can work particularly well in complex environments 
where it may be difficult to tease out specific rules that need to be learned. An example of 
reinforcement learning in action is given in [61]. In this work, researchers use reinforcement 
learning techniques to develop an algorithm capable of controlling a helicopter. As the authors 
note, the difficulty in modeling the physical properties of a helicopter make it a good candidate 
for reinforcement learning.  

There are a number of factors that make reinforcement learning different from other learning 
techniques. First, within reinforcement learning, there is no supervisor but only a reward signal. 
Second, the reward signal or feedback is not instantaneous but often delayed. Within 
reinforcement learning, signals are often provided sequentially and time or order of samples and 
signals are important. At each step, the response to subsequent samples differ. For the example 
of using reinforcement learning to learn to play Atari games, at the beginning, the rules of the 
game are unknown and the system learns directly from interactive game play. The system picks 
an action on the joystick and sees a set of pixels and scores that correspond to a positive or 
negative signal that is used to adjust behavior.  
 
3.3.7 Common Algorithmic Pitfalls  

When designing machine learning algorithms, developers should be aware of a number of 
common errors that can arise. Below are a few issues that we have observed in practice: 

 
• Over-fitting (“variance”) vs. under-fitting (“bias”). Over-fitting is a phenomenon 

when a particular machine-learning model is too closely fit to the training examples. 
When over-fit, an algorithm may have trouble generalizing to new examples. Under-
fitting, on the other hand, is when an algorithm provides an overly simplistic model that 
describes the training examples. There are a number of ways that one can avoid such 
issues—for example, selecting training data that represents the variety of examples to be 
seen, including a regularization term in the training objective, or choosing different 
algorithms.  

• Bad/noisy/missing data. In this challenge, a model is trained on bad, noisy, or missing 
data. In such cases, the trained model may not work as intended and decisions may be 
made on the wrong set of features. In the case of missing data, the model may ignore 
important features or make certain assumptions of the data that are unlikely to work in 
practice. Overcoming this challenge often requires the use of good data conditioning 
techniques of human intervention to ensure the fidelity of training data. 
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• Model selection. It is imperative that the model being used to represent the desired input-
output relationship be closely related to the actual input-output relationship.  

• Lack of success metrics. Having a clear metric of algorithmic success is important. 
While metrics such as accuracy or precision provide some view into the performance of 
the algorithm, there may be other metrics that should be carefully designed prior to 
training a model. 

• Linear vs. non-linear models. Picking the right type of model is also important. If there 
is to be a linear relationship between inputs and outputs, one should pick a linear model.  

• Training vs. testing data. Carefully segregating data into training, validation, and testing 
datasets is an important best practice that can help avoid issues such as over-fitting or 
under-fitting. 

• Computational complexity, curse of dimensionality. Data conditioning techniques can 
be used to help reduce the dimensionality of datasets which can also help machine-
learning algorithms use cleaner data when determining input-output relationships. 

 
3.3.8 Algorithms within the Context of Exemplary Application 

For the exemplary video classification example, we leverage a number of open-source 
models. In order to greatly reduce training time on the very large array, we use pre-existing 
models and weights and update them in a process similar to that outlined in the transfer learning 
section. 

To begin the process, we tested many different types of models in order to judge the model 
that is likely to work well for the classification task at hand. Specifically, we focused on the 
following considerations: 

 
1. Model type—spatial, temporal, relational or auditory 
2. Training from scratch vs using pretrained models 
3. Types of input channels 
4. Computational constraints such as memory and computational performance 
 
To simplify our problem, we considered each video as a series of images. Using this 

simplification, we were better able to focus on spatial models such as convolutional neural 
networks. Given the rich variety of preexisting models for image classification, we decided to 
use transfer learning from existing models such as Inception and ResNet. Given the 
simplification of videos to series of images, we only used the red, green, and blue channels of the 
video and ignored the audio tracks. Each node on our system consists of NVIDIA K80 GPUs 
with 16GB of memory, which is not enough to load the full training dataset. Thus, we developed 
a batch training mechanism that could iteratively train on a smaller subset of training samples 
rather than the full set. Determining other parameters such as number of layers, learning rate, and 
batch size was done by using high performance computing techniques in order to quickly look at 
the thousands of possible parameter settings.  
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3.4 Computing 
Many recent advances in AI can be at least partly credited to advances in computing 

hardware [26, 62]. In particular, modern computing advances have been able to realize many 
computationally heavy machine-learning algorithms such as neural networks. While machine-
learning algorithms such as neural networks have had a rich theoretic history [63], recent 
advances in computing have made the application of such algorithms a reality by providing the 
computational power needed to train and process massive quantities of data. While the 
computing landscape of the past decade has been rich with numerous innovations, DoD and IC 
applications that require covert and low size, weight, and power (SWaP) systems will need to 
look beyond the traditional architectures of central processing units (CPUs) and graphics 
processing units (GPUs). For example, in commercial applications, it is common to offload data 
conditioning and algorithms to non-SWaP constrained platforms such high-performance 
computing clusters or processing clouds. The DoD, on the other hand, may need AI applications 
to be performed inside low-SWaP platforms or local networks (edge computing) and without the 
use of the cloud due to insufficient security or communication infrastructure. Beyond modern 
computing platforms, the wide application of machine-learning algorithms has also been 
supported by the availability of open-source tools that greatly simplify developing new 
algorithms. In this section, we highlight some recent computing trends along with a brief 
introduction to software packages that have relevance to DoD and IC applications. 

 
3.4.1 Processing Technologies: 

 

 
Figure 3.15. Some examples of processing technologies with salient features. 

Figure 3.15 describes the primary classes of processing technologies for AI applications. 
While CPUs continue to dominate in terms of availability, cost, and market support, many of the 
recent advances in machine-learning algorithms, specifically neural networks, have been driven 
by GPUs. GPUs are essentially parallel vector processing engine, which have shown themselves 
to be adept at massively parallel problems such as training neural networks and are particularly 
well-suited to the back propagation algorithm described in Section 3.3.3. While GPUs will likely 
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dominate supervised learning model training in the near future, it is important to note that there 
are also a number of academic and commercial groups developing custom processors tuned for 
neural network inference and training. An example of such a processor is the Google TPU [62, 
64], which is an application specific integrated circuit (ASIC) originally designed for machine-
learning inference, while more recent versions support both inference and training [65]. There is 
also significant research in new hardware architectures such as neuromorphic computing [66], 
which may work well in low-power or resource-constrained environments.  

 

 
Figure 3.16. December 2018 view of AI computing systems. The x-axis indicates peak power and the y-axis indicate 
peak giga operations per second. (GOps/s) Note the legend on the right which indicates various parameters used to 
differentiate computing techniques. 

Figure 3.16 graphs some of the recent processor capabilities (as of December 2018) 
mapping peak performance vs. power usage. As shown in the figure, much of the recent efforts 
have focused on processors that are in the 10–300W range in terms of power utilization, since 
they are being designed and deployed as processing accelerators. (300W is the upper limit for a 
PCI-based accelerator card.) For this power envelope, the performance can vary depending on a 
variety of factors such as architecture, precision, and workload (training vs. inference). At 
present, CPUs and GPUs continue to dominate the computing landscape for most artificial 
intelligence algorithms. However, the end of Moore’s law [67] and Dennard scaling [68] implies 
that traditional commercial-off-the-shelf (COTS) technologies are unlikely to scale at the rate at 
which computational requirements are scaling. For example, according to [69], the amount of 
computation required for training popular neural network models goes up at a rate of 
approximately 10×/year. To address these challenges, a number of hardware developers have 
begun to develop customized chips based on FPGA or ASIC technologies. For example, the 
aforementioned Google TPU [70], Wave Computing Dataflow Processing Unit (DPU) [71], 
GraphCore C2 [72], and Habana Goya [73] are all ASICs customized for tensor operations such 
as parallel multiplications and additions. Other ASICs have been designed to push the boundaries 
of low-power neural network inference, including the IBM TrueNorth neuromorphic spiking 
neural network chip [66] and the MIT Eyeriss architecture [74]. One interesting trend of note is 
that many hardware manufacturers, faced with limitations in fabrication processes, have been 
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able to exploit the fact that machine-learning algorithms such as neural networks can perform 
well even when using limited or mixed precision [75, 76] representation of activation functions, 
weights, and biases. Such hardware platforms (often designed specifically for inference) may 
quantize weights and biases to half precision (16 bits) or even single bit representations in order 
to improve the number of operations/second without significant impact to model prediction, 
accuracy, or power utilization. For example, as reported by NVIDIA, the V100 GPU can perform 
7.8 teraFLOPS of double-precision, 15.7 teraFLOPS of single-precision, and 125 teraFLOPS of 
mixed single- and half-precision [75].  

While looking at published numbers from vendors provides an important view of 
performance, these numbers may be derived from algorithms and applications that are 
particularly well suited to the hardware platform. In most cases, it is also valuable to benchmark 
performance by testing various hardware platforms on workloads or applications of interest. For 
example, Figure 3.17 shows the time taken to train a dense convolutional neural network model 
using different hardware platforms. As expected, the NVIDIA K80 GPU performs the best when 
compared against the time taken for training by the Intel Xeon-E5 and Intel Knights Landing 
processor.  

Beyond performance, power utilization, or other resource constraints, choosing the right 
computing technology for an application may also be driven by the software being used and what 
hardware platforms are supported by this software.  
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Figure 3.17. Performance results for training convolutional neural network using different hardware platforms as 
a function of batch size. Evaluation was performed using TensorFlow and training the AlexNet model with data 
from the ImageNet dataset.  
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Figure 3.18. Survey of commercial organizations developing AI software tools. This infographic was developed by 
Shivon Zilis. 

3.4.2 Machine Learning Software 
The field of available software for AI and machine learning has witnessed an explosion of 

options in the past few years. For example, Figure 3.18 shows some of the many tools available. 
These tools typically provide a high-level domain-specific interface that allows users to quickly 
apply AI and machine learning techniques to problems and domains of interest.  

As noted in the previous section, choosing a software environment for development and 
hardware platform for deployment are not necessarily independent decisions. Particular 
environments may only work with a subset of hardware platforms (or at least work well with a 
subset). A recent industry trend has been for well-known machine-learning software providers to 
develop custom hardware tuned to work well for their software environment. For example, 
software packages such as TensorFlow, PyTorch, MXNet, RAPIDS, CNTK are led by Google, 
Facebook [45], Amazon [77], NVIDIA, and Microsoft [78], respectively. Each of these vendors 
has also publicized the fact that they are developing hardware platforms (most often focused on 
inference) that will provide benefits to the users of their software packages. These benefits could 
include inexpensive use of proprietary cloud-based computing solutions, higher performance or 
additional software functionality. When deciding which of the multitude of AI and machine-
learning frameworks to use for an application, it is important to understand how they fit in to the 
larger computing pipeline. Further, it should be noted that most of these tools output models in a 
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format unique to that software package. Fortunately, there are efforts such as the Open Neural 
Network Exchange (ONNX) to standardize model specifications and allow developers to move 
models from one ecosystem to another. However, as of December 2018, the portability of 
models across platforms is still limited. Finally, deploying individual software packages in 
private clouds or high performance computing (HPC) clusters still requires significant efforts to 
reach published performance numbers. 
 
3.4.3 High Performance Computing 

HPC systems play an important role in developing AI systems. Often, HPC systems are 
used for data conditioning and algorithm development. In the realm of data conditioning, HPC 
systems are particularly well designed for processing massive datasets in parallel by providing 
high-level interfaces and high-quality hardware. In the realm of algorithm development, HPC 
systems can be used for model design and training computationally heavy models such as 
neural networks. The parallel processing capabilities and abundant storage present in most 
HPC systems make them particularly well-tuned to such computationally heavy tasks that may 
require large sweeps of model parameter spaces. However, there are some potential pitfalls 
with using HPC systems for developing AI systems including internode communication 
overhead, data distribution, and parallelizing computations [79]. HPC systems can be used to 
train and optimize AI algorithms and models by evaluating many parameters (parallel 
hyperparameter training) [80, 81] or by training single algorithms and models on many 
compute nodes of an HPC system [82-84]. 

Many modern HPC systems such as the Oak Ridge National Laboratory’s Summit system 
feature hybrid architectures consisting of heterogenous computing elements such as CPUs, 
GPUs, and FPGAs. While HPC systems have a long history, the iterative nature of AI and 
machine learning development has led to new software and tools. In our research at MIT LL, we 
have spent significant effort in developing new tools [85, 86] that enable interactive, on-demand 
rapid prototyping capabilities for AI and machine-learning practitioners interested in applying 
the power of HPC systems to AI and machine-learning workloads. Table 1 describes a number of 
salient differences between traditional HPC and AI/machine-learning application development 
and execution. The new MIT LL tools bridge these differences, and they enable both HPC and 
AI/machine-learning application development and execution on the same system and in the same 
user environments.  
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Table 1: Salient differences between designing high performance computing systems for traditional workloads vs. 
machine-learning workloads 

 Traditional Workloads AI/Machine-Learning Workloads 

Programming 
Environments 

OpenMP, MPI, C, C++, 
Fortran 

Tensorflow, Caffe, Python, 
MATLAB, Julia 

Software Designed for clusters Designed for laptop 

Deployment Bare Metal VMs/Containers 

Computing Homogenous Heterogenous 

Computing 
Literacy 

High Low 

Scheduling Batch Interactive 

Resource 
Managers 

Slurm, SGE Mesos, YARN, Slurm 

Data Sources Generated by simulation Imported from outside 

Data Storage Files Databases (in-memory, file-based) 

Interfaces Terminal Jupyter/Web-based 
 

3.4.4 Computing within the Context of Exemplary Application 
For our particular application, we use Nvidia K80s as the computing platform. As described 

in Figure 3.17, the K80 GPU performs well when compared to other hardware platforms that 

Figure 3.19. Time taken for different steps on exemplary problem’s machine-learning pipeline (note log scale on  
y-axis). 
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were available on our system (Intel Xeon-E5 and Intel KNL/Xeon64c). While GPUs can perform 
much of the model learning, we still utilize a CPU (Intel Xeon-E5) for data preprocessing and 
manipulation. The reason we use two different processors is three-fold: 1) our cluster has many 
more available CPUs that allow us to use parallel processing techniques for data conditioning, 2) 
each CPU has significantly more memory available (256 GB for a CPU vs. 16 GB for a GPU) 
that makes it amenable to manipulating large datasets, and 3) preprocessing is not amenable to 
vector-parallel processing. To fit datasets in the limited GPU memory for training, we used a 
batch training technique such as that utilized in [26] so that weight updates occur on a smaller 
batch of data when compared against the nearly one million videos. For the software 
environment, we used the widely available open-source TensorFlow and Keras [87] packages 
developed by Google that support the CPUs and GPUs available on our cluster. Development 
was performed on the MIT SuperCloud [88, 89] cluster at the Lincoln Laboratory 
Supercomputing Center. 

Figure 3.19 describes the computational performance of various steps in the machine-
learning pipeline: 1) loading training data, 2) transforming data, 3) training model, and 4) 
loading validation data. Training a particular model took approximately 11 hours and we were 
able to leverage HPC techniques in order to simultaneously test a number of competing 
parameters such as different learning rates and batch sizes for the neural network. 

3.5 Robust Artificial Intelligence 
 

 
Figure 3.20. Importance of Robust AI. 

A growing research area critical to the widespread deployment of AI solutions to DoD and 
IC problems is in the domain of robust AI. We use the term robust AI as a general term that 
includes explainability, verification/validation, metrics, security (cyber and physical), policy, 
ethics, safety, and training. Sometimes, this component is also referred to as trusted AI or 
adversarial AI (not to be confused with generative adversarial networks—a machine-learning 
technique). In this section, we describe each of the robust AI features of Figure 3.20. As this 
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field continues to evolve at a rapid pace, we focus on describing the challenges and highlight a 
few related research results as applicable. 
 
3.5.1 Explainable AI 

A key aspect of gaining trust in an AI system is in the ability of the system to explain the 
reasoning behind a particular decision. In particular for DoD/IC applications where AI systems 
may be supporting complex decisions or decisions with very high impact, it is imperative that 
users understand how a particular decision was reached by the system. This explanation can help 
users not only understand the reasoning behind an output, but also may help with the resiliency 
of algorithms. It is more difficult for an adversary to manipulate a model that needs to explain 
what it is doing.  

Traditional AI systems that rely on expert or knowledge-based systems had the advantage of 
often being inherently explainable. Since the rules were created by experts and used tools such as 
decision trees, the AI system could simply output the states that were activated in reaching a 
decision, and the human user, ostensibly trained to use the system, could simply look at what 
was activated.  

With more recent machine-learning algorithms, however, this is not necessarily the case. In 
fact, the ability of a machine-learning algorithm to combine multiple features in often non-linear 
ways is part of the value associated with them! Standard approaches of simply outputting the 
accuracy or confidence may work for domains in which the cost of an error is low but is unlikely 
to be sufficient for decision makers in critical applications [90]. While there are certain machine-
learning algorithms such as Bayesian networks that are more amenable to explainability, this 
property is not necessarily present in most machine-learning techniques. For example, while 
there is ongoing research [74] looking at the explainability of neural networks, the explainability 
of most off-the-shelf models is poor. To underscore the importance of this field, the Defense 
Advanced Research Projects Agency (DARPA) recently began a program associated with 
explainable AI called XAI [91].  

Closely related to explainability is the concept of interpretability. One should be careful with 
the terms “explainable” and “interpretable” (along with “comprehensible” and “understandable”) 
that are overloaded and often conflated in the AI literature. “Explainable” AI provides an 
explanation for the AI’s recommendation in terms a human can understand, even though the 
explanation might not fully describe how the AI arrived at its recommendation. The model or 
process that an AI uses to make its recommendation is said to be “interpretable” if a human can 
understand it. As examples, consider a neural network and a decision tree. The neural network is 
typically regarded as an opaque black box whose processing cannot be understood, so it is 
neither explainable nor interpretable. In contrast, the decision tree follows an explicit sequence 
of logical steps to make its recommendations, so it is interpretable and hence explainable. One 
approach to making a neural network explainable is to train another decision tree on examples of 
the neural network’s inputs and outputs and use the new decision tree to approximately describe 
what the neural network is doing.  

For most applications of interest, one will need to develop algorithms that are explainable as 
well as interpretable. In many cases, providing the explanation of how an algorithm reached a 
particular decision may only be as good as how well that explanation can be interpreted by the 
end user. An overly complicated explanation may exceed the capacity of a human end user or 
domain expert to understand. 

 
3.5.2 Metrics 

In discussing metrics, we differentiate between component-level metrics and system-level 
metrics. Much of the presentation of AI or machine-learning results is done via component-level 



3.  Enabling Technologies 

 
64 

metrics that provide results on how well a particular component of the AI architecture 
performed. For example, one may present the accuracy or precision of an algorithm but this does 
not indicate how well data conditioning was performed or how much of an impact this made to 
the overall mission. 

Measuring the output of a machine-learning algorithm depends heavily on the task at hand. 
Within the realm of supervised learning classification, some common measurements include the 
true positive rate (the number of correct “positive” classifications), the true negative rate (the 
number of correct “negative” classifications), the false positive rate (the number of incorrect 
“positive” classifications), and the false negative rate (the number of incorrect “negative” 
classifications). These measures are often combined to report metrics such as accuracy (the ratio 
of correct predictions to the total number of samples), precision (the ratio of true positives to true 
positives and false positives), and recall (the ratio of true positives to true positives and false 
negatives). Higher level metrics such as the F-score can be used to represent the ratio of 
precision to recall for example.  

The quality of regression can be measured by metrics such as residuals, which measure the 
algorithms output and compare them with the actual outputs. These residuals can be used to 
compute metrics such as mean absolute error (the average of absolute values of residuals) or 
mean square error (the average of the squared values of residuals). In the literature, it is also 
common to see metrics such as mean absolute percentage error or R2 error.  

In the case of unsupervised learning tasks such as clustering, internal structure may be 
measured by parameters such as the ratio of intra-cluster distances vs. inter-cluster distances, 
distances between cluster centroids, or mutual information. Other measurements may leverage 
external information such as ground-truth of cluster labels or known cluster structure [92]. 

While there are good component by component metrics for the AI canonical architecture, 
there is a major gap in end-to-end metrics. Thus, one may be able to measure the effectiveness of 
data conditioning or algorithms or computing but understanding how all of the components work 
together is a major gap in the presentation of metrics. For example, it is uncertain how one would 
present the overall impact to a mission by using an AI system. Of course, such metrics would 
likely need to tie in closely to the mission at hand. 

 
3.5.3 Security 

Security researchers look at the confidentiality, integrity, and availability of systems when 
evaluating threats and defenses [93]. In the same vein, AI researchers will need to evaluate the 
functioning of their AI system under adversarial conditions. At the core of using AI for important 
applications is the trust behind the system. Beyond obvious issues such as accuracy and precision 
of a particular AI pipeline, one must also look at issues that may arise when these systems are 
used in adversarial settings. 

AI applications are prone to numerous attacks that can change the output often in 
unpredictable ways. For example, an adversary may physically manipulate an image or video 
that leads to incorrect classification or reduction in confidence in an algorithm. Adversaries may 
also be able to introduce bias into training data or manipulate sensors collecting data through 
cyber attacks.  

The threat surface of the AI pipeline can be vast and Figure 3.21 describes some of the 
dimensions that may be used by security researchers in understanding where an attack on their 
AI system may occur. It should be noted that these dimensions are meant simply to be guidelines 
and not seen as rigid definitions of the dimensions associated with AI security. Further, the 
dimensions presented are not perfectly orthogonal to each other, and there are relationships that 
exist across dimensions. 
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The first dimension of Figure 3.21—Access—corresponds to what information or 
knowledge about the AI system an adversary may have access to. This dimension is meant to 
indicate that an adversary with only limited knowledge and access to an AI system they wish to 
compromise will be limited in the types of adversarial attacks they can perform. For example, 
given knowledge of the machine-learning model or architecture used, an adversary may 
deliberately poison training data such that, under certain circumstances, the model outputs an 
incorrect classification. There are sophisticated and relatively simple ways of doing this. A 
simple example of such a data poisoning attack would be to physically manipulate datasets. For 
example, the authors in [94] were able to fool a machine-learning algorithm into misclassifying a 
stop sign as a speed limit sign by simply placing a sticker on a stop sign. More sophisticated 
adversaries can also leverage detailed information such as model architecture, weights, and 
training tools that may be readily available based on knowledge of public-domain models. 

 

 
Figure 3.21. Dimensions of adversarial AI (three A’s): access, agenda, attack pipeline. 

In our framework, the second dimension—Agenda—corresponds to what an adversary is 
trying to achieve with their attack. In a simple case where an adversary is simply trying to reduce 
the confidence of an algorithm, they may only need access to samples or training data. For more 
sophisticated attacks that aim for system control, an adversary may need access to many other 
components or have in-depth knowledge of how a system was designed. 

The final dimension in our framework—Attack Pipeline—is meant to indicate that there are 
different places in the AI pipeline where an attack may occur. Clearly, the types of attacks that 
can occur on the acquisition and representation of data are different than attacks on the learning 
model and algorithms. For example, an adversary may try to manipulate a sensor collecting data 
or attempt to manipulate the weights used in making a determination of a threat. 

Again, the presentation of these dimensions is not meant to imply that each of these 
dimensions are mutually orthogonal or unrelated. Rather, these dimensions are meant to indicate 



3.  Enabling Technologies 

 
66 

that there are different ways in which an adversary may attempt to infiltrate a system and that 
there are different capabilities needed to protect against these attacks. There are a number of 
well-studied and publicized examples of machine-learning algorithms being fooled by seemingly 
simple attacks [95-97]. Developing algorithms that are robust to such attacks is a very active area 
of research and there are numerous examples [98-101] of researchers developing counter-
measures that can be applied depending on the threat. Beyond attacks specific to the AI pipeline, 
we should also note that AI system are also prone to a variety of cyber and physical 
vulnerabilities such as supply-chain risks. 

Similar to many other areas of security research, it is likely that in the near future this field 
will continue to see a game of “cat-and-mouse” in which security researchers develop new 
examples of adversarial attacks and develop counter-measures to provide robust AI performance 
in the face of these attacks. For DoD and IC applications, it is imperative that developers work 
with security professionals to understand the types of adversarial attacks they may be prone to 
and develop counter-measures or techniques to minimize the effects of these attacks. 

 
3.5.4 Other Robust AI Features 

Other topics that may need to be studied or developed before widespread deployment of AI 
solutions to DoD/IC missions include validation and verification and policy, ethics, safety and 
training. Validation and verification techniques can be used to measure the compliance of 
various system features with specifications, rules, and conditions under which the system is 
intended to operate. While there is limited work in validating and verifying expert systems from 
a software perspective [102], there is very little current research on applying such techniques to 
AI systems that leverage more complex machine-learning algorithms such as neural networks. 

Finally, widespread deployment of AI systems within the DoD and IC will largely be 
advanced or impeded by AI rules and regulations. While there are a number of technical 
challenges associated with developing such rules and regulations, there will also need to be a 
consistent effort across multiple agencies to develop best practices and share results. 

 
3.5.5 Robust AI within the Context of Exemplary Application 

Given the research nature of our exemplary application, we did not focus significant effort 
on security and adversaries. However, we did use simple techniques such as inspecting inputs, 
outputs, and selective pieces of the neural network to understand where the system was failing 
and for debugging errors. In measuring results, we use the top-1 and top-5 accuracies. This 
metric is defined as follows: An algorithm will label each of the videos with one of k labels. The 
top-k accuracy says that a video was correctly identified if one of its top k labels are the correct 
label. For example, a video may be classified (in decreasing probability) as: (barking, yelling, 
running, …). If the correct label (as judged by a human observer) is “yelling”, this would 
contribute a correct classification toward the top-5 but would contribute a miss towards the top-1 
accuracy. As of June 2018, leading models for the Moments in Time Dataset had top-1 
accuracies of approximately 0.3 and top-5 accuracies of approximately 0.6 [3, 5]. 

3.6 Human-Machine Teaming 
The final piece of the canonical AI architecture of Figure 3.1 is what we refer to as human-

machine teaming. This piece is critical in connecting the AI system to the end user and mission. 
Human-machine teaming tasks are defined as tasks in which the human and machine system are 
interdependent in some fashion. Human-machine collaboration is a broader defined term that 
encompasses interdependent tasks, but also tasks that are not interdependent such as sequential 
or loosely coordinated tasks.  
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First of all, it is important to understand which tasks are mapped well to humans and which 
tasks are mapped well to machines. As shown in Figure 3.22, there is a spectrum that relate to 
how closely humans and machines work together. Borrowing the terminology from [103], we 
refer to broad collaboration relationships as human-in-the-loop, human-on-the-loop and human-
out-of-the-loop. Human-in-the-loop collaboration is when a human is closely in the loop of the 
AI system. For example, a human and machine working together to jointly solve a common goal. 
In this relationship, the human and machine are equal contributors (or in certain cases, the human 
is a greater participant) to the overall system. The second type of relationship is referred to as 
human-on-the-loop. In this form of interaction, a human is largely participating in the system in a 
supervisory capacity. Human-on-the-loop systems will largely leverage automated techniques 
and may triage more important information to a human observer or the human may provide 
oversight on the functioning of the system. The final type of relationship is referred to as human-
out-of-the-loop. In this relationship, the human does not participate in the AI system’s operation 
under normal conditions.  

 
 

 

Figure 3.22. Spectrum of humans and machines interacting. 

Clearly, different applications will have different requirements in terms of how closely 
humans and machine work together. In order to determine the appropriate level of human and 
machine interaction, Figure 3.23 describes a high-level framework that may assist in such a 
mapping. On the horizontal axis, we look at the consequence of actions—how important is it that 
the system provide the correct response. On the vertical axis, we look at the confidence in the 
machine making the decision. Clearly, for very consequential decisions that may impact lives in 
a significant way, such decisions are clearly mapped well to humans. On the other hand, for low 
consequence decisions in which we have high confidence in the machine, such decisions may be 
well mapped to machines. Within the context of the DoD and IC applications, in the near future, 
it is likely that AI systems will largely be used to augment human decision making. This is 
largely due to the high consequence of decisions. Certain tasks such as anomaly detection or 
highlighting important data may be performed by a system but high-consequence decisions such 
as whether to deploy troops or resources will likely still be performed by humans. Historically, 
systems have been designed with a static human/machine task allocation, but in current and 
future systems, task authority can dynamically change from human to machine depending on the 
context or the capabilities of the human or machine.  
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Figure 3.23. Determining which tasks map well to humans and machines. 

For those systems in which the humans and machines must interact to be successful, it is 
important to provide the elements to enable an effective human-machine collaboration. In Figure 
3.24, some of these elements are outlined. At the top are environmental elements that provide 
part of the context in which a collaboration occurs. There are static elements such as physics of 
the environment, which do not change dynamically. There are semi-static elements such as 
physical infrastructure including buildings, rivers, and forests. There are social constructs that 
provide limitations on and rules about how people interact with one another (and these could 
vary depending on what part of the globe one is in). Mission provides the other part of the 
context. Goals of the mission establish why the human-machine collaboration is taking place. 
Tasks outline how these goals can be accomplished. Procedures are organizationally determined 
structure on how the tasks are performed.  
 

 
Figure 3.24. Elements of effective human-machine collaboration. 
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The humans then perceive information from the context and from the machine system. 
Using this perceived information, the human projects expected behavior for the system, the 
environment, and the mission into the future. With these predictions, course of action decisions 
can be made.  

The system also receives input from the human and the environment. Ideally, the system 
would contain models of the human, environment, and mission in order to extrapolate expected 
behavior into the future. These predictions could then be used to make system behavior 
decisions. In reality, much of the human-machine collaboration issues stem from the fact that the 
human, environment, and mission models within the system are faulty or non-existent. Systems 
can also have more or less information visible to the human as it continues its tasks. As systems 
lean towards being adaptive AI, to ensure that the system model within the human is functionally 
accurate, more visibility into the system’s processes should be provided. Likewise, the more 
information the system has about the human’s evolving tasks and models, the better the system’s 
decisions will be.  

Johnson’s research [104] has identified three aspects of the interaction between humans and 
machines that establish effective human-machine teaming: observability, predictability, and 
directability. Observability is akin to the “visibility” description above—can the human and 
machine see what the other is doing/planning to do? Predictability is the capability resulting from 
the models within the human/machine. If you have a model of the human or system or 
environment, you can then predict the future behavior. Directability is the means of being able to 
exert control on the human/system teammate. If one of the human’s courses of action were to tell 
the system what to do (or vice versa), then the interaction would have the quality of directability. 
Often directability lies on a spectrum from low directability (infrequent or gross control) to high 
directability (continuous and fine control). Outstanding research questions remain on how much 
observability, predictability, and directability is required for a sufficient teaming interaction for 
different tasks. One interesting finding from Johnson’s research is that as the system becomes 
more autonomous, MORE attention to human-machine collaboration, not less, is required to 
maintain complete system performance.  

There are a number of research areas such as data visualization and algorithm 
interpretability that may also help move these boundaries. While there has been research on how 
humans and machines interact in domains such as robotics [105, 106], research on the interaction 
between humans and machines for more general AI applications is relatively limited. In the near 
future it seems that AI systems will need to be developed in close collaboration with end users in 
order to design how systems interact with the end users. 

There are a number of techniques in the field of human-computer interaction that may be 
used as a starting point for researchers and developers. For example, principles of user design, 
usability and interface testing. New visualization research on augmented reality, 3D printing, 
immersive gaming environments, and brain-computer interfaces may also play a large part in 
developing novel human-machine teaming interfaces. 

For the DoD and IC, the possibilities of humans and machine working together are 
tremendous. While certain tasks will likely continue to be human-only, there are a number of 
possibilities for applications human-in-the-loop and human-on-the-loop relationships. For 
example, in [103], the authors highlight AI roles such as training, interacting, and amplifying as 
prime candidates for either humans complementing machine intelligence or AI providing 
humans with superpowers (as described by P.R. Daugherty in Figure P2-1 on page 107, in 
Human+ Machine: Reimagining Work in the Age of AI [103]). Certain mundane, cumbersome, 
or trivial tasks may also be candidates for human-out-of-the-loop solutions. 
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4 AI Applied to Human Language Technology (N. Malyska)  
4.1 Background 
Many technologies researched, developed, and tested at MIT LL are in the area of information 
sciences. As illustrated in Figure 4.1, MIT LL makes significant contributions to this area across 
ISR, human language technology (HLT), bioengineering, informatics and decision support, 
cyber, and supercomputing areas.  

 

 
Figure 4.1. Information science technology areas at MIT LL. 

While all of these areas are important, work in HLT is a long-standing area of contributions 
in machine learning and narrow AI.  

4.2 Early Work to Recent Developments in AI  
HLT work—in text and other forms of communication, such as Morse code—has been 

conducted at MIT LL since the 1950s. For example, in the mid-50s, Ben Gold, one of the 
primary founders of the later MIT LL speech group, designed a Morse code translation machine. 
More broadly, he was involved in pattern recognition under the leadership of Oliver Selfridge, 
who led “one of the first groups in Artificial Intelligence”. [1] 

The application of AI to speech began in the 1980s when large datasets became available. 
For example, TI and MIT released the TIMIT speech database of read sentences in 1986. TIMIT 
[2] and other datasets like it allowed researchers to conduct experiments on high-quality, 
carefully curated data. These datasets were disseminated widely across the community and 
became the basis for shared benchmarks in speech, speaker, and language recognition, as well as 
other emerging areas. 

The MIT LL Speech Systems Technology group was a lead in the resulting machine-
learning algorithms development boom, with staff creating capabilities in emerging HLT 
technology areas. Early milestones included the DARPA Neural Network Study [3] and the 
LNKnet machine-learning software toolkit [4]. In 1996, the group pioneered Gaussian mixture 
model (GMM)-UBM-based speaker verification [5] and in the 2000s was a leading group in the 
use of support vector machines (SVM) for speaker verification [6]. Figure 4.2 shows two 
milestone publications in AI for HLT at MIT LL. 
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Since that time, the group has continued to develop new AI approaches, including statistical 
signal processing for machine translation in the mid-2000s [7, 8] and sparse coding for human 
language technology in 2018 [9]. The group has more than 30 years of expertise in machine 
learning and AI for HLT.  

 

 
Figure 4.2. Milestone publications in AI for HLT at MIT LL. 

 

4.3 Technology Landscape and Representative Capabilities 
AI for HLT rises from a set of technology foundations, viewed through the lens of Mission 

Perspective, and applied to a set of capabilities and delivered to government sponsors. Figure 4.3 
depicts the full landscape of AI for HLT, including technology foundations, mission 
perspectives, and representative applications. 

 

 
Figure 4.3. The full landscape of HLT across Division 5 and non-Division 5 areas. 



4.  AI Applied to Human Language Technology 

 
77 

Technology foundation areas represent deep technical areas where fundamental research 
has been conducted. This work is often the result of research in academia or with academic 
partners, and requires years of investment to reach a mature level. For example, fundamental 
speaker, language, speech, and topic recognition work has been conducted by MIT LL for 
more than three decades across academia, industry, and government. The mission perspective 
is the fundamental need that drives the creation of an HLT system. For example, the need to 
analyze a flood of communications data in an environment without sufficient analyst resources 
is a core need for the communications analysis pillar. Finally, specific applications steer how 
technology foundations are applied to a particular mission. For example, human network 
discovery and understanding applications address coordination analytics needs and integrate 
core computational linguistics, natural language processing, image processing, and other 
technology foundations. 

Although there is a broad array of possible missions, at MIT LL, the mission focus is more 
constrained than the general landscape. As depicted in Figure 4.4, we focus on three different 
areas: identity detection, communications analysis, and coordination analytics. The first focus, 
identity detection, involves the determination of a talker’s identity and related characteristics like 
language and gender, from the speech signal using AI. In this area, MIT LL also works to fuse 
the speech signal with image video modalities to robustly identify individuals from multimedia 
sources. The second area, communications analysis, focuses on enabling analysts to extract the 
content of communications with cross-language information retrieval, translation, speech 
recognition, and signal enhancement. As part of this work, we also build tools to train and 
augment foreign-language analysts and warfighters in languages needed in government-specific 
scenarios. The final focus area, coordination analytics, develops AI capabilities to understand 
networks of bad actors by analyzing the content-in-context of their interactions with others. 
 

 
Figure 4.4. MIT LL AI for HLT mission focus. 

Two representative capabilities, forensic speaker comparison and cross-language document 
retrieval demonstrate MIT LL’s approach to developing AI capabilities in the area of HLT. In the 
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first example, forensic speaker comparison [10, 11], shown in Figure 4.5, law enforcement and 
the IC need to determine whether two speech audio recordings are from the same individual. 
Manual comparison is error-prone, subjective, inconsistent, and time consuming. To approach 
this application, data are conditioned by extracting a set of representative features. In addition, 
file and channel characteristics are detected. Then, machine learning algorithms, based on 
GMMs and DNNs, are applied to train models on large sets of telephone and microphone speech. 
The trained models are then applied to compare the two audio files. A human analyst is then 
presented with a confidence score that helps them interpret how likely the two audio files were 
created by the same individual. 

 

 
Figure 4.5. Example of an AI pipeline designed for forensic speaker comparison. 

 
Figure 4.6. Example of an AI pipeline designed for cross-language document retrieval. 
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In another example—cross-language document retrieval, shown in Figure 4.6—monolingual 
subject matter experts in the IC need to search foreign-language documents for key concepts. 
Standard automatic machine translation approaches require large amounts of labeled in-domain 
data that are not available in real-world scenarios. As with forensic speaker comparison, data 
conditioning, algorithms, and human-machine teaming aspects are considered.  

Our representative examples demonstrate that AI systems are not simply about developing 
algorithms. The entire chain, from sensor to user mission, built upon a fabric of modern 
computing and robust processing, forms the complete AI capability. Each step is a technical 
challenge, as well as an opportunity for innovation, in the process of building an AI system. We 
can view this chain, a canonical architecture enabling AI for HLT, depicted in Figure 4.7. 

 

 
Figure 4.7. A canonical architecture enabling AI for HLT. 

Of particular note in the pipeline is the importance of well curated data and early data 
conditioning steps. Recent discussions of the AI pipeline, including as part of the DARPA D3M 
program [12] on teaching machines to learn machine learning, focus on automatic data 
preprocessing as a crucial step [13]. It is often reported that about 80% of data analysis is spent 
in this critical step [14] and doing so requires highly trained data scientists. A key part of this 
process, data cleaning [15] has been the topic of recent research focusing on ways that data can 
be efficiently and automatically conditioned. 

4.4 Global Trends Transforming AI for HLT 
Several global trends are dominating the transformation of AI for HLT over the 10 years 

from 2010 to 2020. Across government, industry, and academia, two of the most important 
trends are the commoditization of a wide range of text and speech analytics and AI for HLT 
spreading across application domains and being adopted with a wide range of expertise in AI. 
This situation is a dramatic shift from the earlier environment, where AI solutions, for example 
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for automatic speech recognition, were customized solutions, often specific to a particular 
domain and developed and deployed by a specialized team. Now, subject matter experts and 
software teams with little or no machine-learning background are empowered to try a range of 
off-the-shelf tools for their problems. 

While this trend affects many application areas for AI, it is particularly apparent in face 
recognition and text, speech, and video processing, where performance levels have enabled 
available tools to be useful in a wide range of applications. In app development for iPhone and 
Android, for example, application developers can make use of AI primitives already tuned to 
those devices [16]. 

4.5 Academic, Commercial, and DoD/IC/LE Roles in AI Systems 
Important to the canonical architecture we have presented is the idea that no one team can create 
all of the necessary components. As shown in Figure 4.8, academia, commercial industry, and the 
DoD/IC/LE make up the community of teams creating the future of AI for HLT. We can view the 
critical contributions of each of these contributors in terms of three critical components for 
successful government AI systems: 

1. Government-specific user perspective 
2. Access to mission-specific data 
3. Algorithms and system architects 

 
 

 

Figure 4.8 The role of academia, commercial industry, and government teams in AI systems. 

Creation of emerging AI solutions has a set of associated challenges and opportunities. 
Different participants in the AI ecosystem have different roles in addressing these challenges. 
For example, industry is driving advances in processor technology to handle AI system training, 
and academia and industry are leading the creation of new machine-learning algorithms. Data, 
especially sensitive operationally relevant data, are the domain of the government IT and 
analysts. They are often available with only very controlled sharing, even with trusted 
government partners. Warfighters and analysts have unique perspective on government missions, 
and they help expose critical technical issues that need solution. 

Using the lens of the canonical architecture allows each organization to better understand its 
role in the AI ecosystem. For example, as an FFRDC, MIT LL has a role as a connector in the AI 
ecosystem, evaluating early technologies from academia and industry for effectiveness on 
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government missions and datasets. As required, AI researchers formulate and implement 
components that are necessary to accomplish the mission. Table 4.5.1 shows an analysis of 
challenges and opportunities in AI from an MIT LL perspective, highlighting areas to potentially 
lead, adapt, and leverage. 

 
Table 4.5.1 Challenges and opportunities in AI trends 

Challenges  Opportunities 

Deluge of many kinds of data, structured and 
unstructured and often special Lead Automated data conditioning 

AI training currently takes weeks or months on 
powerful compute clusters Leverage Follow industry advances to create mission 

capability: GPUs, DNN processors 

Integration of machines into human-driven HLT 
process Lead 

Demonstrate performance of systems in 
sponsor scenarios; develop proxy problems and 
data sets; increase interpretability 

Persistent performance gap applying academic 
and industry AI solutions to government Adapt Use FFRDC mission understanding to adapt 

academic and commercial algorithms 

Latest open algorithms not available across 
hardware architectures Adapt Adapt algorithms to MIT LL high-performance 

computing platforms 

Peers and adversaries have access to a 
common set of AI algorithms Lead Develop robust HLT AI systems and adversarial 

models 

Narratives in gray-zone warfare are difficult for 
humans to determine Adapt Develop AI to identify signatures, discover 

narratives, and understand threats 

 

4.6 Key Findings in the Application of AI to HLT 
In this section, we discuss observations and trends related to each element of the canonical 

architecture. These trends will be used to inform our recommendations and way forward. 
 
Data Conditioning: AI in commercial industry is fueled by refined data pipelines, both 

ahead of an effort to bootstrap new capabilities and as in-the-loop subcontracted annotation to 
develop a steady stream of labeled data. Apple and Google, for example, both have carefully 
engineered data acquisition and labeling as part of their AI development process [17-20]. As part 
of the pipeline, large-scale data procurement and labeling is used to meet the needs of 
commercial systems as they evolve. Commercial data collection is a large industry, with 
companies such as Appen providing in-country, in-context data collection. With some 
exceptions, government does not yet purchase large amounts (millions of dollars) of labeled data 
to fuel AI programs, with more focus tending to be on algorithms. What data are purchased are 
often purchased at the beginning of the program, while our study revealed that many companies 
build continued large procurements into the ongoing lifecycle of a product. They use these later 
purchases to incrementally improve general performance and also to address special cases, such 
as automatic recognition of a new phenomenon in social media. 

Data used for training and evaluating systems in industry and academia also differ 
significantly from data as shown in Table 4.6.1. Government data are typically noisier and come 
from a wider variety of sources than in industry [21]. When operational data are not available, 
opportunities exist to create proxy data for government problems, such as in the recent IARPA 
ASpIRE Challenge for speech recognition of noisy and reverberant speech [22], and in the 
Speakers in the Wild dataset, which has many characteristics unseen in telephony [23].  
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Table 4.6.1 Factors typically differentiating data in government from data in commercial and academic settings 

Factor Data in Industry and Academia Data in Government 

Sensors Small set of known sensors Many possible sensors; often sensor is 
unknown 

Recording 
Conditions 

Controlled conditions, i.e., user speaking 
directly into telephone 

Unconstrained and dynamic conditions 

Noise Low-to-medium Medium-to-high 

Languages Single, common language Multiple, low-resource languages 

Content 
Structure 

Fixed content structure, i.e., user requesting 
schedule information 

Content structure is dynamic and mixed, 
ranging from news to conversations 

Subject 
Compliance 

Compliant: Subject attempts to produce 
input that maximizes success of AI 

Adversarial: Subject is not aware of AI or 
produces input to minimize its effectiveness 

 
Algorithms: Open-source toolkits allow users to leverage machine learning with low barrier 

to entry. Commercial companies are building business on such AI toolkits that can be applied 
easily. Academics also iteratively develop packages of algorithms to encourage adoption of their 
research. In this sense, academia and the commercial sector are advancing algorithms and AI 
capabilities. 

In the area of HLT, there are several speech and text tool kits that are widely used. Three 
examples are: 

 
• Kaldi: Kaldi is an open-source toolkit produced by John’s Hopkins University to 

perform automatic speech recognition, speaker recognition, and language recognition 
[24]. Over the past several years, it has seen widespread adoption, including in 
government systems. Kaldi developers integrate new algorithms as they are released, 
in “recipes.”  

• Open NMT: Open NMT is an open-source neural machine translation package 
involving multiple academic and commercial partners [25]. This toolkit allows rapid 
development of translation systems, which are updated regularly.  

• Stanford NLP: Stanford has open sourced a variety of natural language processing 
(NLP) tools, including a parser, a part-of-speech tagger, and a named-entity 
recognizer [26]. For English in common domains, these tools are used often and 
allow rapid prototyping of text processing systems.  

 
As with data, open and commercially available toolkits are designed to operate under 

different conditions than are often present in government scenarios. Those with access to and an 
understanding of government challenges can help guide development of off-the-shelf 
technologies through interactions with the research community. One approach that has seen 
strong positive results is involvement, including sponsoring, of public challenge problems. These 
challenge problems, which provide a relevant scenario and curated data, allow HLT AI 
performance benchmarking. An example of success with this model in government is the IARPA 
ASpIRE Challenge [22]. Here, procurement of a small operationally relevant dataset has led to a 
dramatic shift in the state of the art for room audio transcription. Additionally, participation in 
non-government-affiliated challenge problems and hackathons offer an opportunity to learn from 
and help shape the state of the art. 
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Human-Machine Teaming: Voice assistant and recommender systems are driving 

commercial HLT AI. As with data and algorithms, though, commercial recommender scenarios 
differ from government-relevant scenarios [27]. A selection of these differences is shown in 
Table 4.6.2. 

A major difference between industry and government recommender systems is that 
government teams often need to distribute work. In other words, the same content in many cases 
should not be provided to multiple team members, as this would lead to redundant work. In 
addition, domains for recommender use by government are high-consequence—suggesting 
intelligence for review rather than suggesting movies or purchases. 
 
Table 4.6.2 Differences between typical commercial and government recommender-system scenarios 

Factor Industry Government 

User 
Independence 

Each user receives independent 
recommendations 

Users share workload—recommendations 
must be in context of whole team 

Cost of Error Low High 

AI Explainability Not required Required for action in government 

Languages User language Multilingual  

Content 
Structure 

Highly structured (i.e., item specifications) Less structure (multimedia documents) 

 
Modern Computing: In modern computing, a significant focus is swinging back from 

cloud processing to edge computing [28, 29]. For example, Apple is promoting on-device 
machine-learning implementations, supported by accelerated hardware on mobile devices. 
Recently, strategies for combining edge with DNNs [30], especially distributed DNNs [31], have 
been pursued. 

The key feature of edge processing is robustness to limited or non-existent communications 
back to centralized resources. In commercial industry, these issues can cause delayed 
responsiveness to customers [28]. In government applications, lack of edge capability increases 
the time from field-forward data ingest to insights on those data. 

An example demonstrating the importance of edge processing to the government is 
document and media exploitation (DOMEX) [32]. Here, large numbers of hard drive and media 
images are ingested in forward-operating locations. Information on these drives is of great 
importance and may be of high intelligence value, but it currently may take weeks or months for 
the full drive images to be physically shipped back to the enterprise, due to the volume of data 
being transferred. In the meantime, analysts at headquarters have a very limited ability to 
summarize the content of a drive to determine if it is of interest or to transfer large multimedia 
files for inspection. Figure 4.9 depicts several potential strategies for media transmission. Smart 
compression of the data, using select AI on the tactical edge can potentially reduce the amount of 
data that needs to be sent. 
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Approach Description System Impact 

Physical  
Shipment 

Physically ship media • High latency 
• High bandwidth 

File  
Compression 

Transmit entropy-
based coding of 
multimedia files 

• High latency 
• Low bandwidth 

Smart  
Representation 

Transmit content-based 
coding of multimedia 
files 

• Low latency 
• Increased effective 

bandwidth 

Figure 4.9. Comparison of potential strategies for media transmission. 

Robust AI: A key component of usable AI systems is providing confidence that a system 
will work in a predictable way in practice. Robustness is a critical component of this confidence. 
As depicted in Figure 4.10, in cases where confidence in AI systems is high and consequences 
are low, problems are best matched to machines. In cases where confidence is low and 
consequences are high, problems are best matched to humans. 

We have found that there are cases where a problem that initially appears best matched to 
humans can be decomposed into portions that are matched well to people and portions that are 
handled by machines. One example is in AI-augmented language learning. Here, one particular 
element of test creation is the creation of a large body of foreign language materials, labeled by 
difficulty level. Although overall test creation is arguably too critical of a process to replace with 
a machine, automatic leveling quickly creates sets of documents that can be used by experts to 
build a test. 

 

 
Figure 4.10. Effect of confidence level and consequence of actions on the role of AI in a process. 

With worldwide access to data, algorithms, models, and computing for HLT AI, the 
information battlespace is changing. Here, counter AI is critical as adversaries gain high-
performance AI capabilities. AI for HLT must be robust to be effective. By gaining access to an 
AI system, an adversary can potentially learn and then introduce imperceptible perturbations to 
inputs that render the system unusable. Adversarial attacks can limit the effectiveness of AI 
solutions, leading to incorrect behavior [33]. 
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Real-world HLT AI systems are currently deployed worldwide, supporting the needs of 
different actors. These include surveillance, mission planning, biometric security, and forensic 
analysis. In the area of surveillance, nation states are reportedly employing AI to monitor their 
own population using, for example, Megvii Face++ [34]. 

Currently, best practices for robust systems focus on measuring reduced performance as 
systems move from prototype data to data encountered in operational settings. Measuring this 
potential real-world performance gap requires access by testers to operational data, from which 
an evaluation set is constructed, as illustrated in Figure 4.11.  

 

 
Figure 4.11. Notional illustration of potential performance gaps due to operational data and in the presence of 
adversarial attacks. 

 
Despite increasing reliance by U.S. Government, however, little known capability exists to 

secure HLT AI systems to adversarial attack. In the face of this threat, called the adversarial gap 
here, system performance can potentially be degraded in a way that is not well understood and 
for which rigorous tests may not currently exist, even with access by T&E teams to operational 
systems and data. Figure 4.12 illustrates this concept. In particular, it is critical to understand 
mechanisms by which adversaries can affect performance, how this interference can be detected, 
and if/how the gap can be closed by mitigating vulnerabilities. 

Challenges include: understanding the attack surface (adversarial access to machine-learning 
system data, models, users), quantifying the “adversarial gap” for systems under attack, 
developing and assessing defensive capabilities, and in-situ system evaluation and best practices 
(i.e., machine-learning resilience testbed). Figure 4.12 illustrates some of the complexity of the 
potential space of attacks on AI systems, which includes aspects of access and which stage of the 
machine-learning pipeline is targeted. 
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Figure 4.12. Potential space of attacks on AI systems, broken down by stage of the machine-learning pipeline and by 
the type of access required. 

 
Adversarial effects on AI systems have the potential to interfere with a wide variety of functions. 
For surveillance tools, for example, attacks could prevent detection of an individual or 
connection with activities. Forensic analysis tools could potentially be manipulated to hide 
relevant evidence from investigation. In information retrieval, attacks could potentially make 
systems fail to return items relevant to query.  

To achieve a specific goal or to reveal a potential attack, a specific system must be broken 
down into its component parts. Specific successful attacks may occur at points that are both 1) 
accessible using either white box or black box approaches and 2) important to the outcome of the 
AI system in terms of the specific adversary goal. 

 
User/Mission: A key part of the AI chain is understanding emerging needs for user 

missions. As an example, recent DARPA hackathons, illustrated in Figure 4.13, demonstrate that 
there is a growing need to analyze coordination across multimodal sociocultural networks. 
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Figure 4.13. Recent DARPA hackathon topics. 

There is also a trend toward complex narratives arising in gray-zone warfare. Gray-zone 
warfare is complex because it involves multiple simultaneous fronts, different scopes, and is 
adversarial in nature.  
 

4.7 Recommendations and Way Forward 
A summary of study findings is shown in Figure 4.14. 

 
Figure 4.14. Summary of study findings. 

These lead to the set of five recommendations in Figure 4.15. 
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Figure 4.15. Study recommendations and way forward. 

 
The potential benefits of leading the way in data collection, creation, and curation are to 

become a government touchpoint for HLT data collection and curation, to bring best data 
practices from industry to government, and to build trust in the ability of AI systems to work in 
operational settings. To accomplish this, the way forward is to design and support sponsor-
funded data collections for AI training and evaluation, create and advocate for strong 
government evaluation pipelines using operational data, follow commercial data processes 
closely, and develop and adapt synthetic data augmentation. 

In adapting open algorithms to government-specific needs, the benefits are to leverage 
best-of-breed for DoD applications, to lead in AI HLT areas specific to DoD, e.g., specific 
needs at the tactical edge, and to influence academia and industry toward DoD problems. To 
accomplish these benefits, the way forward is to carry a message of the state of the art to 
sponsors, transform available capabilities for DoD applications through adaptation and re-
engineering, and to define proxy problems, baselines, and metrics for open evaluations to drive 
research to areas of sponsor needs. 

When we lead the development of recommender systems, we allow the government to 
maximize use of available analyst time, subject matter expertise, and language skills to reduce 
the time from analyst knowledge to insight and to enable warfighters to access and use timely 
mission-relevant multimodal information. The way forward in this area is to follow commercial 
HLT developments closely; work with analysts to understand where AI can help, develop 
training and human augmentation tools to maximize warfighter effectiveness; and develop and 
adapt recommender systems specific to government scenarios. 

For robust AI, the benefits are to assure mission success in the face of advanced adversary 
AI capabilities, to enable quantification of AI vulnerability, and to move the community forward 
in leveraging AI in support of DoD missions. The way forward here is to follow academic 
research closely, prototype robust AI capabilities within DoD programs, develop programs in 
counter-AI for HLT applications, and build a new test range for AI/information battlespace using 
cross-division resources. 

Finally, in the area of human coordination analytics, the benefits are to leverage decades of 
world-class machine-learning research and development in the HLT Group for new focus areas, 
to lead applications of AI to DoD and IC problems, to defend against rapidly advancing threats, 
and to effectively address gray-zone information warfare. We will achieve these benefits by 
broadening sensor modalities to include social-cultural networks, continuing to develop a 
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portfolio of demonstrations in the area of human coordination analytics, and formulating a 
“moonshot” prototype for gray-zone information warfare. Figure 4.16 shows the initial concept 
for a “moonshot” prototype for gray-zone information warfare. 

In summary, the AI landscape is changing for HLT. There are more off-the-shelf 
capabilities, as well as adversaries and peers who can use them. There are widely available 
machine-learning toolkits. In addition, government adoption of these capabilities requires 
support to adapt to mission scenarios and operational data relevant to important missions. AI 
developers should design large sponsored data collections, especially in emerging multimodal 
and multichannel areas. We should also adapt latest algorithms to mission needs. We must also 
develop robust AI solutions, especially in the face of adversarial threats.  

 

 
Figure 4.16. Sociocultural Network Attack Discovery and Response (SouNDeR). 
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5 AI Applied to Cyber Security (B. Streilein) 
Recent improvements in AI have resulted in advances in many technological and scientific fields 
including medicine, transportation, communication, and data analysis. In these cases, AI 
techniques have assisted humans in several ways, including dealing with large amounts of 
information (i.e., big data), recognizing anomalous behaviors or trends, and making complex 
decisions. As will be shown in the sections below, cyber security faces many of the same 
challenges as these other areas, and thus, AI has the potential to have similar impact if applied in 
appropriate ways. 
 

 
 

Figure 5.1. Architecture for application of AI to cyber security. 

Figure 5.1 presents an architecture for applying AI to cyber security. The first step in the 
architecture involves conditioning (cleaning, normalizing, etc.) of both structured and 
unstructured data in order to prepare them for use by AI algorithms. AI algorithms, including 
both unsupervised and supervised learning algorithms, consume conditioned data in the next 
block to develop knowledge about the data. Output from trained AI algorithms can be leveraged 
by human-machine teams to develop insight that is relevant to particular cyber missions, such as 
vulnerability discovery, intrusion detection, and others, shown to the right of Figure 5.1. To 
effectively meet cyber domain timescales, developed capabilities will rely upon modern 
computing technologies, such as GPUs and TPUs, and others. Finally, the architecture highlights 
the need for robust AI solutions that can be verified, validated, measured, are robust to attacks 
(e.g., adversarial learning), and are understandable or explainable. Section 5.3 will refer to the AI 
architecture in Figure 5.1 to present key findings and recommendations from the study of the 
application of AI to cyber security. 
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5.1 Cyber Background 
 
At its most basic level, a cyber system comprises a user transacting data with a computer system, 
as depicted in Figure 5.2. Given this simple representation, the critical threat surfaces of such a 
system are threefold: the compromised user, the compromised input, and the compromised 
system components. These surfaces represent the main entry points for an attacker and capture at 
a high level all the ways that a cyber system can be compromised. That is, all known attacks at 
some level can be binned into these categories of attacks. 
 

 
Figure 5.2. Critical threat surfaces for a cyber system as well as notable trends. 

As depicted in Figure 5.2, the user is one of the main ways a cyber system can be 
compromised; in fact, the user continues to be one of the weakest points in any such system. 
Ways in which an attacker can compromise a user include credential theft through keylogging 
capabilities, physical theft, or brute force password theft [1, 2]. Through well-crafted spear-
phishing attacks, the attacker can trick an unsuspecting user into providing credentials or banking 
information in order to gain access to a protected system [3]. Spear-phishing continues to be a 
pervasive concern for security professionals and users alike. 

Compromising the input of a cyber system can take place in many ways, including 
corrupting internal memory [4], in which attackers alter important storage locations in running 
programs to achieve their effects, such as leaking data or changing program behavior. Code 
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injection into the control path [5] is another way to compromise the input of a cyber system. 
Through this method, direct control of the system is taken by the attacker. Finally, the sending of 
malformed messages and control packets can cause a system to behave counter to original design 
specifications in order to support attacker goals [6].  

The final category of attacks against a cyber system involves compromise of the system 
components. In this class of attack, the attacker is able to insert malicious or counterfeit 
components into the development or operational chain of a cyber system. In [7], an example is 
presented of a supply chain attack against an industrial control system (e.g., SCADA) with the 
purpose of compromising its security. Of the three types of attacks, component compromise 
takes more planning on the part of the adversary to accomplish, but can lead to more widespread 
impact [8]. 

A number of trends have been noted when discussing the cyber domain, including the 
continuing vulnerability of users, the potential for insider threats, and the proliferation of 
connected devices, such as IoT devices. However, one of the major trends in cyber security is the 
use of automation by an attacker in carrying out their actions; this trend is behind the incredible 
rise in the number of unique attacks that are seen and is overwhelming defenders. Moreover, as 
depicted in Figure 5.3, although the sophistication of attacks continues to increase, automation of 
these capabilities enables less sophisticated hackers to carry out the attacks. Metasploit is an 
example of one such tool that is freely downloadable online and readily provides attack 
capabilities to users [9], regardless of their sophistication. 
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Figure 5.3. Global trend: sophisticated attacks more easily accomplished with automation. 

 
Recasting the cyber system representation in a slightly different manner reveals the tension 

between the attacker and defender within the cyber battleground. As depicted in Figure 5.4, we 
see an enhanced version of the cyber system, showing an expanded view of potential cyber 
systems, including processing, storage, and communication components, all of which can be 
attacked. While the system is being leveraged to carry out a mission, the attacker is executing his 
or her “kill chain”, indicated by red blocks at the top of the diagram. The steps in the kill chain 
enable the attacker to know the target (prepare), launch an appropriate attack (engage), establish 
persistence, and finally, achieve and assess his or her effect. Figure 5.4 presents a simple 
representation of the Lockheed Martin Cyber Kill Chain [10]. While this is happening, but not at 
the same time or in synchrony, the defender is also executing stages in a multi-step defensive 
process, as indicated by the blue blocks at the bottom of the diagram. The defender process starts 
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by identifying critical components of the cyber system and installing protections for them. From 
this point, the defender must continue to be vigilant by monitoring and detecting new attacks that 
require responses or online defensive actions. Finally the defender must support the mission 
recovery so that critical functionality can be restored. The defender steps are laid out in the NIST 
Cybersecurity Framework [11]. 

 

 
Figure 5.4. The cyber battleground showing attacker kill-chain steps (red blocks) and defender defense steps (blue 
blocks). 

Having outlined the cyber battleground, it is important to enumerate the major challenges 
facing the defender while trying to stop the attacker and protect the cyber system. AI capabilities 
that can help in dealing with these challenges will be discussed in the following section. 
 

 
Figure 5.5. Major challenges to cyber security including anticipating the threat and identifying assets, as well as 
dealing with big data and responding to detected attacks. 
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First among the challenges faced by the defender is the need to identify the critical assets 

that need protection. Through the analysis of network and system data as well as business need 
procurement information, systems that are important for mission and user function are identified. 
The Camus system is an example of an automated capability that performs identification of 
critical assets and how they support the mission, so-called “mission mapping [12].” 

Once identified, these critical systems must be protected through the use of cyber security 
best practices and secure technologies, such as data encryption and cyber moving-target 
capabilities [13]. This step continues to be a challenge as the attacks continue to evolve and 
proliferate, evading protection mechanisms [14]. 

Another significant challenge for the cyber defender is dealing with the overwhelming 
amount of relevant data in order to develop situational awareness. While some of these data, 
specifically are from network protocols, structured, much of them are not, which adds to the 
difficulty of understanding them. Situational awareness, which involves the analysis of cyber big 
data, enables a real-time understanding of the state of both red and blue activities in the context 
of mission goals. This understanding supports the detection of attacks that have made it past 
network and host protections that are in place. Although it has been investigated for many years, 
the development of cyber situational awareness capabilities continues to be an important research 
area [15]. 

Once an attack has been detected, it is necessary to respond by stopping the attack and 
removing its effects, such as re-imaging systems that are affected. This step remains a significant 
challenge for cyber defenders as it typically involves human intervention to decide amongst 
many potential responses, thus slowing the response and potentially overwhelming the human. In 
some cases, it may be necessary to determine who caused the attack through attribution 
determination [16]; however, attribution remains a significant challenge for cyber responders as 
the nature of the Internet supports anonymity. 

After the attack is neutralized, it is necessary to restore mission functionality. This step  
is difficult and time-consuming as the systems that are supporting the mission are identified 
and restored. The processes for mission restoration for determining mission impact are 
typically manual and slow, though work is being done in this space [17, 18] to improve speed 
and efficacy. 
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Figure 5.6. Notable trends relating to the use of AI for cyber security include increased adoption of techniques, 
machine-to-machine combat and robust AI solutions. 

As we look to the future, several overarching trends are worth noting that can lead to an AI-
enabled cyber security future (see Figure 5.6). Despite the challenges with the fast-evolving 
cyber domain, we expect to see increased adoption of AI capabilities for cyber. The commercial 
market has exploded with a large number of start-ups hoping to capitalize on applying AI to 
cyber security problems. Many of these solutions leverage big data architectures to triage large 
amounts of data, allowing the human security analyst to focus on more relevant and potentially 
more threatening data.  

As both the defender and attacker increasingly use automation and AI, we expect to see 
more machine-to-machine interaction. This reflects the fact that the cyber domain requires 
machine-speed response, something beyond human capabilities. The Cyber Grand Challenge is 
an excellent example of this capability being developed with support from the DoD research 
community [19, 20]. 

Another trend of note is the move from perimeter-based security to one that is integrated 
with the edge of the network and is defined by software rather than hardware components such 
as routers and proxies. Finally, we see a future for the application of AI to cyber in which 
machine-learning-based solutions are robust to adversarial AI, in which an attacker subverts 
developed capabilities through data poisoning or model inversion. 
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Figure 5.7. Challenges and opportunities for MIT LL in adopting AI for government mission needs. 

Challenges and opportunities related to the application of AI to cyber are numerous (see 
Figure 5.7) and one needs to choose its approach carefully in order to achieve the maximum 
impact possible to meet government mission needs. In some cases, MIT LL should lead the way, 
such as in developing automated conditioning capabilities, leveraging our deep mission 
familiarity and knowledge to adapt capabilities, and finally, to help the government maintain 
resilience of capabilities in the presence of adversarial learning attacks. In other cases, MIT LL 
should adapt and leverage what exists elsewhere, such as advanced algorithms being developed 
in academic and commercial communities, automation technologies that augment human 
capabilities and engender trust in AI, and industry advances in special-purpose hardware that can 
be used for AI.  

5.2 Representative Capabilities and Technologies 
Division 5 possesses a number of ongoing cyber efforts that leverage AI (e.g., machine 

learning) capabilities in order to achieve impactful results for government mission needs. As 
depicted in Figure 5.8, example programs include those for detecting online cyber discussions of 
relevance, threat forecasting and risk-based decision assistance, as well as others that detect 
counterfeit components and support embedded device red-teaming. In this section, we briefly 
review a few of particular relevance and interest in order to demonstrate the current state of 
Division 5 use of AI for cyber. 
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Figure 5.8. Example cyber AI programs in Division 5 include detection of online cyber discussions, risk-based cyber 
decision assistance, and counterfeit component detection. 

 

 
Figure 5.9. The CHARIOT capability automates the detection of online cyber discussions for the cyber analyst. 

An important capability for cyber analysts within the U.S. government is the ability to stay 
ahead of the attacker in order to anticipate their intended targets or method of attacking. 
Attackers often coordinate their activities online—especially in the case of large-scale attacks, 
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such as denial-of-service (DoS) attacks—making use of public discussion forums and more 
recently, social media capabilities to incite and recruit others and to coordinate their attacks [21].  

Among the challenges faced by cyber analysts is the lack of clear detection signals that 
enable ready detection of the relevant discussions. Unlike examples of malicious code or 
executables, where specific sequences of bytes, also known as “signatures,” can be used to 
identify directly the presence of the offending attacker [22], detection of relevant information 
from forums relies upon inferred information gleaned from unstructured discussion text. Another 
challenge relates to the sheer volume of information and data that must be looked through in 
order to find the discussions of relevance. Current analysts’ processes leverage manual 
capabilities and human intervention limiting their ability to cover a large amount of data, thereby 
leading to missing of important discussions. However, given the increasing number of attacks, it 
is important to be able to process online data to anticipate attacker actions and put in place 
relevant defenses. 

To address these and other challenges of cyber analysts, the Cyber Analytics and Decision 
Systems Group in Division 5 has developed a capability known as CHARIOT to discover cyber-
related discussions in large amounts of online media [23]. The system, depicted in Figure 5.9, 
leverages HLT to triage and featurize data and a logistic regression classifier to detect 
discussions of interest for analysts dealing with large amounts of unstructured data.  

As depicted in the figure, the CHARIOT system does well to detect discussions of interest in 
three representative online data sources: Reddit, Stack Exchange, and Twitter. In each case, the 
system is able to achieve a high rate of detection while at the same time maintaining a low false 
alarm rate. The performance of the system meets the strict performance parameters of the 
analyst, indicated by the light gray rectangle in the performance curve graph. The CHARIOT 
system has been transitioned to the sponsor environment and is undergoing testing for 
operational deployment. 

Another example of ongoing work in Division 5 that leverages AI capabilities in support of 
cyber security mission needs is the SIde Channel Authenticity Discriminant Analysis (SICADA) 
system. The SICADA system leverages machine learning capabilities to detect counterfeit parts 
that may be created by adversaries attempting to introduce malicious behavior into working U.S. 
government systems. As depicted in Figure 5.10, SICADA relies upon a SVM to discriminate 
between authentic and counterfeit components. The SVM is trained on electronic signals, such as 
power and voltage traces, gathered during normal operation of known good parts. Similar signals 
collected from suspected components are presented to a trained SVM, which in turn uses the 
signals to classify the parts as authentic or counterfeit.  

The system achieves a high level of accuracy and is able to detect suspected counterfeit parts 
which can then be further investigated to determine their status. 
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Figure 5.10. The SICADA system leverages machine learning (SVM) to support the detection of counterfeit cyber 
system components. 

 
A final example of relevant work in Division 5 that leverages AI capabilities in support of 

cyber security is depicted in Figure 5.11. The capability leverages natural language processing to 
associate unstructured descriptions of vulnerabilities with critical exploits witnessed in practice 
to predict likely vulnerabilities that will be exploited by hackers. The system achieves an 
improved level of accuracy over raw CVSS (Common Vulnerability Scoring System) scores. 
The system output could enable a cyber analyst to prioritize which vulnerabilities should be 
patched first. 
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Figure 5.11. Machine-learning capabilities such as natural language processing and logistic regression can be 
applied to the problem of cyber vulnerability prioritization, yielding improved performance. 

 

5.3 Key Findings in the Application of AI to Cyber Security 
The successful application of AI to any domain requires acknowledging and addressing that 

domain’s challenges; cyber security is no exception [24]. Our study has identified several key 
findings that have particularly important bearing on the state of cyber security and the future of 
research, development, and operations. For the discussion below, we have organized our findings 
along the lines of the AI architecture presented in Figure 5.1: data conditioning, algorithms, 
human-machine teaming, computation, and robust AI. For each component of the canonical 
architecture, we have culled the key takeaway of concern. 

First and foremost is the finding that one of the major challenges facing the application of 
AI to cyber security relates to the huge amount of data that must be leveraged to make progress. 
As reported in a recent report by Internetworking giant CISCO, network-related data are getting 
created at a rate that continues to increase so much that by 2021, the Internet will produce 3.3 
zettabytes of data. [25]. As depicted in Figure 5.12, this huge amount of open-source data 
corresponds to traffic between computers and users, but also the large number of smart devices, 
IoT devices, and cell phones, and represents huge opportunities for analysis and intelligence 
production.  
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Figure 5.12. Data conditioning: the open-source intelligence big data opportunity. 

 
Figure 5.13. Large truth-marked cyber datasets are difficult to find. 

In other application areas of AI, such as image recognition and health care (e.g., medicine) 
large truth-marked datasets have enabled major advances in capability. These large datasets 
support training of the algorithms over a wide variety of domain conditions that imbue the 
models with the ability to generalize to unseen cases. In addition, these common well-known 
datasets enable sharing of techniques and results across the research communities, which leads to 
more rapid evolution of capability as a whole.  

However, as outlined in Figure 5.13, the cyber domain continues to lack agreed-upon truth-
marked datasets that can support research and capability advances. Despite the enormous amount 
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of data being generated on a daily basis [25], these data are largely not truth-marked and thus, 
not suitable for training today’s AI algorithms; the data’s designation as malicious or non-
malicious is not known. In response to this, research in cyber security has had to rely upon older 
datasets, such as the DARPA Intrusion Detection Evaluations from 1999 [26], which are not 
representative of today’s network environments. 

There is promise in recent efforts to create common repositories of data for use in cyber 
security research. These repositories, such as the IMPACT database (formerly known as 
PREDICT [27]), contain large collections of network and host traffic, some of which contain 
interactions between attackers and defenders, such as during government exercises and capture 
the flag events. However, because of the sensitivity of the data (it may contain proprietary or 
personal information), access is restricted to those who can justify a strong research need and 
who promise to delete the data once the research is complete. This tight control of the 
community data contrasts with the open datasets in other communities, such as MNIST [28] for 
handwritten character recognition and ImageNet [29] for image classification, where any 
researcher can download and work with the data. 

 

 
Figure 5.14. A variety of AI algorithms exist, many of which can be applied to cyber security. 

As we consider the algorithms themselves (see Figure 5.14), there are several intelligent 
capabilities that hold promise for improving current cyber security processes. As depicted in 
Figure 5.15, the defender stages (in blue) can all benefit from the application of AI. Predictive 
analytics can support the defenders’ task of identifying network components that need 
protection. Among these types of capabilities are those that support mission mapping, which 
refers to the capability to identify how computer components and systems support mission 
capability and thus need particular protection. Algorithms that leverage open and special data 
sources to monitor and anticipate the threat can help to point out weaknesses that are at particular 
risk for exploitation. In addition, clustering and classification algorithms can be leveraged to 
infer and prioritize vulnerabilities that must be addressed on mission assets [30, 31].  

After protecting those devices and systems that have been identified as vulnerable, the 
defender must still work to detect attacks as they arrive in order to repel and respond, and finally 
restore mission functionality. This stage will require triage of large amounts of real-time system 
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data in order to detect attacks that succeed in making it past protection measures. AI capabilities 
that recognize anomalous traffic patterns by comparing with baseline activity can help here, 
although false alarms can plague this stage [32]. 

The decision about how to respond to detected cyber attacks must take into consideration 
many variables, including effectiveness at thwarting the activity, impact on the network itself 
and its users, and the role of the mission being undertaken. Planning and optimization algorithms 
can help significantly at this stage by considering a large of number of potential scenarios and 
outcomes through simulation until an optimal solution is discovered [33] .  

Finally, the defender must work to restore mission functionality. Recent advances in 
recommender systems and human-computer interface technology based on HLT can help the 
human enact solutions that work best [34]. 

 

 
Figure 5.15. AI can help defender processes in a number of ways, including predictive analytics and planning  
and optimization. 
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Figure 5.16. Many AI resources are available online that should be leveraged by MIT LL and the government to bring 
to bear impactful mission-relevant capabilities. 

One of the major factors contributing to the widespread interest in and use of AI 
technologies is the ready availability of open-source toolkits and collaboration communities (see 
Figure 5.16). Researchers can quickly download software packages that contain working 
implementations of the latest algorithms ready to be applied to new problems. While private 
companies will protect special updates and additions to the basic algorithms, as it represents a 
business advantage, these open-source resources have helped to move things along at a very 
rapid pace [35]. 

This trend in availability of open-source solutions can be applied to cyber security as well. 
Techniques and algorithms that show promise can be bundled into libraries that others can use to 
move the field forward. However, detailed technical knowledge of the cyber domain is required 
to ensure that these techniques and algorithms are applied correctly to achieve maximal impact. 

 

 
Figure 5.17. Human-machine teaming can help with resource challenges faced by the government. 
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Once an algorithm has been trained and is ready for use, it must be incorporated into an 
existing human-centric workflow. Through this human-machine teaming, the algorithm can 
enhance and augment the human’s capabilities to improve overall effectiveness. This is 
especially important given the government’s stagnant or declining resources available to apply to 
the problem, as highlighted in Figure 5.17.  

Recommender systems, in particular, have been leveraged with great success, helping 
humans find relevant information for entertainment and shopping purposes [34, 36]. These same 
capabilities could be helpful in making the cyber analyst and security specialist more effective at 
their job functions, as the capabilities enable all individuals to benefit from the successes of a few. 
 

 
Figure 5.18. AI for cyber must be robust, especially against a motivated and capable adversary who can launch 
adversarial learning attacks. 

Machine-learning capabilities have recently been shown to offer astounding ability to 
automatically analyze and classify large amounts of data in complex scenarios, in many cases 
matching or surpassing human capabilities. However, it has also been widely shown that these 
same algorithms are vulnerable to attacks, as depicted in Figure 5.18, known as adversarial 
learning attacks, which can cause the algorithms to misbehave or reveal information about their 
inner workings [37]. In general, attacks take three forms: 1) data poisoning attacks inject 
incorrectly or maliciously labels data points into the training set so that the algorithm learns the 
wrong mapping; 2) evasion attacks perturb correctly classified input samples just enough to 
cause errors in classification; and 3) inference attacks repeatedly test the trained algorithm with 
edge-case inputs in order to reveal the previously hidden decision boundaries. Protection against 
adversarial learning attacks include techniques that cleanse training sets of outliers in order to 
thwart data poisoning attempts, and methods that sacrifice up-front algorithm performance in 
order to be robust to evasion attacks [38]. As machine-learning-based AI capabilities become 
incorporated into facets of everyday life, including protecting cyber assets, the need to 
understand adversarial learning and address it becomes clear.  
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Adversarial learning is a particular type of cyber attack in which the implementation of an 
algorithm (i.e., machine learning) is attacked through adversary actions. In fact, recent 
protections against adversary learning are leveraging other typical cyber security defenses, such 
as differential privacy [39]. AI techniques such as co-evolutionary computation may help make 
AI systems robust to adversarial interference [40]. 

 

 
Figure 5.19. As AI systems become more capable, the evaluation classifier performance using human expert 
judgment shows promise. 

Evaluating AI performance remains a challenge, especially when that performance exceeds 
human capability. One approach to measuring AI performance involves leveraging expert human 
judgment to assess black-box classifiers. As depicted in Figure 5.19, current approaches include 
statistical methods that combine individual expert judgment through maximum likelihood 
estimation (MLE), agreement [41], or majority vote to arrive at an estimate of true classifier 
accuracy [42]. In these cases, it is seen that performance of the methods greatly depends upon the 
independence of the experts as well as the difficulty of the problem at hand. 
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5.4 Recommendations and Way Forward 
 

 
Figure 5.20. Findings from the AI for cyber study include the need for truth-marked cyber data, advanced algorithm 
research in academia, and robust AI. 

In summary, several key findings were discovered from our survey of AI capabilities for 
cyber. As listed in Figure 5.20, these findings indicate that although AI is having a large impact 
on many technology areas (e.g., image recognition, health care) much remains to be done for 
similar impact to be seen in the cyber domain.  

The needs as specified by the findings provide an opportunity for the development of AI 
systems to shape how the DoD adopts AI in order to be more operationally effective and resilient 
to adversary attacks. 

First among the recommendations from our study is that the AI developers should lead the 
way in addressing the truth-marked dataset gap that currently exists in cyber security research. 
Based on years of experience in cyber as well as other fields, AI research laboratories, such as 
MIT LL, can collect, create, and curate multiple large cyber datasets along with relevant truth 
data to help develop and enhance AI algorithms for DoD use. 

The second recommendation will leverage MIT LL’s strong academic connection to remain 
aware of the latest advances in AI so that they can be brought to DoD problem spaces. In 
addition, we should immediately begin incorporating open-source toolkits and libraries for AI so 
as to jumpstart relevant capabilities. MIT LL will rely upon its extensive mission knowledge and 
data access to develop solutions that the academic and commercial communities are not focused 
on, at this point. 

Building upon recent efforts in workflow understanding and task automation, MIT LL can 
play a key role in automating mundane cyber tasks, such as initial data triage and alert 
processing in order to allow over-worked analysts and security personnel to focus on the most 
relevant concerns of the time. 

Our fourth recommendation is to continue current research into automated decision making 
so that the current prototype capabilities (e.g., CASCADE) can be leveraged in a real-time 
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operational setting [43]. Further refinement of mission and threat models will enable the 
considered and suggested solutions to be more relevant and appropriate for real-world scenarios. 
In addition, enhanced optimizations algorithms as well as instantiation within a big data 
computational environment will enhance its potential impact on mission decision needs. 

Developing AI capabilities that can be trusted and understood and that are resilient to 
adversarial attacks is a major challenge facing the adoption of AI solutions across the DoD 
today. This lack of assurance that these data-driven algorithms will perform as expected during 
operational scenarios keeps them from being used on a regular basis. AI researchers can play a 
major role in helping to uncover ways to make AI algorithms, such as DNNs and other 
machine learning capabilities, robust to adversary attacks. Recent work into methods to 
measure high performing classification systems will lead to improved methods for training and 
evaluating AI solutions. 

As shown in Figure 5.21, the DoD can benefit greatly from recent advances in AI. 
Capabilities for data understanding, counterfeit detection, intelligence gathering, and even 
offensive planning can be augmented by intelligent algorithms that can learn from gathered data. 
AI researchers with access to DoD sponsor problems, as well as their data, can enable research 
and development along these lines and will help to develop end-to-end AI systems enabling the 
DoD to adopt AI for cyber security and operations. 

 

 
Figure 5.21. Recommendations for MIT LL to support AI for the DoD cyber mission include leading the way in data 
curation and collection, automating mundane cyber tasks, and in developing and transitioning robust AI solutions. 
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Figure 5.22. Cyber Machine Intelligent Assistant (CyMIA) leverages natural language processing, automated mission 
and threat mapping, and automated decision assistance to enable a security analyst protect their mission critical 
system against evolving cyber threats. 

As cyber attacks continue to grow in sophistication and impact, the mission cyber defender 
grows evermore overwhelmed in defending critical cyber mission assets. Challenges faced by the 
defender include: inability to track potentially relevant cyber threats and to understand which 
cyber assets are critical to mission function, difficulty in fusing threat and mission information in 
order to explore potential impacts, and determining optimal responses to the threat while still 
protecting mission functionality. Current approaches for dealing with this involve manual 
defensive processes relying upon technical-only solutions and using cyber-only data. AI holds 
promise for shifting the balance of the cyber struggle in favor of the cyber defender by enabling 
early attack warning and preemptive mitigation deployment. Here, deeper analyses of attacker 
intention and behavior against a specific mission system target support machine-vs.-machine 
cyber combat by leveraging a range of multi-domain data sources. As depicted in Figure 5.22, 
CyMIA leverages existing AI capabilities in online social media mining for early indications of 
cyber attack, as well as those for automated cyber decision to realize leap-ahead AI-enabled 
cyber warriors whose effectiveness at defending mission cyber systems is greatly enhanced. 

 CyMIA consists of four distinct technology components. At the front of the system, a 
human-machine interface based upon a current off-the-shelf natural language detection capability 
(e.g., IBM Watson) permits the expression of a cyber-concern of the mission security analyst. In 
preparation for consideration of the concern in a mission context, the next stage leverages 
automatic critical asset identification capabilities (e.g., mission mapping) and autonomous 
capabilities for identifying and collecting threat information to build a knowledge graph of 
relevant cyber, mission, and threat information. The third stage of CyMIA mines the constructed 
knowledge graph to build probabilistic scenario models of the attacker, defender, mission, and 
network for use by the automated decision engine, CASCADE [44]. CASCADE explores the 
cyber mission scenario by combining a hill-climbing optimization algorithm with a mod/sim-
based evaluation engine in an iterative fashion in order to arrive at an optimal COA.  

The following tasks must be undertaken in order to develop the end-to-end CyMIA system 
and demonstrate its capability: 
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1. Human-Machine Interface: Leverage and augment off-the-shelf capabilities in human 
language detection to develop an analyst interface that accepts and interprets a query about 
the state of the mission network.  

2. Automated Mission and Threat Mapping: Develop a mapping of the mission network 
and the relevant cyber threats by leveraging and extending automated capabilities. To 
develop mission mapping capabilities, bottom-up statistical inference methods (e.g., co-
occurrence) as well as top-down, specification methods must be explored. 

3. Knowledge Fusion and Inference: Develop a graph-based knowledge base of information 
combining mission system and cyber threat information for the purpose of discovering 
relevant relationships. Analysis and inference upon the knowledge base will support the 
creation of probabilistic models necessary for specification of the relevant scenario to be 
used as input to the next stage of COA selection. 

4. Scenario Evaluation and COA selection: Leverage and extend the CASCADE automated 
decision tool for evaluating and selecting COAs suitable for mitigating relevant threats to 
the mission system, as represented by the four scenario models created in the previous 
stage: attacker, defender, mission, and network.  

 
As cyber mission stakeholders become increasingly overwhelmed with the challenge of 

collecting and assimilating threat information and determining its relevance to their mission 
system, CyMIA will provide an effective, near-real-time automated capability for responding to 
concerns with an automated decision analysis capability and optimal COA suggestion. 

 

 
Figure 5.23. AI for cyber study summary. 

 
In summary (see Figure 5.23), there remains significant potential for major impact of AI  

to DoD applications. At the present time, while there are pockets of activity, there should be 
more pervasive and comprehensive activity to leverage AI in cyber operations, both 
offensively and defensively. 

Challenges in transitioning algorithms and AI-enabled capabilities to the DoD continue to 
remain. Among them are the need for sufficient truth-marked data to train the algorithms, the 
need to map the algorithms to the DoD problem set, and the need to establish trust for these 
difficult-to-explain capabilities.  
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MIT LL—and Division 5, in particular—has demonstrated achievements in applying AI to 
cyber problems. These include design and development of big data architectures and data 
platforms and the development of algorithms to address pressing mission challenges in cyber 
anomaly detection, network traffic characterization, and in the detection of counterfeit computer 
components, such as chips. 

To enable the government to leverage the current AI boom to the fullest extent possible, AI 
researchers should focus on unique areas of expertise and its strong connection to the mission. In 
particular, the AI prototype developers should leverage knowledge of mission processes and 
purpose as well as access to relevant data to help map non-DoD algorithmic solutions to DoD 
problems. Finally, AI researchers should focus on developing robust AI solutions, by focusing on 
explainability, verification, and validation of developed capabilities, and techniques for ensuring 
AI-enabled systems are secure against adversarial learning attacks, including poisoning, evasion, 
and model inversion.  
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6 Future Outlook (D. Martinez) 
We tend to overestimate the effect of a technology in the short run  

and underestimate the effect in the long run.—Amara’s Law 

 
In this section, we present a roadmap for AI investments. In previous sections, the 
recommendations were focused on specific applications to for example, AI for Human Language 
Technology in Section 4, and AI for Cyber Security in Section 5. In both of these specific 
recommendations, the emphases were on areas of relevance to Division 5. In this last section of 
the report, we make more broadly applicable investment recommendations relevant to the DoD, 
IC communities, and Homeland Security. 

6.1 Three Horizons for AI S&T Investments 
To effectively characterize S&T investments, we formulated the conceptual framework shown in 
Figure 6.1. The vertical axis is notional representing AI capability impact. The horizontal axis 
represents development time.  

For example, for Horizon 1, we recommend starting AI investments now so that the 
capabilities are operational in one to two years. Similarly, for Horizon 2, we also recommend 
starting investing now, so AI capabilities are available in operations in three to four years. For 
Horizon 3, if we invest now, at the S&T level, we would look at those capabilities to be available 
operationally in five or more years. 
 

Horizon 1 targets achieving robust content-based insight. Recall that the AI canonical 
architecture represents a framework for transforming data into insight that users can then use to 
augment their capabilities to make timely decisions. More specifically, this near-term investment 
would be focused on applying AI to gain insight on interesting content present in disparate types 
of data—both structured and unstructured. The main benefits of these investments are: 
• Reduced user workload 
• Improved confidence in AI (see Figure 2.9) 
• Lower consequence of actions (see Figure 2.9)  
• Robust AI 

 
Horizon 2 focuses on collaboration-based insight. This requires that we extend AI roles to 

include multiple human-machine teams working together. It has been demonstrated that a 
group of humans aided by a machine (or multiple machines) can outperform an expert in 
difficult cognitive tasks. Humans are much better than a machine at making subjective 
judgements, disambiguating options, and understanding context [1, 2]. The main benefits of 
these investments are: 
• Enriched insight 
• Collaboration across intelligent machines 
• The ability to migrate more routine tasks to AI enabled systems 
 

Horizon 3 addresses context-based insight. In contrast to content-based insight, performing 
intelligent tasks by machines using context is an area AI systems do not do well today. An AI 
system, incorporating context, should be able to refine its recommendations with high degree of 
confidence by incorporating relevant knowledge from other related inputs. For example, in the 
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application of terrorist countermeasures, one can envision an AI system that can classify a 
suspected vehicle but also refine the answer by knowing that such vehicle is parked in a 
compound identified as housing a terrorist cell. The main benefits of these investments are: 
• Reduced time from data to reaching insight with high confidence 
• Increased symbiosis between humans and machines 

DARPA is emphasizing further research consistent with Horizon 3. It coined the term 
Wave 3 (contextual reasoning) in reference to increasing human-machine symbiosis and 
making machines more of a partner to the user. The new thrust at DARPA is referred to as the 
AI Next Campaign.  

 

 
Figure 6.1. Definition of AI investment horizons. 

In Figure 6.2, we map investment horizons across key subcomponents described in the AI 
canonical architecture. The high-level recommendations, which we elaborate in more detail in 
Section 6.2, are: 
• For data conditioning: Develop common database formats across a wide range of multi-

modal sensors and sources for both structured and unstructured data. 
• For algorithms: Demonstrate machine-learning techniques across multi-domains to allow us 

to transform information into knowledge. 
• For modern computing: Achieve real-time performance on end-to-end AI systems. This is 

most critical for tactical edge applications where timely courses of action are required. 
• For human-machine teaming: Augment the human capabilities by leveraging intelligent 

machines. This is at the core of any narrow AI system. 
• For robust AI: Build a culture of rapid development cycles with user in the loop. This 

synergistic interplay between developers and users will likely increase trust in the acceptance 
of AI systems. 
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Figure 6.2. Investment horizons across key subcomponents of the AI canonical architecture. 

The number of specific S&T recommendations can be substantial for any given 
application. Thus, in Figure 6.3, we opted to identify specific recommendations that are needed 
across a broad range of applications. These recommendations are important to achieve 
substantial AI capabilities across each of the respective horizons without being limited to any 
one application, and relative to each respective AI canonical architecture subcomponent. In 
Sections 4 and 5, we chose two areas of interest, and made recommendations relevant to those 
specific applications. In Section 6.2, we elaborate in more detail on the entries shown in Figure 
6.3 and associated benefits. 

 

 
Figure 6.3. Specific investment recommendations. 
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6.2 Investment Recommendations 
Based on the AI canonical architecture and the investment horizons illustrated earlier, in this 
section, we elaborate on the recommendations for S&T investments. Figure 6.4 describes a set of 
recommendations that are relevant to all investment horizons. One of the important issues facing 
the application of AI to national security problems is the need to rapidly insert AI capabilities 
into operational use. The typical insertion of capabilities based on prototyping initial operating 
capability (IOC) and production taking decades is not viable for AI. The AI advances progress 
much faster than what most people are used to in national security applications. Therefore, there 
is a need to establish a culture of innovation, rapid experimentation, and deployment. Innovation 
hubs in Silicon Valley use the driving principle of rapid, disciplined risk reduction to “fail fast, 
fail often, fail forward.”  

Another important broad recommendation, shown in Figure 6.4, is to focus on end-to-end 
capabilities across all elements of the AI canonical architecture discussed in earlier sections. 
The users care about the end-to-end capability provided by AI. In some cases, a suboptimal 
algorithm might be sufficient to still achieve substantial improvements. For example, a 
machine-learning technique based on time frequency–inverse document frequency (TFIDF) 
followed by a logistic regression classifier is very effective in reducing a cyber analyst’s 
workload. The main takeaway from this recommendation is that unless we look at capabilities 
through the lens of an end-to-end AI system, we can end up over-designing the subcomponents 
needed for an effective operational system.  

As shown in Figure 6.4 and in all subsequent figures that elaborate on investment 
recommendations, the format we use is to outline the specific recommendations and the benefits 
accrued from those recommendations. Thus, to address the challenge of advancing AI 
capabilities while rapidly inserting them into operational use, we need to act on the specific 
recommendations highlighted in Figure 6.4. Respective recommendations would result in 
multiple benefits, also highlighted in Figure 6.4. Early user buy-in is paramount for AI systems 
to be accepted operationally because ultimately, users need to judge how well an AI capability is 
improving their present workflow approach. Users will have an easier time doing this assessment 
if we have quantifiable metrics and benchmarks, including the ability to explain why the AI 
system is reaching its output. These metrics should also incorporate an assessment on AI biases.   
 

 
Figure 6.4. Broad recommendations on way forward—relevant across all horizons. 
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A very effective way to demonstrate the value of an AI system is to perform red/blue 

tabletop exercises. This approach facilitates relatively quick assessments under somewhat 
realistic scenarios. These tabletop exercises have the additional benefit of being able to 
incorporate prior knowledge, simulated data, emulated data, and real data. One variant of this 
approach is known as serious games, described in a number of books and demonstrations 
performed, for example, by MIT LL and others, including commercial agile environment 
communities [3-5]. 

Fostering competitions via grand challenges will result in motivating commercial companies 
and academia to be involved. For example, from 2004 through 2007, DARPA carried out a 
number of driverless cars grand challenges [6, 7] that transformed commercial industries, as we 
know it today. There were several competing vehicles developed at a number of universities, 
including CMU, Stanford, MIT, and others. This type of investment is also needed in AI to 
advance the AI ecosystem in significant ways.  

In addition to advancing AI capabilities, there is a need to maintain a deep bench of AI 
talent. This talent pool must be cross-disciplinary including data scientists, experts in machine-
learning algorithms, social scientists, and personnel that know how to rapidly test and evaluate 
AI systems. One approach, among many, is to develop curriculums that lead to either micro-
degree programs or university certificates.   

Section 3 presented details on enabling technologies critical to any AI system. In Figure 6.5, 
we highlight the recommendation objective for the data conditioning subcomponent of the AI 
canonical architecture. The objective for this subcomponent is to enable common database 
formats (including storing of all intermediate results to facilitate refinement of the AI 
algorithms). This step will enable transforming structured and unstructured data into information 
suitable for insertion into the algorithm subcomponent of the AI canonical architecture. 

The format we adopted for each of the architecture subcomponents is to outline the 
specific recommendations shown in Figure 6.3, across all horizons followed by benefits that 
these recommendations would provide to the AI system user. For example, by investing in 
techniques to enable automated data labeling, then one would end up with automated tools to 
discover, link, and store heterogenous data. Also, by automating the process of labeling data, 
the user would benefit by achieving significant reduction in the time needed to develop an end-
to-end AI system.  

Likewise, many of the specific recommendations outlined in Figure 6.5 lead to important 
benefits such as automated cleaning and preprocessing of data. Also, by having the ability to 
access intermediate results, it will help the user increased understanding of AI intermediate 
outputs to better explain the output of the AI algorithms. Data conditioning exploiting the what, 
how, who, and why to build context will facilitate low-shot or one-shot learning [8, 9]. These 
classes of learning will be necessary for cases where having large amounts of labeled data will 
not be feasible. Finally, it is very important to invest in technologies where the AI system needs 
to operate in denied and degraded environments. This type of investment, in many cases, is 
unique to the DoD, IC, and Homeland Security applications. 
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Figure 6.5. Recommendations on data conditioning. 

Broadly speaking, the recommendation objective for the algorithm subcomponent is to 
demonstrate its application across multi-domains; multi-domains refer to inputs in the form of 
videos, images, text, speech, cyber, etc. The algorithm subcomponent shown in the AI 
architecture enables transforming information into knowledge. One example of information, at 
the input of the algorithm subcomponent from the output of the data conditioning subcomponent, 
is a list of viruses plus a database containing those viruses that have been converted into exploits. 
It has been noted that today only 10% of the identified viruses are converted into exploits. A type 
of algorithm, to transform information into knowledge, is to use a supervised machine-learning 
logistic regression algorithm. The output will be a list of exploited viruses (knowledge) that a 
group of cyber protection teams can then attend to as most critical in their protection of their 
systems (as described earlier in Section 5). 

Most algorithm approaches today use supervised learning techniques. In the future, we will 
need a blend of both supervised and unsupervised learning techniques. Unsupervised learning 
techniques have the benefit of not needing labeled data. Another approach receiving significant 
attention in the literature is reinforcement learning. Reinforcement learning is based on a reward-
based approach where the neural networks learn as they converge closer to the right answer and 
are therefore rewarded for it.  

We also envision that algorithm accuracy will be improved by getting feedback from the 
user through collaboration. Another way to improve algorithm accuracy is to leverage physics of 
the environment (e.g., standard vehicles are not going to appear to be driving at speeds 
exceeding, say, 300 MPH)—this type of algorithm output would be in error. Similarly, 
leveraging causal relationship would help in introducing context into the algorithms [10]. 
Another algorithm technique still at the very early stage of research is based on goal reasoning. 
This approach focuses the algorithm on the expected goals as information contained in the input 
data is transformed into desired (goal) knowledge [11]. AI agents would need to deliberate and 
self-adjust their ultimate goals, particularly in complex environments. 

This specific set of recommendations offers many benefits as outlined in Figure 6.6. For 
example, by leveraging both unsupervised and supervised learning, we expect to lower the 
algorithm dependency on large volumes of labeled data. Algorithm collaborations can be 
beneficial by incorporating social-cultural networks relevant to transforming information into 
knowledge. Although most of the discussion in this section is focused on leveraging AI for 
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defense applications, it is natural to expect that we might also have to employ AI for offense 
applications.  

 

 
Figure 6.6. Recommendations on AI algorithms. 

 
As discussed in Section 3, modern computing permeates across all elements of the AI 

canonical architecture, from data conditioning through human-machine teaming. Ultimately the 
objective is to achieve near-real-time or real-time performance. There are several important 
investment recommendations outlined in Figure 6.7 that are still not developed enough to make 
AI systems useful in DoD, IC, and Homeland Security applications. Some of the needed 
investments are in the deployment of computing to the edge (for example, available to users 
forwardly deployed requiring AI systems to operate in near-real time or real time). Similarly, 
these users must operate across distributed platforms operating under stringent low SWaP. The 
advent of IoT will be more ubiquitous than what we see today.  

As we introduce more context into AI systems, modern computing will need to evolve into 
cognitive computing vs. content extraction computing as done today. This advancement also 
requires that the computing be able to adapt from deterministic operations to more probabilistic 
operations, where computation precision is not as critical compared to timely outputs. As 
described by David Patterson and John Hennessy during their Turing award lecture [12], modern 
computing will need to be based on domain-specific architectures with the ability to include 
variable precision. Variable precision results in lower power consumption when high precision is 
not needed. For example, the classifier stage (inference) in a machine-learning algorithm does 
not need high levels of precision—integer arithmetic suffices. At the recent Supercomputing 
conference [13], Jesen Huang (Nvidia’s CEO) described advancements in GPUs with rapid 
adoption into datacenters. Nvidia’s latest T4 GPU is based on a variable precision capable of 260 
TOps (trillion operations per second) at integer precision of 4 bits. It is also capable of delivering 
8.1 TFlops at a floating-point precision of 32 bits. Server companies, such as Dell EMC, IBM, 
Lenovo, and others, are all featuring the Nvidia T4 GPU.  

Ultimately, computing systems must scale to meet the objectives of the mission. For 
example, in adversarial and tactical environments, embedded computing must be able to be 
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resilient to unforeseen cyber attacks. AI systems must be trusted under these very complex 
environments. 

As most AI practitioners know, most of the time is spent on the creation of the models—and 
it is at this stage where floating-point precision is needed. Therefore, it is important to invest in 
computational advances to reduce the time to train AI models. Also, the development of context-
based computing will provide improvements in the ability to sense, reason, and respond to 
stimulus closer to models of the human brain. The development of DSA (design-specific 
architectures) will require closer coupling between hardware and software designers—an 
important byproduct of the DSA approach is in providing computing improvements in spite of 
Moore’s law continuing to slow down. Finally, since most of the AI developments today exists 
in cloud-based environments (for example TensorFlow, PyTorch, etc.), these tools must be 
adapted to also be relevant to tactical and embedded systems. 
 

 
Figure 6.7. Recommendations on modern computing. 

 
The human-machine teaming (HMT) subcomponent is one of the most important elements 

of the end-to-end AI system. Unfortunately, this capability is one of the least attended in today’s 
research and development investments. HMT will enable augmentation of human capabilities by 
leveraging intelligent machines. Of course, as discussed in earlier sections and illustrated in the 
AI canonical architecture, the HMT fits across a broad spectrum. In some instances, the human 
would have a stronger role. In other instances, the intelligent machines will be more prominent in 
the overall architecture.  

As discussed by A. Ilachinski [14], regarding AI, robots, and swarms, there are several 
levels of autonomy in the context of HMT frameworks. A good way to categorize this HMT is 
based on the following three categories: 

• Human-in-the-loop: this is also categorized as semi-autonomous operations where 
the intelligent machine acts upon direction from the user. 

• Human-on-the-loop: this is also categorized as human-supervised actions, where the 
intelligent machines are designed to allow for the human operator to intervene and 
terminate any undesirable actions. 
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• Human-out-of-the-loop: this is also categorized as instances where the intelligent 
machine is allowed to operate independently of the user. As we discussed in earlier 
sections under robust AI, these instances will be very unique where the human must 
have complete trust in the decisions made by the intelligent machine. Most cases 
today, and in the foreseeable future, will fall in the category of human-in-the-loop or 
human-on-the-loop for most national security applications. Only in those cases 
where the confidence is high that the machine is making the correct decisions and the 
consequence of actions is low will the intelligent machine will be allowed to operate 
completely autonomously (human-out-of-the-loop). 

 
Since HMT still needs significant and consistent investment, relative to its importance in a 

robust and trustful end-to-end AI system, there are several important recommendations outlined 
in Figure 6.8. For example, HMT involves inter-relationships and connectivity among multiple 
humans and machines in a teaming environment. These relationship graphs must be updated in 
real time. Also, there has to be a significant level of human and machine transparency. An 
important aspect of this interaction is the ability to communicate in a very natural way, as we 
commonly communicate among humans. Thus, there is a need to make advances in natural 
language processing to improve HMT. Ultimately the human-machine teams must collaborate to 
achieve mission goals—recall that intelligent machines must augment the capabilities of the 
humans for them to be useful in critical missions. This investment recommendation is closely 
coupled with the need to have the ability to understand and shape the human-machine 
networks—and sentiment analysis is an important element in augmenting human capabilities. 
Long-term, the goal is to scale to very large human–machine teams, as we commonly find in 
human–human teams. 

The benefits from these investments are numerous. Figure 6.8 outlines a few. For example, 
the recommended investments will lead to strengthening coupling between HMTs. Since HMT 
will lead to effectively transforming knowledge resulting from the algorithms to insight, these 
recommended investments will increase the value of the resulting insight. Insight from an end-to-
end AI system is what users can use to make informed CoA decisions.  

Most of the important DoD, IC, and Homeland Security applications will require adapting to 
environments that evolve rapidly. Thus, the recommended investments will lead to the ability for 
HMT to adapt to rapidly changing complex environments. A close corollary to these changing 
environments is the ability to leverage social networks via HMT collaborations. A longer-term 
benefit is to have the ability for an AI system to reason based on context. Again, most AI 
systems are able to operate on content present in the input data. AI systems are not able to easily 
integrate context, as humans commonly do daily. Another long-term goal is to be able to 
reconfigure HMTs to meet scale of missions.  
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Figure 6.8. Recommendations on human-machine teaming. 

The next investment area is robust AI. This is very critical because there are many 
techniques that can be used in a malicious ways by an attacker [15]. As discussed earlier in 
Section 3, machine learning techniques are very easily fooled to result in the incorrect 
classification. There are several techniques that an adversary can employ. These are known in the 
literature as white-box attacks and black-box attacks. White-box attacks assume the adversary 
has full knowledge of the machine learning algorithm subcomponent. A black-box attack 
represents the case where an attacker can infer the internal working of the algorithm by tapping 
into the data input and data outputs. This latter form of attack is much more likely in real-world 
scenarios. Therefore, it is very important to invest in robust AI metrics, which will lead to 
rigorous AI assessments. A field well established in computer science known as formal methods 
could be employed in verifying and validating an AI system. However, much research is needed 
to implement formal methods techniques. 

There is a need to understand the vulnerabilities of an end-to-end AI system and 
adversarial learning approaches to avoid any element of surprise—red-teaming is highly 
recommended to be a key part of any AI development. A close corollary is adversarial AI 
counter-measure. This investment plays an important role in strengthening both the physical 
and cyber security of an AI system.  

Ultimately, the goal of robust AI investments is for the users to gain confidence in the 
results produce by the AI system. As discussed earlier, gaining user confidence can be attained 
through grand challenges and/or AI hackathons (leveraging, for example, Kaggle competitions 
and serious games approaches). Users are responsible for making decisions based on a set of 
CoAs. Therefore, insights derived from an AI system must be robust.  
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Figure 6.9. Recommendations on robust AI. 

 

6.3 Transitioning AI Capabilities to Users 
We should continue to build an ecosystem where researchers from academia and laboratories 
work elbow-to-elbow with government users to make rapid advances in AI for national security 
applications. The field evolves so rapidly that previous approaches based on sequential 
developments are too long to stay relevant. We should also learn from great successes made at 
the national levels. As stated by giants such as MIT professor Vannevar Bush: 
 

If America wants to put a man on the moon, which is really a tough engineering job, they 
just gather enough thousands of scientists, pour in the money, and the man will get there. 
He may even get back.—Vannervar Bush [16] 
 

Future AI developments, in our nation, will need a very strategic vision and approach. The 
United States decisively won the Cold War against the Soviet Union by strategically investing in 
systems and technologies that were game changing, and, therefore, allowed deterrence from war 
conflicts. AI falls in the category of game changing, but the challenge is how to be strategic 
about its implementation at a fast and a diligent pace. A congressional commission, established 
by the House Armed Services Committee, has been created and named the National Security 
Commission on Artificial Intelligence [17]. This commission will evaluate the usefulness of AI 
and related technologies in national security efforts, potential future applications, global use 
trends, data standards, ethical questions, and workplace and education incentives. 

Although this comprehensive report addresses capabilities needed to advance systems 
leveraging AI technologies, technology developments are necessary but not sufficient to 
successfully transition them to operational users. Figure 6.10 shows two other critical elements 
for a successful transition: people and process. Organizations investing in AI must build a culture 
of rapid development cycles with user in the loop. There is also a need to maintain a talent pool, 
as discussed earlier and in Figure 6.4, with a multi-disciplinary background. 
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Figure 6.10. Critical elements for successful transition of AI capabilities to users. 

In the context of process, as part of this AI study, we formulated an AI capability business 
model. This capability model, shown in Figure 6.11, starts by requiring a clear understanding of 
the AI capabilities desired. There are modern techniques to perform this phase of the model. One 
approach is referred as design thinking [18, 19]. Design thinking integrates an end-user focus 
with multi-disciplinary collaborations, including iterative improvements. It is a very powerful 
tool for achieving desirable, user-friendly, and economically viable design solutions and 
innovative capabilities. 

Since many of the AI advances are being developed across several scientific and research 
organizations, another important step is to perform a survey on the lay-of-the-land relative to the 
AI capabilities desired. The identified capabilities are then rapidly prototyped within an end-to-
end AI system. As it is commonly done with complex systems, that are depending on a high 
degree of robustness, a rigorous system analysis is also required together with a lens towards 
rapid experimentation and a verification and validation phase.  

Most successful prototype developments rely on an environment consisting of a gold 
standard. A gold standard would consist, as a minimum, of a test harness, datasets, performance 
metrics, and benchmarks. The output of the AI prototype will then be transition into an 
operational environment. In some cases, an 80% solution that still meets most of the AI 
capabilities desired is better than a postulated 100% solution that it is too late to be useful to the 
ultimate users.  

Users would need to be an integral part of this AI capability business model. They would 
provide feedback in the form of operational gaps, together with an assessment on how well the 
prototype performed in an operational setting via performance metrics. This recommended 
approach is very consistent with processes well established in, for example, Silicon Valley. Most 
products developed in fast moving industries, like advanced electronics, require that systems be 
put in the hands of users to get feedback and for the developers to iterate on the product. AI 
systems should not be any different except for the need to make them robust, as discussed in the 
previous section. 
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Figure 6.11. AI capability business model. Rapid feedback between research and users. 

Consistent with the need to simultaneously address people, process, and technologies, and 
the AI capability business model discussed earlier, organizations must also formulate a strategic 
blueprint or roadmap. In Figure 6.12, we depict a strategic planning model adapted from D. 
Nadler and Mike Tushman [20]. The main components of this strategic model is first to 
formulate candidate strategic directions based on inputs from an envisioned future, long-term 
needs, and organization core values. The key operating “engine” of this model is shown in the 
center of Figure 6.12, consisting of identified AI implementation opportunities (based on 
customers’ inputs), people available to execute the implementation, the AI infrastructure in the 
organization, and finally a culture of rapid innovation and prototyping. This strategic model 
results in a set of deliverables that form the strategic roadmap, including goals, actions, strength, 
weaknesses, opportunities, and threats (SWOT) analysis, regrets, ascertaining that capabilities 
meet AI needs, and end-to-end AI system assessment via performance metrics. Of course, no 
strategic roadmap is static. Users must weigh in by identifying critical gaps missing from the 
strategic roadmap. This roadmap is always a journey, not a destination, so it needs to be updated 
as one learns from implementing AI prototypes shown in Figure 6.11.  
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Figure 6.12. Strategic planning model for effective AI implementation and transition. 

In this report we documented the AI study that we undertook: 
• To present an AI short history 
• To elaborate on present developments 
• To discuss enabling technologies, and applications of AI to HLT and cyber security 
• To address a future outlook consisting of S&T investment recommendations 

We also discussed, briefly, the need to have developers work closely with the users, build an 
environment of innovation and rapid prototyping, with timely user feedback. 

We hope this report serves as a blueprint for AI developments across three horizons: 
• Horizon 1: capabilities available to the user in 1–2 years 
• Horizon 2: capabilities available to the user in 3–4 years 
• Horizon 3: capabilities available to the user in 5+ years 

Each horizon above must start its respective investment now to have the desired capabilities 
consistent with the rapid evolution of AI technologies avoiding obsolescence. 

This study and written report should be revisited at least every two years or less to document 
and assess AI advancements in the intervening years. 
 

“Things don’t have to change the world to be important.”— Steve Jobs 
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8.2 Conferences and Other Venues 
• NeurIPS: Neural Information Processing Systems (formerly abbreviated NIPS). Held in early 

December https://nips.cc/ 
• ICML: International Conference on Machine Learning. Held in July https://icml.cc/ 
• ICLR: International Conference on Learning Representations. Held in May https://iclr.cc/ 
• AAAI: Association for the Advancement of Artificial Intelligence. Held in February 

http://www.aaai.org/ 
• CVPR: Computer Vision and Pattern Recognition. Held in June https://www.thecvf.com/ 
• ICCV: International Conference on Computer Vision. Held in the Fall of odd years 

https://www.thecvf.com/ 
• KDD: Knowledge Discovery and Data Mining  https://www.kdd.org/kdd2019 
• IJCAI: International Joint Conference on Artificial Intelligence http://ijcai19.org/ 
• MIT Artificial Intelligence Course https://ocw.mit.edu/courses/electrical-engineering-and-computer-

science/6-034-artificial-intelligence-fall-2010/lecture-videos/  
• Google Advancing AI for Everyone https://ai.google/ 
• Facebook’s F8 and Apple’s WWDC 
• Microsoft https://academy.microsoft.com/en-us/professional-program/tracks/artificial-intelligence/ 
• Coursera Machine Learning https://www.coursera.org/learn/machine-learning 
• NVIDIA’s GPU Technology Conference https://www.nvidia.com/en-us/gtc/ 
• AI Conference (Presented by O’Reilly & INTEL AI) https://www.quora.com/What-are-the-top-AI-

conferences 
• TTI Vanguard (By Membership Only) https://www.ttivanguard.com/ 
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9 Appendix C: Glossary  
 

ASIC application specific integrated circuit 
AGI artificial general intelligence  
CPU central processing unit 
COTS commercial-off-the-shelf 
Cyber-EW cyber electronic warfare 
CyMIA Cyber Machine Intelligent Assistant 
DNNs deep neural networks 
DARPA Defense Advanced Research Projects Agency 
DENDRAL dendric algorithm 
DoS denial-of-service 
DoD Department of Defense 
DSA design specific architecture 
FFRDC federally funded research and development center 
GANs generative adversarial networks 
GISR  global intelligence, surveillance, and reconnaissance 
GMM gaussian mixture model 
GPS global positioning system 
GPU graphics processing unit 
HPC high performance computing 
HLT human language technology 
HMT human-machine teaming 
IC intelligence community 
IoT Internet of things 
MLE maximum likelihood estimation 
NLP natural language processing 
NMT neural machine translation 
ONNX Open Neural Network Exchange 
S&T science and technology 
SE squared error 
SICADA SIde Channel Authenticity Discriminant Analysis 
SNR signal-to-noise 
SouNDeR Sociocultural Network Attack Discovery and Response 
SVM support vector machine 
SWaP size, weight, and power 
SWOT strength, weaknesses, opportunities, and threats 
TFIDF time frequency–inverse document frequency 
Tops trillion operations per second 
TPU tensor processing unit 
UBM universal background model 


