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with Content and Graphs
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As a consequence of changing economic 
and social realities, the increased availability 
of large-scale, real-world sociographic data 
has ushered in a new era of research and 

development in social network analysis. The quantity of 
content-based data created every day by traditional and 
social media, sensors, and mobile devices provides great 
opportunities and unique challenges for the automatic 
analysis, prediction, and summarization in the era of what 
has been dubbed “Big Data.” Lincoln Laboratory has been 
investigating approaches for computational social network 
analysis that focus on three areas: constructing social net-
works, analyzing the structure and dynamics of a com-
munity, and developing inferences from social networks.

Network construction from general, real-world data 
presents several unexpected challenges owing to the data 
domains themselves, e.g., information extraction and pre-
processing, and to the data structures used for knowledge 
representation and storage. The Laboratory has devel-
oped methods for constructing networks from varied, 
unstructured sources such as text, social media, and real-
ity mining of datasets. 

A fundamental tool in social network analysis that 
underpins many higher-level analytics is community detec-
tion. Various approaches have been employed to detect 
community structure from network data, including a tech-
nique to explore the dynamics of these communities once 
they are detected. Insight gained from basic analytical tech-
niques, such as community analysis, can be used for higher-
level inference and knowledge-discovery tasks. Work in 
attribute prediction on social networks takes advantage of 
recent advances in statistical relational learning.

Social network analysis has undergone a 
renaissance with the ubiquity and quantity of 
content from social media, web pages, and 
sensors. This content is a rich data source for 
constructing and analyzing social networks, but 
its enormity and unstructured nature also present 
multiple challenges. Work at Lincoln Laboratory 
is addressing the problems in constructing 
networks from unstructured data, analyzing the 
community structure of a network, and inferring 
information from networks. Graph analytics 
have proven to be valuable tools in solving these 
challenges. Through the use of these tools, 
Laboratory researchers have achieved promising 
results on real-world data. A sampling of these 
results are presented in this article.

»
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individuals (e.g., bank accounts, Paypal), collaboration 
or references (e.g., patent, research, movie databases), 
and human-annotated and -entered data. The research 
described in this article used a database collected by the 
Institute for the Study of Violent Groups (ISVG) [10]. This 
database contains people, organizations, and events anno-
tated and categorized into a standard Structured Query 
Language (SQL) relational database structure [5].In addi-
tion, a database of sensor data from the reality mining cor-
pus [1] is used for dynamic social network analysis.

 
INFORMATION EXTRACTION FROM TEXT

Information extraction (IE) is a standard term in human 
language technology that describes technology that auto-
matically extracts structured information from text [11]. 
A popular subarea in IE is named-entity recognition 
(NER). NER extracts people, places, and organizations 
that are mentioned in text by proper name (as opposed 
to being referenced by pronominal terms, e.g., “you,” or 
nominal forms, e.g., “the man”). 

Constructing social networks from text can be accom-
plished in several ways. An overall description of the pro-
cess is shown in Figure 1. The simplest approach is to use 
links based upon the co-occurrence of entities in a docu-
ment. This approach can be accomplished with simple 
string matches [8] or with full-scale NER [5]. This co-
occurrence approach works reasonably well with certain 
genres of documents (e.g., newswire reports) in which 
two entities mentioned together are presumed likely to 
be related. This approach fails for long documents that 
cover a wide range of topics (e.g., a survey report). For the 
latter case, the co-occurrence approach can be refined to 
narrower parameters, such as “occurs in the same para-
graph, sentence, or even subject topic” of a given report. 

A second approach to extracting networks is to look 
for mentions of relationships in text [11]. For instance, in 
a document, Bob and Mary are referred to as brother and 
sister. This approach is compelling but has drawbacks. In 
many situations, relationships are implicit and not stated. 
The problem then becomes a process of inferring relations 
from text. Even with human annotators, making such 
inferences is a difficult task with high inter-annotator 
disagreement for some tasks [11]. 

A final issue in the extraction of entities from text 
is that of co-reference resolution. The problem arises 
because mentions of a name within and across documents 

Graph Construction
Social networks are embedded in many sources of data 
and at many different scales. Social networks can arise 
from information in sources such as text, databases, sen-
sor networks, communication systems, and social media. 
Finding and representing a social network from a data 
source can be a difficult problem. This challenge is due 
to many factors, including the ambiguity of human lan-
guage, multiple aliases for the same user, incompatible 
representations of information, and the ambiguity of rela-
tionships between individuals.

Data Sources and Information Extraction
Two primary open sources of social network information are 
newswire and social media. Various research efforts examine 
other sources of social network data—smart phones [1–3], 
proximity sensors [4], simulated data [5, 6], surveys, com-
munication networks, private company data [7], covert or 
dark networks, social science research, and databases. 

Text information from newswire provides informa-
tion about entities (people and organizations) and their 
corresponding relations and involvement in events [5]. 
This information is encoded in text in multiple languages 
and numerous formats. Extracting entities and their rela-
tions from newswire stories is a difficult task. 

Sensors can also serve as sources of data for social 
networks [2]. Smartphones and proximity devices [4] 
can provide information about dynamic interactions in 
social networks and can aid in the corresponding analysis 
of those networks. Predicting behavior, personality, iden-
tity, pattern of life, and the outcome of negotiations are 
a few of the proposed applications that may exploit data 
from sensor systems. 

Communications and social media have been ana-
lyzed for social network structure. For example, the 
release of the e-mail related to Enron’s bankruptcy, and 
subsequent prosecution for fraudulent accounting prac-
tices [8], has provided a limited window into company 
dynamics and e-mail flow. In the case of social media, an 
analysis of followers in Twitter shows networks of users 
who are related by current news topics rather than by 
personal interactions [9]. Other social media companies 
such as Facebook may also provide network data sources, 
although privacy is a major concern.  

Databases can provide networks in structured form. 
Examples of database types include transactions between 
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vary—John, John Smith, Mr. Smith. Co-reference resolu-
tion combines all of these variants into one entity. How-
ever, a quick look at “John Smith” on Wikipedia shows 
that a name alone is not sufficient to disambiguate an 
entity. Co-reference resolution is difficult within docu-
ments, and across-document resolution is even harder. 

Representation 
Once a social network is extracted from the original data 
source, it must be stored in structured form so that auto-
matic analysis, retrieval, and manipulation are possible. 
Multiple possible structures for the representation are 
mathematically equivalent. The main difference among 
them is that they arise in multiple fields. Two such rep-
resentations are knowledge representation and graphs. 

KNOWLEDGE REPRESENTATION 

Extracted structured content from raw data can be 
encoded using standard knowledge representation meth-
ods and ontologies [12, 13]. For every input datum (e.g., 

text, speech, image), analysts produce a set of objects, 
attributes, and predicates conforming to an ontology 
that describes structured information in the document. 
An ontology based on standards for information extrac-
tion, primarily the Automated Content Extraction (ACE) 
protocol [11], is common. 

A typical example extraction from a document might 
be Member (Bob, KarateClub) where Bob is an object of 
type per (a person) and KarateClub is an object of type 
organization. The statement Member (·,·) is a predicate 
and describes some relation between the entities. 

An important point is that representation is usually 
limited to binary predicates, i.e., relationships of the form 
Relation (entity, entity). At first, this might appear to be a 
constraint. For instance, how does one represent multiple 
entities participating in a meeting or event? The key is 
to create a meeting entity, M, and then state all relations 
between all people, P, involved in the meeting and M, e.g., 
Participates (Bob, M), Participates (Fred, M), and so on. 

Another property is that objects can have attributes. 
For instance, it is possible to extract ATT_age (Bob, 25). 
Attributes can be complex. For instance, one attribute of 
Bob could be the text document of his resume. 

The knowledge representation approach is equivalent 
to a relational database model. In fact, the original work 
on relational databases by Codd [14] used a predicate 
model and corresponding “calculus” for manipulation. 
Each predicate corresponds to a table, and the entities in 
the relations are stored in the table. A typical example is 
shown in Figure 2. 

Note that because our relations are binary, an alter-
nate database structure is a triple store, which is designed 
to store and retrieve identities constructed from a set of 
three relationships. The triple in this case is (predicate, 
val1, val2). Triple stores have become popular lately in 
the Resource Description Framework (RDF) used by the 
World Wide Web consortium for the Semantic Web [15].

 
ATTRIBUTED GRAPHS

 An alternate representation of social network data is to 
view the knowledge representation structure as a graph. 
The knowledge representation approach lends itself 
naturally to graph “conversion.” Figure 3 shows the basic 
process through a restructuring of the data in Figure 2 
as a graph. The basic process is as follows. Entities are 
converted to nodes in the graph. Note that the nodes 

FIGURE 1. Information extraction from a corpus of docu-
ments for social network construction is accomplished by 
first performing named-entity detection and co-reference 
resolution within a document followed by co-reference resolu-
tion between documents. Networks can then be constructed 
using links of different types found between the entities.

Named-entity detection
& within-document co-reference

resolution

Cross-document
co-reference resolution

Link analysis

Source document collection
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in real social networks. For the purposes of this article, 
assume that the communities are disjoint, that is, member-
ship in one community precludes membership in another. 

In considering the problem of community detec-
tion for social networks, Lincoln Laboratory researchers 
applied multiple algorithms in the literature to the prob-
lem of community detection on the ISVG database. The 
goal was to partition a set of people into distinct violent 
groups. Because the ISVG database has labeled truth for 
people and organizations, the performance of multiple 
methods can be quantitatively measured. The Labora-
tory’s research showed that, in contrast to comparisons 
in the literature using simulated graphs [16], no method 
was a clear winner in terms of performance. 

ISVG Database 
The Institute for the Study of Violent Groups is a research 
group that maintains a database of terrorist and criminal 
activity from open-source documents, including news 
articles, court documents, and police reports [10]. The 
database scope is worldwide and covers all known terror-
ist and extremist groups, as well as individuals and related 
funding entities. The original source documents are con-
tained in the database along with more than 1500 care-
fully hand-annotated variable types and categories. These 
variables range from free text entries to categorical fields 
and continuous variables. Associations between groups, 

FIGURE 3. The directed edges of this attributed graph 
example show the unidirectional Knows relationship 
between Bob and both John and Fred, and the unidirectional 
relationship between John and Tom. This view of knowledge 
representation lends itself more easily to graph analysis 
problems and approaches.

FIGURE 2. Knowledge representation in a relational data-
base. Standard knowledge representation schemes usually 
involve binary predicates defining relationships between 
entities. This knowledge representation approach is equiva-
lent to a relational database model as shown above for the 
predicates, Knows and ATT_Age.
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can have different types—e.g., people, organizations, and 
events. This model deviates from the standard model of 
a graph in which the node set is one type. Edges in the 
graph correspond to relations between entities, so the 
relation Knows(Bob, Fred) is converted to a directed edge 
between nodes with the Knows attribute. Note that if we 
wanted a relation to be bidirectional [Knows(a , b) implies 
Knows(b , a)], an undirected edge could be used between 
nodes. The remaining process is to convert attributes of 
entities to attributes on nodes. Note that attributes on 
edges are also possible in both models. For instance, one 
may want to indicate the evidence for or the time of a 
relationship between two entities.

Although the mapping between graphs and the 
knowledge representation is straightforward once it is 
explained, both approaches inspire different perspec-
tives and algorithms for viewing the data. For the graph 
approach, analysis of structure and communities in the 
data are natural questions. For the knowledge representa-
tion approach, storage, computation, manipulation, and 
potentially reasoning method become natural questions.

 
Community Detection 
Many social networks exhibit community structure. Com-
munities are groups of nodes that have high connectivity 
within a group and low connectivity across groups. Com-
munities roughly correspond to organizations and groups 
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individuals, and events are also included in the annota-
tion. More than 100,000 incidents, nearly 30,000 indi-
viduals, and 3000 groups or organizations are covered in 
the database. The data are continually updated, but the 
version of the database used in the research reported here 
covered incidents up until April 2008.

Methods 
Multiple methods for community detection have been 
proposed in the literature. Many of these methods are 
analogous to clustering methods with graph metrics. 
Rather than trying to be exhaustive, Lincoln Laboratory 
researchers selected three methods representative of stan-
dard approaches: Clauset/Newman/Moore (CNM) mod-
ularity optimization, spectral clustering, and Infomap. 

MODULARITY OPTIMIZATION

Modularity optimization is a recent popular method for 
community detection [17, 18]. Modularity is an estimate 
of the “goodness” of a partition based on a comparison 
between the given graph and a random null model graph 
with the same expected degree distribution as the original 
graph [19]. A drawback of the standard modularity algo-
rithms is that they do not scale well to large graphs. The 
method proposed by Clauset, Newman, and Moore [20] is 
a modularity-based algorithm that addresses this problem. 

SPECTRAL CLUSTERING

Spectral methods for community detection rely upon nor-
malized cuts for clustering [21]. A cut partitions a graph 
into separate parts by removing edges; see Figure 4 for an 
example. Spectral clustering partitions a graph into two sub-
graphs by using the best cut such that within-community 
connections are high and across-community connections 
are low. It can be shown that a relaxation of this discrete 
optimization problem is equivalent to examining the eigen-
vectors of the Laplacian of the graph. For this research, divi-
sive clustering was used, recursively partitioning the graph 
into communities by “divide and conquer” methods. 

INFOMAP

A graph can be converted to a Markov model in which 
a random walker on the nodes has a high probability 
of transitioning to within-community nodes and a low 
probability of transitioning outside of the community. 
The problem of finding the best cluster structure of a 

graph can be seen as the problem of optimally (losslessly) 
compressing the node sequence from the random walk 
process in an information theoretic sense [22]. The goal 
of Infomap is to arrive at a two-level description (lossless 
code) that exploits both the network’s structure and the 
fact that a random walker is statistically likely to spend 
long periods of time within certain clusters of nodes. 
More specifically, the search is for a module partition M 
(i.e., set of cluster assignments) of N nodes into m clusters 
that minimizes the following expected description length 
of a single step in a random walk on the graph: 

    
 

L(M) = q H(P 
i)p 

iH(Q) + 
i = 1

m

∑

This equation comprises two terms: first is the 
entropy of the movement between clusters, and second is 
the entropy of movements within clusters, each of which 
is weighted respectively by the frequency with which it 
occurs in the particular partitioning. Here, q  is the 
probability that the random walk switches clusters on 
any given step, and H(Q) is the entropy of the top-level 
clusters. Similarly, H (P 

i
 ) is the entropy of the within-

cluster movements and p 
i  is the fraction of within-

cluster movements that occur in cluster i. The specifics 
are detailed in Rosvall and Bergstrom [22].

FIGURE 4. Spectral clustering of a graph relies on recursive 
binary partitions, or “cuts,” of the graph. At a given stage, the 
algorithm chooses among all possible cuts (as illustrated by 
the dotted line) the “best” cut (shown by the solid line) that 
maximizes within-community connections and minimizes 
between-community connections of the resulting subgraphs. 
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FIGURE 6. Divisive spectral clus-
tering on the ISVG social network 
graph. The left figure is the first 
split; colors indicate the split into 
two groups. The right figure shows 
the final partitioning into groups 
after multiple iterations.

Experiments 
The first step in the experiments was to exploit the ISVG 
data to obtain a social network for analysis. Queries were 
designed in SQL to extract people and their associated 
mentions in documents. Then, a network of documents 
and individuals was constructed on the basis of docu-
ment co-occurrence. The resulting graph is shown in 
Figure 5. 

Community detection methods were then applied to 
the resulting graph. It is instructive to see an example. 
Figure 6 shows divisive spectral clustering. For the first 
step, the graph is split into two parts. Then, recursively 
the graph is split using a tree structure. The colors indi-
cate the final communities. 

Qualitatively, the communities found in Figure 6 
corresponded to real violent groups. For example, the 
system was able to find Al Qaeda, Jemaah Islamiyaah, 
and the Abu Sayyaf violent groups with high precision. 
In general, the precision and recall of the algorithms can 
be quantitatively measured. For any two individuals, it 
was established if they were in the same violent group 
(or not) by using the truth tables from ISVG. Then, this 
fact was compared to the predicted membership obtained 
from the community-detection algorithm. A true positive 
(TP) occurs when both the groups and the communities 
are the same for the two individuals. A false positive (FP) 
occurs when the groups are not the same, but the indi-
viduals are placed in the same community. Finally, a false 
negative (FN) occurs when the groups are the same, but 
the community detection indicates they are not. The two 
measures of performance are then 

      and    .precision = 
TP + FP

TP
recall = 

TP + FN
TP

The quantitative comparison of the various algo-
rithms is shown in Figure 7 using a precision/recall 
curve. The figure shows that both the CNM and Info-
map algorithms produce high precision. The spectral 
clustering algorithm has a threshold that allows a wide 
variation in the trade-off of precision versus recall. In 
general, the trade-off is due to the community (cluster) 
size. The algorithms can either produce small clusters 

FIGURE 5. Largest connected component for ISVG indi-
viduals. This graph shows the document co-occurrence con-
nections between individuals in the ISVG dataset. Highly 
connected individuals account for the small clusters of mass 
seen in the graph. Community-detection algorithms can help 
partition this graph with respect to this connectivity, giving a 
summarized view into the data.
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that are highly accurate or larger clusters that are less 
accurate but have better recall. Overall, users of these 
algorithms will have to determine what operating point 
is best fitted to their application. 

Community Dynamics 
As discussed in the previous section, community detec-
tion is a fundamental component of network analysis for 
sensor systems and is an enabling technology for higher-
level analytical applications such as behavior analysis 
and prediction, and identity and pattern-of-life analysis. 
In both commercial industry and academia, significant 
progress has been made on problems related to the analy-
sis of community structure; however, traditional work in 
social networks has focused on static situations (i.e., clas-
sical social network analysis) or dynamics in a large-scale 
sense (e.g., disease propagation). 

As the availability of large, dynamic datasets con-
tinues to grow, so will the value of automatic approaches 
that leverage temporal aspects of social network analysis. 
Dynamic analysis of social networks is a nascent field that 
has great potential for research and development, as well 
as for underpinning higher-level analytic applications. 

Overview of Dynamic Social Network Analysis 
Analysis of time-varying social network data is an area 
of growing interest in the research community. Dynamic 
social network analysis seeks to analyze the behavior of 
social networks over time [23], detecting recurring pat-
terns [24], community structure (either formation or 
dissolution) [25. 26], and typical [27, 28] and anoma-
lous [29] behavior. 

Previous studies of group-based community analy-
sis have looked into more general analyses of coarse-level 
social dynamics. Hierarchical Bayesian topic models 
[30], hidden Markov models [1], and eigenmodeling 
[31] have been used for the discovery of individual and 
group routines in the reality mining data at the “work,” 
“home,” and “elsewhere” granularity levels. Eagle, Pent-
land, and Lazer [32] used relational dynamics in the form 
of spatial proximity and phone-calling data to infer both 
friendship and job satisfaction. Call data was also used by 
Reades et al. [33] to cluster aggregate activity in different 
regions of metropolitan Rome. 

Lincoln Laboratory’s work to elaborate on research in 
this area studied how sociographic data can be used for the 

analysis and prediction of individual and group behavior 
in dynamic real-world situations. Specifically, the Labora-
tory’s researchers explored organizational structure and 
patterns of life in dynamic social networks [2] through 
analysis of the highly instrumented reality mining dataset 
gathered at the Human Dynamics Laboratory (HDL) at 
the MIT Media Lab [32]. 

Reality Mining Dataset 
The Reality Mining Project was conducted from 2004 to 
2005 by the HDL. The study followed 94 subjects who used 
mobile phones preinstalled with several pieces of software 
that recorded and sent to researchers data about call logs, 
Bluetooth devices in proximity of approximately 5 meters, 
location in the form of cell tower identifications, application 
usage, and phone status. Over the course of nine months, 
these measurements were used to observe the subjects, 
who were students and faculty from two programs within 
MIT. Also collected from each individual were self-reported 
relational data that were responses to subjects being asked 
about their proximity to, and friendship with, others. 

The subjects were studied between September 2004 
and June 2005. For the Lincoln Laboratory experiment, 
94 subjects who had completed the survey conducted in 
January 2005 provided the data for analysis. Of these 94 

FIGURE 7. Precision and recall for various algorithms and 
thresholds on the ISVG social network graph. As can be seen 
from the figure, there is a large range of operating points 
within which community-detection algorithms can operate. 
End-users of these algorithms will have to determine the 
trade-off between precision and recall for their applications 
of interest.
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subjects, 68 were colleagues working in the same build-
ing on campus (90% graduate students, 10% staff), and 
the remaining 26 subjects were incoming students at the 
Institute’s business school (Sloan School). The subjects 
volunteered to become part of the experiment in exchange 
for the use of a high-end smartphone for the duration of 
the study. Interested readers are referred to [1] for a more 
detailed description of the Reality Mining Project. 

The Reality Mining Project’s data were obtained from 
the MIT HDL in anonymized form. All personal data such 
as phone numbers were one-way hashed (using the MD5 
message-digest algorithm), generating unique identities 
for the analysis. MIT HDL found that, although subjects 
were initially concerned about the privacy implications, 
less than 5% of the subjects ever disabled the logging soft-
ware throughout the nine-month study. Data were refor-
matted into a MySQL database to enable easier querying 
and anomalous information filtering. 

Inferring Dynamic Community Behavior 
Lincoln Laboratory researchers sought a general approach 
for dynamic social network analysis that would allow for fast, 
high-level summaries of, and insight into, group dynamics 
in real-world social networks. To this end, we investigated 
the use of multilinear semantic indexing (MLSI) [29, 34] 
in the context of dynamic social networks. Multimodal co-
clustering tools, based on tensor modeling and analysis, can 
be successfully used to provide fast, high-order summariza-
tions of community structure and behavior. 

MULTILINEAR SEMANTIC INDEXING

Multilinear semantic indexing is a generalization of tradi-
tional latent semantic indexing (LSI). To see this connec-
tion, consider the use-case of text document clustering. 
Traditional LSI relies on the rank-k singular value decom-
position (SVD) of the term-document matrix, a matrix of 
(weighted) term frequency (rows) as a function of corpus 
document (columns). This decomposition creates topic-
term and topic-document clustering through the respec-
tive sets of k left and right singular vectors. These vectors 
are called aspect profiles. Additionally, large singular val-
ues weight the strength of correlation between pairs of 
document/term aspect profiles, serving to co-cluster docu-
ments and terms within the corpus. 

MLSI generalizes this idea to create multimodal co-
clustering from higher-order tensor representations of the 

data: term-document-author tensors for the text document 
clustering example. Through high-order SVD (HOSVD), 
MLSI produces M multimodal aspect profiles (topic-term, 
topic-document, topic-author) as well as multimodal co-
clustering between M-tuples (ordered lists) of aspect pro-
files through the multilinear equivalent of singular values. 
HOSVD can be accomplished through algorithms that 
compute a Tucker decomposition of the input tensor [34]. 

Traditional SVD algorithms seek to model input 
matrices as a weighted sum of rank-1 outer products 
between pairs of vectors (document/term aspect profiles 
in the text processing example). Analogously, HOSVD 
via Tucker decomposition seeks to explain the data as a 
weighted sum of rank-1 tensors, which are the result of 
M-way outer products between M-tuples of vectors. The 
corresponding weights for these M-tuples are stored in 
the so-called core tensor. 

Accordingly, larger absolute values in the core ten-
sor mean a larger contribution to the final reconstruc-
tion, which therefore implies the relative importance of 
the M-tuple of subspace vectors (as a group) in approxi-
mating the input tensor. In this way, the vectors in these 
M-tuples can be considered strongly correlated. Val-
ues in the core tensor highlight these correlations and, 
as a result, provide meaningful co-clustering between 
M-tuples of vectors from each modality’s projection 
space. Thus, the core tensor serves an analogous role to 
the singular values in traditional LSI. The columns of the 
projection matrices correspond to a multimodal version 
of traditional LSI aspect profiles. 

MLSI FOR SOCIAL INTERACTION DATA

In the case of time-varying social network interactions 
(where time is considered the third index in an order-3 
data tensor in which indices 1 and 2 are relationships 
between actors), the Tucker decomposition may be 
more easily interpreted through time-profile-specific 
subnetworks. Specifically, this means reinterpreting the 
set of 3-tuples of aspect profiles created by MLSI as a 
tuple of a network matrix (created by the outer prod-
uct between the two actor relationship vectors) and a 
correlated time profile (the vector corresponding to the 
temporal aspect). 

The network matrix can be interpreted as the adja-
cency matrix of the social interactions correlating most 
strongly to a given time profile. When time is the third 
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index in the data tensor, this interpretation may be a 
more natural way to interpret a Tucker decomposition as 
opposed to traditional interpretations of MLSI in which 
the list of most active participants from each correlat-
ing pair (or tuple) of indices is returned by the system 
in list form. 

To gain insight on the ability of this approach to sum-
marize group behavior from dynamic social network data, 
close-range social interactions were analyzed from the 
Reality Mining Project’s corpus. 

Experimental Protocol 
For these experiments, the researchers used Bluetooth 
proximity information from periodic scans of nearby 
devices from each of the 94 participants in the reality 
mining study. The proximity information resulted in more 
dense interaction networks than call data when small 
time increments were considered. 

The number of detections between study partici-
pants per hour was used as the social interaction feature. 
Restricting the time range to the academic year (1 Sep-
tember 2004 to 15 May 2005) and removing participants 
lacking Bluetooth data resulted in a mode-3 data tensor 
of size 95 × 95 × 6168. That is, for input tensor X, (xi , j, k ) 
corresponds to the number of times participant i was 
detected by participant j at hour k. 

The values in the input tensor were nominalized by 
log (1 + xi , j, k )∀xi , j, k to prevent large values from domi-

nating the tensor decomposition. For ease of interpret-
ability, the indices of the input tensor were reordered by 
using spectral clustering (as described earlier). To do so, 
the second-largest eigenvector of the normalized graph-
Laplacian of the time-marginalized social network was 
calculated (Figure 8a). The values in this eigenvector were 
then sorted, and the resulting reordering of indices was 
used to reorder indices in the input tensor. 

For each dataset, MLSI was performed via a rank-
(25, 25, 25) Tucker decomposition of the preprocessed 
input tensor, keeping the original time resolution on 
samples. The size of the decomposition was chosen heu-
ristically to represent a reasonable number of profiles 
users could sort through when interpreting the results. 
Both the size of the decomposition and the time reso-
lution of the input tensor are open issues when this 
approach is used, and a discussion of these issues is 
deferred until the experiment sections. Results were 
generally evaluated qualitatively. 

Results 
The first two of the social profile vectors in Figure 8b 
correspond loosely to the two main communities seen 
in the Reality Mining Project’s data, namely the Media 
Lab and Sloan participants. Subsequent profile vectors 
corresponded to the larger, more active Media Lab par-
ticipants. In general, researchers observed reasonable 
community clustering and co-clustering where it existed. 

FIGURE 8. Marginal adjacency and Tucker decomposition of reality mining data. Distinct community structure is observed in 
the time-marginalized adjacency matrix of the reality mining dataset (a). The three delineated blocks correspond to “General 
Graduate,” “MIT Media Lab,” and “Sloan” student clusters respectively. The Tucker decomposition is shown in (b) and (c). 
Because of the symmetric property of the adjacency matrix, indices 1 and 2 produce identical projection matrices; therefore, 
only one copy is included here for clarity. It is easy to see clear community structures in the social network profiles, most nota-
bly the distinction between Media Lab and Sloan students. 
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SLOAN GRADUATE STUDENTS

The most interesting results of the MLSI analysis of the 
Reality Mining Project’s data were subnetworks (and asso-
ciated time profiles) correlating with the Sloan graduate-
student community. As can be seen in Figure 9b, both the 
Sloan student subnetwork and the corresponding time 
profile were detected cleanly. From the time profile, this 
subnetwork appeared strongly only in the fall semester. 

Figure 10b lists the most prominent time stamps 
from each peak cluster (sorted chronologically) from this 
time profile. Interestingly, the strongest periodic behavior 
can be observed on Tuesdays and Thursdays at 11:00 a.m. 
from the middle of October to the beginning of Decem-
ber. If one zooms into the time profile, local peaks can be 
observed consistent with this result. Figure 10a shows a 
three-week window between 24 October and 22 Novem-
ber 2004. The red bars on the time axis delineate weekday 
from weekend. At this finer time resolution, an additional 
weekly subpeak associated with Thursdays at 4:00 p.m. 
can be observed. These same spikes on Tuesdays and 
Thursdays at 11:00 a.m. and Thursdays at 4:00 p.m. 
appeared locally throughout the profile, not just in weeks 
associated with the global peaks. 

Because the spikes were clearly periodic, persisted 
through the fall semester, and then disappeared in the 
spring, the evidence suggested this behavior could be due 
to course-attending activity. Of all Sloan course offerings 
in fall 2004 [36], only two courses were consistent with 
this behavior. Of these, only the first-year core course, 
15.515, Financial Accounting [37], fit all the observed 
evidence. As seen in Figure 10c, 15.515 had three lecture 
sessions that met Tuesdays and Thursdays from 10:30 
a.m. to 12:00 p.m., and two recitation sessions that met 
Thursdays at 4:00 p.m. Therefore, one could make the 
uncertain, yet probable, claim that the behavior observed 
in this time profile corresponded to Sloan students 
attending 15.515, Financial Accounting. 

This MSLI approach is ideally suited for scenarios in 
which actors co-cluster cleanly in space and time. Given 
the appropriate context, MSLI analysis allowed research-
ers to establish (with some degree of uncertainty) a causal 
link between an observed behavior and a generating event, 
a result that was not readily apparent from the input data. 

Tensor-based analysis tools such as MLSI are fast, 
first-order tools that could allow users to refocus both 
their attention and the attention of more resource-inten-

Temporally, the expected gaps in the time pro-
files corresponded to the Thanksgiving holiday, 25–29 
November [35], and winter break, 18 December–2 Jan-
uary* [35]. The disbanding of the Sloan School com-
munity as a whole was detected after the fall semester, 
and was easily observable in the sharp drop-off of signal 
energy in time profile 2 as seen in Figure 9b. Additionally, 
spectral analysis showed that the time profiles exhibited 
behavior corresponding to daily and weekly routines: the 
two largest spectral components (on average) are 1/24 
hours and 1/163 hours (1/6.8 days). This specific result 
was also observed by Eagle and Pentland [1]. The time 
profiles seen in Figure 8c are more clearly interpreted in 
the context of their correlated subnetworks, which are 
shown in Figure 9a. 

It is instructive to view the results of the MLSI analy-
sis with respect to the two main communities represented 
among the participants in the study: the Media Lab and 
Sloan graduate students. 

MEDIA LAB COMMUNITY

The first time-profile-specific subnetwork, Figure 9a, 
was the most relevant subnetwork for the Media Lab 
community, and in general, a compact first-order sum-
mary of the data. The time profile exhibited a fairly 
uniform structure across all time instances, with gen-
eral periodic features consistent with work- and school-
related activities throughout the academic year. Most 
noticeably, the gap in the time profile corresponded to 
the break between fall and spring semesters. The subnet-
work showed that the majority of the social interactions 
occurred among the larger Media Lab community (with 
a relatively smaller proportion occurring in the Sloan 
community). This information differed from that con-
veyed in the average social network derived from mar-
ginalizing interactions over time (seen in Figure 8a). 
When time information was removed, it appeared the 
Sloan community was equally active as the Media Lab 
community during this time period. In reality, as this 
subnetwork and subsequent subnetworks arising from 
tensor analysis showed, this was not the case. 

* Last day before the Independent Activities Period during 
the January intersession.
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FIGURE 9. Time-profile-specific subnetworks for Reality Mining Project dataset. Subnetworks and 
their correlated time profiles are shown in pairs for time profiles 1 (a), 2 (b), and 3 (c) respectively. 
Positive and negative values in the time profile indicate positive and negative correlations, respec-
tively, with the associated subnetwork. This representation provides a richer interpretation for com-
munities and their behavior as compared to the results shown in Figure 8.
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sive analytics, such as relational learning, further down 
the processing chain. 

Relational Learning 
Prior sections focused on constructing social networks, 
finding communities, and analyzing dynamic patterns of 
activity. This section considers the problem of inference 
on graphs. Given graphs with a rich attribute structure 
and a statistically large sample, it is possible to perform 
statistical relational learning on them. These methods 
learn models that relate attributes in a graph neighbor-
hood of a given individual. These Bayesian graphical 
models can be used to impute missing values, perform 
prediction, and interpret classification results. 

Lincoln Laboratory used statistical relational learning 
algorithms to predict leadership roles of individuals in a 
group on the basis of patterns of activity, communication, 
and individual attributes [38]. By using labeled training 
data, analysts applied supervised learning to build a model 
that described the structures and patterns of leadership 
roles. The relational model returned a probability that a 
particular person is in a leadership role, given a graphical 
representation of the individual’s activities and attributes. A 

held-out test dataset was used for evaluation, and receiver 
operator characteristic (ROC) curves for correct prediction 
of leadership were presented. A more complex model was 
applied to give improved performance in a more realistic 
“data-poor” test condition. Such features can be impor-
tant components of an overall automatic threat detection 
system. In such a system, automatic identification of indi-
vidual roles and activities from basic features can help infer 
the intent of groups and individuals through higher-level 
pattern recognition and social network analysis. 

Graphical Schema 
For the research on predicting leadership roles, Labora-
tory analysts used a subset of the overall ISVG database 
schema that contained most of the categorical fields and 
continuous variables available in the database. A con-
tinuous variable may consist of a date, age, number of 
casualties, or other such variables represented by a single 
number. Categorical fields generally represent the type of 
a particular object in the database and may include inci-
dent types (e.g., bombing, armed assault, kidnapping) 
or specific information about weapons or bombs used 
in an attack. 
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G (Fall)
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An intensive introduction to the preparation and interpretation of financial information. 
Adopts a decision-maker perspective on accounting by emphasizing the relation between 
accounting data and the underlying economic events generating them. Class sessions are 
a mixture of lecture and case discussion. Assignments include textbook problems, 
analysis of financial statements, and cases. Restricted to first-year Sloan Master’s 
students.
R. Frankel, G. Plesko

FIGURE 10. Possible course-attending behavior. The time stamps corresponding to the strongest peaks in time profile 2 (b) 
show strong periodic behavior on Tuesdays and Thursdays at 11:00 a.m. Of the two first-year core courses in the fall 2004 
course catalog consistent with these times, only 15.515, Financial Accounting (c), looks consistent with the data. Figure 10a 
shows local spikes occurring consistently on Tuesdays and Thursdays at 11:00 a.m., as well as minor spikes on Thursdays at 
4:00 p.m. (one of two recitation sessions meeting at that time). This behavior persists throughout the fall semester and dis-
appears in the spring. From this analysis, researchers hypothesized the subnetwork corresponding to this time profile could 
be those Sloan students attending the first-year core course, 15.515, Financial Accounting (d). 
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A sample of the schema is represented graphically in 
Figure 11. Each node represents an object type, and the 
text below the object type represents the available attri-
bute fields for each object. For example, individuals have 
a “birth date,” “nationality,” “gender,” and other attributes. 
Objects are linked via a specific link type indicated by the 
text on the line. At the center of the schema is the inci-
dent, and groups and individuals connect to particular 
incidents via their involvement. The entire dataset con-
sists of 9 different node types, 90 different attribute types, 
and 11 link types. The actual instantiation of the graphical 
database contains more than 180,000 nodes with more 
than 2 million attributes spread across the 90 attribute 
types. Nodes are connected by more than 1 million links.

 
Graphical Query 
Once the database was represented as a graph with nodes, 
edges, and attributes, QGRAPH software was used to pull 
selected subgraphs from the larger database for analysis. 
QGRAPH is a graphical query language designed for query-
ing large relational datasets, such as social networks [39]. 
Queries are specified visually by drawing the structure of 

the desired matches and adding annotations to that struc-
ture to further refine the query. Matches are returned as 
subgraphs, which are small subsections of the overall data 
containing only the desired structure. 

Methods and Technical Solutions 
Classification uses statistical methods to predict the status 
of an (unknown) characteristic, or feature, of a particu-
lar entity given a set of observed characteristics also on 
the entity. Most classification algorithms assume data are 
independent and identically distributed (i.i.d.). However, 
because of the connections inherent in social, technologi-
cal, and communication networks, data arising from these 
sources do not meet either of these conditions. For exam-
ple, in criminal networks, known associates of convicted 
criminals are likely to be criminals as well (noninde-
pendent), and some criminals have many more associ-
ates than others (heterogeneous). Furthermore, network 
data often exhibit autocorrelation among class labels of 
related instances [40]. The concept of autocorrelation, 
sometimes called homophily, is best summarized by the 
phrase “birds of a feather flock together,” indicating that 

FIGURE 11. Sample ISVG database schema. Each node in the schema represents an entity type and the available attributes 
for that entity. Entities can be linked by relationships of different types. In total, there are 9 node, 90 attribute, and 11 link types.
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individuals with similar characteristics tend to be related. 
Failure to account for nonindependence and heterogene-
ity in network data can lead to biases in learned models 
when traditional approaches are used for classification 
[41, 42]. While traditional classification algorithms can 
incorporate relational features, an exhaustive aggregation 
of relational features becomes less efficient as the dataset 
becomes large. Even with the incorporation of relational 
features, the standard classification approach still makes 
predictions for each instance that are independent, mak-
ing collective classification more difficult. 

OVERVIEW OF STATISTICAL RELATIONAL LEARNING 

Statistical relational learning (SRL) is a subdiscipline of 
the machine learning and data mining communities [43]. 
As its name implies, the focus of SRL is extending tradi-
tional machine learning and data mining algorithms for 
use with data stored in multiple relational tables, as typi-
cally occurs in a relational database, such as MySQL or 
Oracle. This storage model permits analysis of data that 
are nonindependent and heterogeneous, such as social 
network data. The primary focus of this work is classi-
fication in social network data. For example, in criminal 
networks, analysts are often interested in predicting a 
binary variable indicating whether a particular individual 
will commit a crime in the near future. The true value of 
this variable is generally unknown at the time of analy-
sis; however, there are a number of observable features 
that are predictors, such as whether the individual or a 
closely related individual has committed a crime in the 
past, has recently filed bankruptcy, or has lost a job. Tools 
developed in the SRL community extend the traditional 
classification paradigm to include features on both the 
individual in question and features on individuals related 
through social or organizational ties. 

In addition to using features on related individuals, 
social network data also provide the opportunity for col-
lective classification. Collective classification is possible 
when many individual class labels (e.g., future crime sta-
tus) are unknown but are connected via social or organi-
zational ties. These relations among individuals permit 
the predictions about one individual to propagate to pre-
dictions about related individuals. Collective approaches, 
which infer the value of all unknown labels simultane-
ously, have been shown to yield higher accuracies than 
noncollective models, particularly when the labels of 

related instances exhibit autocorrelation [44]. Thus, col-
lective classification is widely studied within the field of 
SRL [45]. Two specific SRL techniques for classification 
in relational data are presented here: the relational prob-
ability tree and relational dependency network. 

RELATIONAL PROBABILITY TREES 

The relational probability tree (RPT) is a probability-esti-
mation tree for classification in relational domains [46]. A 
probability-estimation tree is a conditional model similar 
to a classification tree; however, the leaves contain a prob-
ability distribution rather than a class label assignment 
[47]. To account for nonindependence in network data, 
the RPT is designed to use both intrinsic features on the 
target individual and relational features on related indi-
viduals. However, because of heterogeneity in the data, 
the number of relational features can vary from individ-
ual to individual. To account for possible heterogeneity, 
the RPT automatically constructs features by searching 
over possible aggregations of the training data. The RPT 
applies standard aggregations—e.g., COUNT, AVERAGE, 
MODE—to dynamically flatten the data before selecting 
features to be included in the model. To find the best 
feature, the RPT searches over values and thresholds for 
each aggregator. For example, to aggregate over criminal 
activity of an individual, an appropriate feature might be 
[COUNT(CriminalActivity.type=Larceny) > 1], where the 
type and number are determined by the algorithm. The 
RPT has successfully predicted high-risk behavior in the 
securities industry in the United States by using the social 
network among individuals in the industry [48, 49]. 

RELATIONAL DEPENDENCY NETWORKS 

The relational dependency network (RDN) is a joint rela-
tional model for performing collective classification [50]. 
An RDN is a pseudolikelihood model consisting of a col-
lection of conditional probability distributions (CPD) that 
have been learned independently from data. The CPDs 
used in a dependency network are often represented by 
probability-estimation trees, although any conditional 
model suffices [51]. Lincoln Laboratory’s work used an 
RDN consisting of a set of individually learned RPTs for 
each attribute that were combined into a single, joint 
model of relational data. Inference (prediction) in the 
RDN was accomplished by using Gibbs sampling, a tech-
nique that relies on repeated sampling from conditional 
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distributions [52]. The RDN can represent autocorrela-
tion relationships and was the first joint model that per-
mitted the learning of autocorrelation relationships from 
data. Collective classification was performed via inference 
using multiple iterations of Gibbs sampling whenever 
relational features were included in the learned trees. 

Empirical Evaluation 
Experiments were performed using the ISVG relational 
database. Each of these experiments required a labeled set of 
subgraphs for training of the relational models and another, 
nonoverlapping set, for evaluation. Using the QGRAPH soft-
ware, Lincoln Laboratory researchers constructed appropri-
ate queries to return these subgraphs and randomly divide 
them into training and test sets using fourfold cross valida-
tion. After the learned model was applied to the evaluation 
set on one fold of the randomly selected data, the results 
were presented in ROC performance curves. 

The target application was the prediction of leader-
ship attributes of individuals within a group. The ISVG 
data contains a rich set of individual roles. For the Labo-
ratory’s research, these roles were binned into categories 
pertaining to leadership (e.g., field commander, cell leader, 
spiritual leader) and nonleadership (e.g., group member, 
aide, activist), resulting in a binary classification. Different 

learning techniques were applied, highlighting the differ-
ences in data-rich versus data-poor operational conditions. 

LEADERSHIP ROLE PREDICTION 

The ISVG database contains 3854 individuals with labeled 
roles. These roles were binned into leadership and non-
leadership categories, and QGRAPH was used to extract 
relevant subgraphs for training and testing. There were 
2890 randomly selected subgraphs for training and 964 
for evaluation. The query is shown in Figure 12. The query 
looked for persons with a leadership attribute and all of 
their associates, including those related through the same 
group or incident as well as the groups and incidents 
themselves. The query in Figure 12 contains two subque-
ries (rectangular boxes) that look for zero or more inci-
dents and groups, along with individuals involved in the 
incident or members of the group. In this way, the total 
number of related individuals was expanded beyond what 
the ISVG annotator labeled in the “Associate” link. Addi-
tionally, the incident attributes and group type could indi-
cate an organizational structure to help predict leadership. 

The first experiment assumed a data-rich condition 
in which full information about neighboring associates is 
known (e.g., age, education level, nationality, and so on); see 
Figure 13. All of this information was used in the RPT model 

FIGURE 12. Graphical query for leadership. The query looks for all individuals where 
the rank is specified (person exists), individuals associated with that person (associate), 
incidents and people associated with those incidents (upper box), and groups and groups 
associated with those groups (lower box). Nodes indicate entities (people, groups, and 
incidents) to look for in the graph. The desired attributes (e.g., “helped”) are specified on 
the nodes and edges. Subqueries are indicated using the plate (rectangle). The notation 
[n..] indicates that there should be at least n cases of a link or node.
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FIGURE 13. Ideal case of relational classification; many 
neighboring attributes are known. 
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FIGURE 14. Realistic data condition in which attributes of 
associates are unknown. 
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Table 1. Area Under ROC Curve Performance
of Social Network Leadership Prediction Models

RPT realistic data 0.6725

0.7314

0.7672RPT ideal data (upper bound)

RDN realistic data

to predict whether or not the node under consideration was 
in a leadership role. Under a more realistic assumption, this 
information may not be known; see Figure 14. In this case, 
a pattern of activity and communication may be observed, 
but we could determine very little about the actors involved 
and wished to determine who the leader was.

The results for both of these RPT models on the held-
out evaluation dataset are shown in Figure 15 and Table 1. 
Figure 15 is a ROC curve; the probability of detection is 
plotted on the y-axis and the probability of false alarm is 
plotted on the x-axis. In this instance, a correct detection 
occurs when the system correctly predicts a leadership role 
for an individual. A false alarm occurs when the system 
predicts a positive leadership label for an individual who 
is not in a leadership role. Table 1 shows the area under 
each ROC curve. In Figure 15, the dotted line labeled “Ideal 
data (RPT)” represents the query results from Figure 13, in 
which all information about associates is known. The “ideal 
data” curve represents an upper bound on performance if all 
information is known about the individuals, including the 
leadership characteristics of the associates. The dashed line 
labeled “Realistic data (RPT)” represents the more realistic 
condition in which specific attributes of associates are hid-
den from the RPT model. The former represents the data-
rich case and gives the best performance. In more realistic 
data conditions, the performance is significantly worse. 
The use of relational dependency networks can be used to 
improve performance in the latter, data-poor, condition.
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COLLECTIVE CLASSIFICATION 

Relational dependency networks can perform collective 
classification when several attributes across selected 
variables are estimated simultaneously on the basis of 
a joint probability model. In this experiment, individual 
conditional models (RPTs) were built for each distin-
guishing attribute of the associate. These included the 
following variables: leader, status, education, national-
ity, and race. Multiple Gibbs sampling iterations were 
used to approximate the joint distribution. The results 
are shown in the solid line labeled “Realistic data (RDN)” 
in Figure 15. The RDN results are almost as good as the 
upper bound data-rich condition of the original RPT 
model. This result is promising as it becomes possible 
to predict leadership roles with some degree of accuracy 
for situations in which very little specific information is 
known about the individual actors.  

Additional insight into the data can be learned from 
the relational dependency network diagram in Figure 
16. The interpretation of the RDN is that of a relational 
extension of a “dependency network,” a type of model 
in which arcs between variables indicate strict depen-
dence rather than the more complex encoding of inde-
pendence that the arcs in a Bayes net indicate. The large 
colored boxes (plates) represent entities. White circles 
indicate variables on those entities and arrows indicate 
dependence. The structure has been learned automati-

cally from data, with RPTs underlying the individual 
attributes in the RDN. The figure shows three kinds of 
dependencies: 
1. Dependence between variables on the same entity 
	 •	The	region	of	an	incident	and	the	incident	type	 

  are dependent on each other. 
2. Dependence between variables on different entities
	 •	The	 type	 of	 an	 organization	 depends	 on	 the	  

  country of incidents to which the organization  
  has been tied. 

3. Autocorrelation (special case of 2)—dependence 
on the same attributes across different entities

	 •	Incident	type	is	autocorrelated	through	groups	 
  (i.e., groups tend to be involved with the same  
  types of incidents). 

	 •	CDOC	 (court	 document)	 charge	 and	 CDOC	  
  convictions of individuals are both autocorre- 
  lated through incidents. Individuals involved in  
  the same incidents tend to have the same  
  charges and conviction status. 

In Figure 16, autocorrelation through an intermediate 
entity is indicated by a colored box on the self-loop. Indi-
viduals are autocorrelated through incidents, indicating the 
individuals with similar attributes tend to be involved in the 
same incidents. Self-loops with no box indicate direct link-
age via known associates. Individuals with the same status 
(incarcerated, at large, etc.) tend to be directly associated.

FIGURE 16. The relational dependency network learned from the ISVG data set is shown. Plates indicate node types 
(individual, organization, incident, group, and region). Circles in the plates indicate attributes of the nodes; e.g., rank of the 
individual. Edges between discs show the dependencies. 
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Future Directions 
As the scale and ubiquity of unstructured, content-based 
data continue to increase so will the need for analytical 
tools to process and represent those data and to perform 
basic and reliable analytics, such as community detec-
tion, which support higher-level inference and prediction. 
Work done at Lincoln Laboratory in these areas is laying 
the groundwork for further research supporting these 
goals. Specifically, the Laboratory is continuing to inves-
tigate applying these tools and working with unstructured 
multimedia data, databases, graph-based analytics, and 
visualization. Further research and development will pro-
vide ways for users and stakeholders to better consume 
and summarize the massive amounts of information cre-
ated every day in the era of Big Data. 
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