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3D Exploitation 
of 2D Imagery
Peter Cho and Noah Snavely

The invention of the digital camera is 
attributed to Eastman Kodak engineer 
Steven Sasson in 1975 [1]. Sasson’s device 
recorded 0.01-megapixel black-and-white 

pictures to cassette tapes. The first digital photograph 
required 23 seconds to generate and needed a television 
set to display [2]. Today, digital cameras recording greater 
than 10-megapixel color photos to Secure Digital (SD) 
cards with multi-gigabyte storage capacities are common-
place. Though the total number of electronic images in 
existence is not known, billions of photos and video clips 
are now accessible on the World Wide Web. 

The current capability to collect and store digital 
images vastly outpaces the current capability to mine 
digital pictures. Existing archives of photos and videos 
are basically unstructured. As anyone who has ever tried 
to find some particular view of interest on the Internet 
knows, querying imagery websites can be a frustrating 
experience. Text-based searches generally do not return 
salient metadata, such as camera geolocation, scene iden-
tity, or target characteristics. Some basic organizing prin-
ciple is consequently needed to enable efficient navigating 
and mining of vast digital imagery repositories. 

Fortunately, three-dimensional (3D) geometry pro-
vides such an organizing principle for imagery collected 
at different times, places, and perspectives. For example, a 
set of photos of some ground target represents two-dimen-
sional (2D) projections of 3D world space onto a variety 
of image planes. If the target’s geometry is captured in a 
3D map, it can be used to mathematically relate different 
ground photos of the target to each other. Moreover, as 
the diagram in Figure 1 indicates, the 3D map connects 

Recent advances in computer vision have enabled 
the automatic recovery of camera and scene 
geometry from large collections of photographs 
and videos. Such three-dimensional imagery 
reconstructions may be georegistered with 
maps based upon ladar, geographic information 
system, and/or GPS data. Once 3D frameworks 
for analyzing two-dimensional digital pictures 
are established, high-level knowledge readily 
propagates among data products collected at 
different times, places, and perspectives. 

We demonstrate geometry-based exploitation for 
several imagery applications of importance to the 
defense and intelligence communities: perimeter 
surveillance via a single stationary camera, rural 
reconnaissance via a mobile aerial camera, urban 
mapping via several semicooperative ground 
cameras, and social media mining via many 
uncooperative cameras. Though a priori camera 
uncertainty grows in this series and requires 
progressively more computational power to 
resolve, a geometrical framework renders all 
these applications tractable.

»
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Three-dimensional imagery exploitation can be 
applied to a wide range of problems of significant 
importance to the defense and intelligence communi-
ties. Figure 3 categorizes such applications according 
to their a priori camera uncertainty on the horizontal 
axis and processing complexity on the vertical axis. The 
applications begin in the figure’s lower left corner with 
perimeter monitoring by a single stationary camera. By 
enabling narrow fields of view to be mosaiced together 
into a panoramic backdrop, geometry yields synoptic 
context for “soda-straw” security camera footage. Data 
processing becomes more complex for video shot from a 
mobile surveillance platform such as an unmanned aer-
ial vehicle (UAV). For such reconnaissance imagery, 3D 
geometry relates views gathered by the moving camera 
at different places and perspectives. Exploitation grows 
substantially more complicated for imagery shot by sev-
eral cameras whose geolocations are not initially known. 
Finally, data processing requirements turn formidable 
for Internet pictures collected by uncooperative cam-
eras as their numbers exponentially increase. Neverthe-
less, substantial geometry information can be recovered 
even in this most difficult case. Intelligence may then be 
propagated among images taken by different people at 
different times with different cameras. 

This article considers all the applications depicted 
in Figure 3, starting from the simplest in the lower left-
hand corner and progressing through the hardest. We 

together information collected by completely different sen-
sors. Therefore, a photo of the target shot by a ground cam-
era can be related to a corresponding aerial view or ladar 
image, provided all these data products are georegistered 
with the 3D map. The map itself acts as a repository of 
high-level intelligence distilled from multiple sensors. Ulti-
mately, situational awareness comes much more directly 
from knowledge stored within the map than from the mil-
lions of low-level pixels and voxels on which it is based. 

In this article, we present a 3D approach to exploit-
ing 2D imagery that follows the flow diagram in Figure 2. 
Working with photos and video clips originating from 
diverse sources, we first reconstruct their cameras’ relative 
positions and orientations via computer vision techniques. 
Such methods geometrically organize a priori unstructured 
sets of input images. We next georegister reconstructed 
digital pictures with laser radar (ladar), geographic infor-
mation system (GIS) layers, and/or Global Positioning Sys-
tem (GPS) tracks to deduce their absolute geocoordinates 
and geo-orientations, which cannot be determined from 
pixel contents alone. In all cases we have investigated, 
good alignment has been achieved between independent 
datasets often collected years apart and by fundamentally 
different sensing modalities. Once a 3D framework for 
analyzing 2D imagery is established, many challenging 
exploitation problems become mathematically tractable. 
In this article, we focus upon automatic scene annotation, 
terrain mapping, video stabilization, target geolocation, 
urban modeling, indoor/outdoor view connection, photo 
segmentation, picture geoquerying, and imagery retrieval. 

FIGURE 1. Three-dimensional maps provide geometrical 
frameworks for organizing intelligence collected at different 
times, places, and perspectives.
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FIGURE 2. Algorithm flow for geometry-based exploitation 
of digital imagery.
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begin with an automated procedure for constructing 3D 
mosaics from images collected by a stationary camera. 
Dynamic video streams are matched with static mosaics 
to provide human observers with useful context. We next 
move to applications that make use of a mobile camera 
and exploit imagery gathered by a UAV to generate 3D 
terrain maps and mark geopoints of interest. Generalizing 
our techniques to images collected by multiple cameras, 
we reconstruct urban scene geometry and camera param-
eters for thousands of ground photos shot semicoopera-
tively around the Massachusetts Institute of Technology 
(MIT) campus. After georegistering the reconstructed 
photos to an abstracted city map, we refine 3D building 
models by texturing orthorectified mosaics onto their 
facades. Finally, we work with photos of New York City 
(NYC) downloaded from the web. Once the Internet 
images are reconstructed and geoaligned to a detailed 3D 
map, we demonstrate automated labeling of buildings, 
target point mensuration, image region classification, and 
ranking of NYC pictures based upon text search queries.

Perimeter Surveillance via a Single 
Stationary Camera
We begin our imagery exploitation survey with problems 
including a single camera whose position is constant and 
known. Although such sensing setups are highly con-

strained, 3D geometry nevertheless yields useful and 
surprising imagery results.

3D Mosaicing of Photos and Video Frames 
Security video monitoring has grown commonplace as 
camera technology has increased in quality and decreased 
in price. Cameras fixed atop poles or attached to building 
sides are routinely used to follow movements within their 
fields of view. Such sensors can rotate about their attach-
ment points and zoom to provide close-up views. How-
ever, they do not simultaneously yield synoptic context 
that would help humans better understand their instan-
taneous output. It would be useful to embed a security 
camera’s dynamic imagery inside a panoramic mosaic 
covering its accessible field of regard. Therefore, we devel-
oped such a visualization capability working with imagery 
gathered in 2008 from atop the 21-story Green Building 
on MIT’s campus (Figure 4). 

Two example photos shot from a tripod-mounted, 
rooftop camera are presented in Figure 5. Extracting fea-
tures from such overlapping stills on the basis of their 
intensity contents represents the first step in generating 
mosaics [3, 4]. Over the past decade, the Scale Invariant 
Feature Transform (SIFT) has become a standard method 
for detecting and labeling features. SIFT is relatively insen-
sitive to varying camera perspectives, zoom levels, and illu-
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FIGURE 3. Applications of 3D imagery exploitation schematically categorized according to their a priori camera uncertainty 
and processing complexity. This article presents research on these four applications, progressing from simple perimeter sur-
veillance to the formidably difficult problem of social media mining.
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mination conditions [5]. It also yields a 128-dimensional 
vector descriptor for each local feature. Figure 5b illustrates 
SIFT output for the two rooftop photos in Figure 5a. 

Looping over pairs of input photos, we next identify 
candidate feature matches via Lowe’s ratio test [5]. Using 
approximate nearest-neighbor data structures to signifi-
cantly decrease search times over the 128-dimensional 
vector space [6, 7], our machine computes distances d1 
and d2 between the closest and next-to-closest candidate 
partner descriptors in a photo pair. We accept the closest 
feature as a genuine tiepoint candidate if d1/d2 < 0.5. 

A number of incorrect feature matches slip through 
Lowe’s ratio filter. Thus, an iterative random sample 
consensus (RANSAC) algorithm is employed to identify 
erroneous pairings [8]. Four sets of tiepoints randomly 
pulled from different image quadrants are used to con-
struct homography transformations that relate image 
plane pairs. All surviving features in one photo are pro-
jected via each randomly generated homography onto the 
second photo. If the distance between a projected feature 
and its candidate tiepoint is sufficiently small, the features 
are counted as an inlier pair. The homography maximiz-
ing the inlier count serves as the defining classifier of 
SIFT outliers. Final pairs of inliers are relabeled so that 
they share common identifications. Figure 5c illustrates 
feature-matching results for the two photos in Figure 5a. 

After features have been matched across all input 
photographs, our machine moves on to sequentially form 

FIGURE 5. (a) Two photos shot from the Green Build-
ing’s rooftop. (b) 15,428 and 16,483 SIFT features were 
extracted from the two photos. Only 10% of all SIFT fea-
tures are displayed. (c) 3523 tiepoints matched between the 
two overlapping photos. Only 10% of all tiepoint pairs are 
displayed in these zoomed views.

(c)

(b)

(a)

(a) (b)

FIGURE 4. Setup for initial experiments that mimic security 
camera monitoring. (a) Imagery was collected from atop the 
Green Building on MIT’s campus. (b) Stills and video frames 
were shot from cameras set upon a fixed, rooftop tripod.

mosaics from subsets of images ordered by decreasing 
tiepoint pair count. We assume every photo’s intrinsic 
camera calibration parameters are known except for a 
single focal length [9, 10]. The linear size of the camera’s 
charge-coupled-device (CCD) chip, along with its output 
metadata tags, provides initial estimates for each photo’s 
dimensionless focal parameter. Three-dimensional rays 
corresponding to 2D tiepoints are calculated, and a matrix 
is formed by summing outer-products of associated rays. 
Singular value decomposition of this matrix yields a rough 
guess for the relative rotation between image pairs [4, 11]. 

Armed with initial estimates for all camera calibration 
parameters, we next perform iterative bundle adjustment 
using the LEVMAR package for nonlinear Levenberg-Mar-
quardt optimization [12]. When refining focal and rota-
tion parameter values for the nth image, our machine holds 
fixed the fitted camera parameters for the previous n – 1 
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images. After all photos have been added to the compos-
ite, we perform one final bundle adjustment in which all 
camera focal and rotation parameters are allowed to vary. 

Figure 6 displays results from this mosaicing proce-
dure for 21 photos shot from the MIT skyscraper rooftop. 
Three-dimensional frusta depict the relative orientation 
and solid angle for each 2D image in the figure. No attempt 
has been made to blend colors within the overlapping 
ensemble of photos. Nevertheless, the entire collection 
yields a high-fidelity, wide-angle view of a complex scene. 

After shooting stills for the panoramic mosaic, we 
replaced the digital camera on the rooftop tripod with a 

high-definition video camera. Video footage was then col-
lected inside the panorama’s field of regard. To demonstrate 
a future capability for augmenting security camera output 
in real time, we want to match each foreground video frame 
with the background mosaic as quickly as possible. We there-
fore developed the following algorithm whose performance 
represents a compromise between accuracy and speed. 

For each video frame, we extract SIFT features and 
match them with counterparts in the mosaiced photos that 
were precalculated and stored. If a panoramic tiepoint part-
ner is found for some video feature, a 3D ray is generated 
from the calibrated still and associated with the feature’s 2D 
video coordinates. An iterative RANSAC procedure similar 
to the one employed for static panorama generation is uti-
lized to minimize false correspondences between ray and 
coordinate pairs. The homography that maps 3D world-
space rays onto 2D video feature coordinates is subsequently 
determined via least-squares fitting. The entries in the 
homography are transferred to a projection matrix for the 
camera, which is assumed to reside at the world-space ori-
gin. All intrinsic and extrinsic camera parameters for each 
video frame may then be recovered from its corresponding 
projection matrix. This process independently matches each 
foreground video image to the background panorama. 

Figure 7 exhibits the frustum for the video camera 
embedded among the frusta for the mosaiced stills at one 
instant in time. In order to emphasize that the former is 
dynamic while the latter are static, we recolor the pan-

FIGURE 7. Dynamic video versus static mosaic. (a) The instantaneous angular location of one video frame relative to the 
background mosaic is indicated by its yellow frustum. (b) The colored video frame is aligned with the gray-scale panorama 
viewed from the rooftop tripod’s perspective. [video]

FIGURE 6. A 3D mosaic of 21 tripod photos shot from the 
rooftop of MIT’s Green Building. [video attached, check here]

(a)

PAUSE: Frame 341

(b)

PAUSE: Frame 341
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orama pictures on a gray scale so that the colored video 
image stands out. We also temporally smooth the pro-
jection matrices for every video frame via an αβγ filter 
[13, 14]. The video frames then glide over the panorama 
with minimal jitter and yet keep up with sudden changes 
in camera pan and tilt. As the movie plays and roams 
around in angle space, it may be faded away to reveal good 

agreement between the soda-straw and synoptic views. 
The absolute geoposition, geo-orientation, and scal-

ing of the frusta in Figure 7 cannot be determined by con-
ventional computer vision techniques alone. To fix these 
global parameters, the photos and video frames must be 
inserted into a world map. We therefore next consider 3D 
geoalignment of 2D panoramas.

(c)

(b)(a)

FIGURE 8. (a) Aerial ladar point cloud colored according to height. (b) Aerial photograph naturally colored. (c) Aerial ladar 
and electro-optical imagery fused together within a 3D map. 
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Georegistering Mosaics 
The geometry of outdoor environments is generally com-
plex. Fortunately, 3D terrain can be efficiently measured 
by aerial laser radars. High-resolution ladar imagery is 
now routinely gathered via airborne platforms operated 
by government laboratories and commercial companies. 
Ladars collect hundreds of millions of points whose geolo-
cations are efficiently stored in and retrieved from multi-
resolution tree data structures. Laser radars consequently 
yield detailed underlays onto which other sensor mea-
surements can be draped. 

Figure 8a illustrates an aerial ladar point cloud for a 
section of MIT’s campus. These data are colored accord-
ing to height via a color map designed to accentuate 
Z-content. Figure 8b exhibits a conventional aerial image 
snapped from Yahoo’s website [15]. The snapshot covers 
the same general area of MIT as the ladar map. The 2D 
photo captures panchromatic reflectivities, which the 3D 
ladar image lacks. To maximize information content, we 
fuse the two together using an HSV (hue, saturation, and 
value) coloring scheme [16]. The fused result is displayed 
on a longitude-latitude grid in Figure 8c. 

In winter 2009, we shot a second sequence of 14 
ground photos from MIT’s student union, which is 
located near the lower left of Figure 8c. Following the 
same mosaicing procedure as for our first set of images 
collected from atop the Green Building, we converted the 
overlapping 2D pictures into 3D frusta (Figure 9). Given 
the Yahoo aerial photo, it is relatively straightforward 
to geolocate the cameras within the ladar map. On the 

other hand, computing the multiplicative factor by which 
each frustum’s focal length needs to be rescaled is more 
involved. Technical details for the scale factor computa-
tion are reported in Cho et al. [17]. 

In order to align the photo mosaic with the ladar 
point cloud, we also need to compute the global rotation 
Rglobal , which transforms the rescaled bundle of image-
space rays onto its world-space counterpart. We again 
form a matrix sum of corresponding ray outer-products 
and recover Rglobal from its singular value decomposi-
tion [4, 11]. After the camera projection matrix for each 
mosaiced photo is rotated by Rglobal , we can insert the 
panorama into the 3D map (Figure 10). 

Though the absolute geoposition, geo-orientation, and 
scale of the photos’ frusta are fixed, the range at which the 
image planes are viewed relative to the camera’s location 
remains a free variable. By varying this radial parameter, 
we can visually inspect the alignment between the ground-
level pictures and aerial ladar data. In Figure 11a, the image 
planes form a ring relatively close to the ground camera 
and occlude most of its view of the ladar point cloud. 
When the ring’s radius is increased as in Figure 11b, some 
ladar points emerge in front of the image planes from the 
ground tripod’s perspective. It is amusing to observe green 
leaves from the summertime ladar data “grow” on nude 
tree branches in the wintertime photos. The striking agree-
ment between the tree and building contents in the 2D and 
3D imagery confirms that the mosaic is well georegistered. 

Once the panorama is aligned with the point cloud, 
ladar voxels match onto corresponding photo pixels. 

(a) (b)

FIGURE 9. (a) One of 14 overlapping photos of MIT buildings shot from a street-level tripod. (b) 3D mosaic of street-level photos.
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enter into every standard mapping application currently 
running on the web. Building and street annotations carry 
longitude, latitude, and altitude geocoordinates that proj-
ect onto calibrated photographs via their camera matrices. 
Urban scene annotations then appear at correct locations 
within the mosaic (Figure 12b). 

Similar labeling of dynamic video clips shot in cities is 
possible, provided they are georegistered with the 3D map. 
We follow the same matching procedure for our second 
street-level background panorama and a co-located fore-
ground video as previously described for our first rooftop 
example. The ground-level video sequence contains pedes-
trian and vehicle traffic that have no counterparts in the 
mosaic. Nevertheless, ray matching successfully aligns the 
input video to the georegistered panorama (Figure 13a). 
Building and street names project directly from world 
space into the moving video stream (Figure 13b). As the 
movie plays, the annotations track moving image plane 
locations for urban objects up to residual low-frequency 
jitter not completely removed by αβγ temporal filtering. 

FIGURE 10. Street-level panorama georegistered with the 
3D MIT map. [video]

FIGURE 11. (a) Panorama photos occlude camera’s view from street-level tripod of ladar point cloud. (b) Ladar points corre-
sponding to summertime tree leaves appear to grow on nude wintertime branches as the range from the camera tripod to the 
image planes is increased. [video]

(a)

(b)

View from overhead View from street-level camera

Moreover, high-level knowledge attached to the 3D vox-
els can propagate into the 2D image planes. Consider, for 
instance, names of buildings and streets (Figure 12a). Such 
information is typically available from GIS layers that 
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This second surveillance example demonstrates that 
the transfer of abstract information from world space into 
dynamic image planes is possible for a single camera whose 
position is fixed in space. Three-dimensional geometry simi-
larly enables knowledge propagation for much more chal-
lenging situations involving a moving camera. We therefore 
now progress from stationary to mobile camera applications.

Rural Reconnaissance via a Single 
Aerial Camera 
Over the past decade, digital cameras have proliferated 
into many aspects of modern life. A similar, albeit less 
explosive, growth has also occurred for robotic platforms. 

To encourage rapid experimentation with both imaging 
sensors and robots, Lincoln Laboratory held a Technol-
ogy Challenge called Project Scout in autumn 2010 [18]. 
The challenge involved remotely characterizing a one-
square-kilometer rural area and identifying anomalous 
activities within its boundary. The challenge further 
required that solutions developed for this problem had 
to be economical to implement.

One of many platforms fielded during the 2010 Tech-
nology Challenge was a hand-launched UAV. The aerial 
system’s hardware included a Radian sailplane (<$400), 
a Canon PowerShot camera (<$300), and a Garmin GPS 
unit (<$100) (Figure 14). The camera and GPS clocks 

FIGURE 12. (a) Names of buildings and streets appear as annotations in the 3D MIT map. (b) Projected annotations label 
buildings within the photo mosaic. 

(a) (b)

FIGURE 13. (a) One frame from a video sequence automatically aligned with the georegistered mosaic. The dynamic 
and static imagery were both shot from the same street-level tripod. (b) Annotation labels track stationary buildings 
and streets (and ignore moving vehicles) within a panning video camera clip. [video a] [video b]

(a) (b)
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were synchronized by taking pictures of the latter with the 
former. Both sensors were mounted to the UAV’s under-
side prior to launch. Over the course of a typical 15-minute 
flight, the lightweight digital camera collected a few thou-
sand frames at roughly 3 Hz. When the glider returned 
from a sortie, the camera’s pictures were offloaded from 
its SD chip and later processed on the ground. Two repre-
sentative examples of video frames gathered by the aerial 
vehicle are shown in Figure 15. 

Just as for the panoramic MIT photos, the pro-
cessing pipeline for the aerial video frames begins with 
SIFT feature extraction and matching. Figure 16 illus-
trates SIFT tiepoint pairs found for two UAV pictures. 
Once corresponding features are matched across mul-
tiple frames, our system next employs structure-from-
motion (SfM) techniques to recover camera poses and 
sparse scene structure (Figure 17). SfM takes 2D fea-
ture matches as input and computes a set of 3D scene 
points. It also returns relative rotation, position, and 
focal length parameters for each camera. We employ 

the Bundler toolkit [19] to solve this highly nontrivial 
optimization problem [9, 10]. 

Of the more than 3000 frames passed into the aer-
ial video processing pipeline, approximately 1500 were 
reconstructed. Given their high computational complex-
ity, the feature extraction and matching steps for this 3D 
reconstruction were run on Lincoln Laboratory’s high-per-
formance, parallel computing system, known as LLGrid 
[20], with specially parallelized codes [21]. We next 
applied multiview stereo algorithms developed by Furu-
kawa and Ponce to generate a dense representation for the 
ground scene [22]. The resulting point cloud of the rural 
area overflown by the UAV is much more dense than the 
sparse cloud generated by incremental bundle adjustment. 

It is important to recall that conventional digital 
cameras only capture angle-angle projections of 3D world 
space onto 2D image planes. In the absence of metadata, 
digital pictures yield neither absolute lengths nor abso-
lute distances. Therefore, to georegister the reconstructed 
aerial cameras plus reconstructed point cloud, we must 

FIGURE 14. Hardware used to collect aerial video over a rural setting included (left to right) a hand-launched sailplane glider, 
Canon PowerShot camera, and Garmin GPS unit. 

FIGURE 15. Two frames snapped by the digital camera onboard the UAV, which flew up to 430 
meters above ground. [video]

(a) (b)
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FIGURE 16. (a) 96 SIFT feature matches found between two video frames from the aerial sequence. 
(b) Zoomed view of tiepoint pairs. 

FIGURE 17. Conceptual illustration of structure from motion. Starting from a set of images with calculated tiepoints, 
one needs to solve for the features’ relative 3D locations plus the cameras’ rotation, translation, and focal parameters.
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utilize other sensor data beyond CCD outputs. Unlike in 
our preceding panorama experiments around MIT, we do 
not have access to a high-fidelity ladar map for the rural 
area over which the UAV flew. So we instead exploit mea-
surements from the glider’s onboard GPS unit. By fitting 
the reconstructed flight path to the aerial platform’s track, 
we can derive the global translation, rotation, and scaling 
needed to lock the relative camera frusta and dense point 
cloud onto world geocoordinates. 

Figure 18 displays geoaligned frusta for the aerial video 
frames along with the dense terrain map. The glider’s GPS 
track also appears in the figure as a continuous curve col-
ored according to height. After commanding our virtual 
viewer’s camera to assume the same position and orienta-
tion as a reconstructed camera’s, we may directly compare 

the alignment between reconstructed aerial frames and the 
dense point cloud (Figure 19). A human eye must strain to 
see discrepancies between the 2D and 3D results. 

Having recovered 3D geometry from UAV frames, we 
now demonstrate several examples of aerial video exploi-
tation via geometry, which are difficult to perform with 
conventional image processing. For instance, video recon-
struction plus georegistration yields detailed height maps 
with absolute altitudes above sea level for ground, water, 
and trees (Figure 20). The approximate 1-meter ground 
sampling distance of the measurements displayed in the 
figure begins to rival those from ladar systems. But the 
~$800 cost of our commercial passive imaging hardware 
for terrain mapping is much less expensive than the cost 
for active ladars. 

FIGURE 18. Four frames from a movie fly-through of the 3D rural scene densely reconstructed from aerial video frames. 
Only 74 of approximately 1500 recovered camera frusta are displayed. The curve colored according to height depicts the 
glider’s GPS track. [video]
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FIGURE 19. One aerial video frame compared against the densely reconstructed 3D point cloud with (a) 0%, (b) 50%, and 
(c) 100% image plane transparency. [video]
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FIGURE 20. Dense point cloud for rural terrain colored according to (a) camera’s RGB (red-green-blue) values and (b) 
height above sea level. 

Aerial video orthorectification and stabilization rep-
resent further applications of 3D imagery exploitation. 
The sailplane glider experienced significant jostling dur-
ing its flight over the rural scene, and its raw video footage 
looks erratic (Figure 15b). But once the aerial camera’s 
geolocation and geo-orientation are known, it is straight-
forward to project the Canon PowerShot’s reconstructed 
views onto a ground Z-plane. Figure 21 compares two 
such orthorectified aerial frames with an orthorectified 
background image. The discrepancy between the former 
and latter is estimated to be 2.5 meters. When an entire 
series of orthorectified aerial frames is played as a movie, 
the resulting time sequence is automatically stabilized. 

As one more example of imagery exploitation, 
we propagate intelligence from one video frame into 
another. Once a camera’s position and orientation are 
known, any pixel within its image plane corresponds to 
a calculable ray in world space. When a user chooses 
some pixel in a reconstructed UAV picture, we can trace 
a ray from the selected pixel down toward the dense 
point cloud. The first voxel in the dense terrain map 
intercepted by the ray has longitude, latitude, altitude, 
and range coordinates that its progenitor pixel inherits. 
Figure 22a illustrates three selected locations in the 44th 
aerial frame that have been annotated with their associ-
ated voxels’ ranges and altitudes. 
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PAUSE: Frame 264PAUSE: Frame 97

FIGURE 21. Aerial video frames backprojected onto a ground Z-plane and displayed against an orthorectified background 
image.  [video]

One may next inquire which, if any, of the geoloca-
tions selected in the 44th video frame reappear in others, 
such as the 67th in Figure 22b. It is not easy for a human 
to solve this puzzle by eyeing the two aerial views of the 
nondescript rural terrain. But a computer can readily 
deduce the solution. The voxels associated with the pixels 
in Figure 22a are reprojected into the image plane for the 
secondary camera. This procedure generates the single 
tiepoint match in Figure 22c. This example illustrates how 
information can propagate from one 2D view into another 
when 3D geometry acts as a mathematical conduit. 

Working with thousands of video frames gathered by 
a single mobile camera, we have demonstrated the imag-
ery reconstruction, imagery georegistration, and intelli-
gence propagation algorithms diagrammed in Figure 2. 
The same computer vision techniques may be applied to 
the more difficult problem of exploiting digital pictures 
gathered by multiple cameras with a priori unknown 
intrinsic and extrinsic parameters. We therefore now move 
from the second to third application depicted in Figure 3.

Urban Mapping via Several Semicooperative 
Ground Cameras 
In summer 2009, a small team of Lincoln Laboratory vol-
unteers set out to collect a large, urban photo set for 3D 
exploitation purposes. MIT’s main campus was selected as 
a surrogate small city because the natives would not likely 
be perturbed by unorthodox data-gathering techniques. The 
volunteers ran around MIT shooting as many digital photos 
as possible with a variety of cameras. During the first five 

minutes of the first photo shoot, pictures were selected with 
care and precision. But as time passed, choosiness went down 
while collection rate went up. Over the course of five field 
trips, more than 30,000 stills were collected around MIT. 

Recovering geometric structure from 30,000+ 
images is akin to solving a complex jigsaw puzzle. Most of 
the pictures were shot outdoors. But a few thousand pho-
tos were intentionally taken inside some MIT buildings 
with the hope of connecting together exterior and inte-
rior views. All of the photos were collected inside urban 
canyons where the scene changed significantly with every 
few steps. The photo set’s diversity can be seen among the 
representative examples pictured in Figure 23. 

Just as for the aerial frames collected over the rural 
scene, the processing pipeline for the 30,000+ MIT 
ground photos begins with feature extraction and match-
ing. SIFT matching imposes an initial topological ordering 
upon the input set of quasi-random photos. Each image 
may be regarded as a node in a graph whose edges indi-
cate feature pairings. Figure 24 visualizes this abstract 
network for the 30,000+ photos. The interactive graph 
viewer appearing in this figure was developed by Michael 
Yee [23]. It allows a user to navigate through large imag-
ery collections. With Yee’s graph tool, one can develop a 
global understanding of a SIFT graph’s content as well as 
drill down to inspect individual pictures of interest. 

Once SIFT features have been matched between mul-
tiple views, a machine can recover geometry information via 
incremental bundle adjustment [9, 10, 21]. Figure 25 dis-
plays reconstruction results for 2300+ of the 30,000+ pho-
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FIGURE 22. (a) 2D pixels selected within the video frame on the right correspond to world-space rays on the left. The 
selected points are annotated with ranges and altitudes coming from voxels in the dense point cloud that the rays intercept. 
(b) Determining which, if any, of the pixels selected in the 44th video frame appear in the 67th is difficult for a human eye.  
(c) Geometry reveals that only pixel 1 in the 44th video frame has a visible counterpart in the 67th frame. 
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tos. The colored point cloud in Figure 25a depicts the relative 
3D shapes of several buildings located on MIT’s eastern cam-
pus. When we zoom in, reconstructed photos are represented 
as frusta embedded within the point cloud (Figure 25b). 
The snapshots in Figure 25 are actually two frames from a 
movie sequence in which a virtual camera flies through the 
3D scene. By viewing the entire movie, one starts to gain an 
intuitive feel for MIT’s complex urban environment. 

In addition to the set of 30,000+ ground photos, we 
also have access to orthorectified aerial imagery and geo-
registered ladar data collected over MIT. The former is 
publicly available from the MassGIS website [24], while 
the latter was obtained from the Topographic Engineering 
Center of the U.S. Army’s Engineer Research and Devel-
opment Center. Figure 26 exhibits representative samples 
of these 2D and 3D images. 

FIGURE 23. Eighteen representative photos from 30,000+ shot semi-randomly around MIT in summer 2009.

FIGURE 24. SIFT graph for MIT ground photos. (a) Nodes within the graph representing images are hierarchically clustered 
and colored to reveal communities of similar-looking photos. (b) Nodes automatically turn into image thumbnails when the 
graph viewer is zoomed in. [video]

(a) (b)
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Photos and ladar point clouds represent low-level 
data products that contain millions of pixels and vox-
els. For data-fusion purposes, it is more useful to work 
with higher-level models, which abstract out geometrical 
invariants common to all views. We consequently devel-
oped a semiautomatic method for constructing building 
models from the 2D and 3D inputs. 

We first manually extract footprints from the ortho-
rectified aerial imagery (Figure 26a). Each footprint cor-
responds to some part of a building with approximately 
constant height. Judgment is exercised as to a reason-
able level-of-detail for city structure contours. After 

2D footprints are drawn, a computer extrudes them in 
the Z direction by using ladar data to determine absolute 
heights above sea level. The resulting prisms capture basic 
shape information for individual buildings (Figure 26c). 

We applied this semiautomatic modeling procedure 
to 29 buildings around MIT. The models appear super-
posed against the ladar point cloud in Figure 27. It is 
worth noting that the ground surface for this part of Cam-
bridge, Mass., is well represented by a plane positioned 
2.5 meters above sea level. Though this ground plane may 
also be simply modeled by a geometrical primitive, it is 
not displayed in the figure for clarity’s sake. 

FIGURE 25. Incremental bundle adjustment results for 2317 ground photos shot around eastern MIT. (a) Reconstructed 
point cloud illustrates static urban 3D structure. (b) White-colored frusta depict relative position and orientation for photos’ 
cameras. [video]

(a) (b)

FIGURE 26. Semiautomatic construction of urban building models. (a) Manually selected corners establish a footprint for 
one particular building. (b) Ladar data supply building height information. (c) A model capturing a building’s gross shape is 
generated automatically from the 2D footprint and 3D heights for Z-plane surfaces. 

(a) (c)(b)



122 LINCOLN LABORATORY JOURNAL    VOLUME 20, NUMBER 1, 2013

3D EXPLOITATION OF 2D IMAGERY

The 3D building models establish a background 
map onto which the reconstructed ground photos may 
be georegistered. Specifically, tiepoint correspondences 
were manually established between pixels in 10 selected 
photos and counterpart corner points among the build-
ing models. The tiepoint pairings were subsequently used 
to set up and solve a system of equations for the global 
translation, rotation, and scaling needed to geoalign all 
the reconstructed photos with the 3D map [25]. 

The georegistered ground photos reside among the 
MIT building models in Figure 28. For clarity, only 230 
of the 2300+ reconstructed cameras’ frusta are displayed 

in the figure. Looking at their pattern in Figure 28a, one 
can discern the path followed by the Lincoln Laboratory 
adventurers as they roamed around the institute. In the 
zoomed view of Figure 28b, the ground photos are visible 
as oriented image planes, while their cameras’ geoposi-
tions are indicated by frusta apexes. 

The screenshots in Figure 28 (as well as many other 
figures in this article) were taken from a 3D viewer based 
upon the OpenSceneGraph toolkit [26]. With this viewer, 
a user may select an individual frustum for inspection by 
mouse-clicking near its apex. The viewer’s virtual camera 
then flies into the selected frustum’s position and assumes 
its 3D orientation. The user can also modulate the trans-
parency level for the selected frustum’s image plane. As 
Figure 29 demonstrates, fading away the foreground 
photo enables comparison with the background building 
models. Though the georegistration of the 2300+ ground 
photos with the building models exhibits small errors 
primarily caused by imperfect camera pointing angles, 
the alignment between thousands of semi-randomly shot 
ground photos and the abstract map derived from the 
aerial data is striking. 

After urban photos have been geoaligned with the 
3D map, automatic segmentation of their building con-
tents becomes tractable. For instance, consider the two 
pictures in Figure 30a. The building facades in these 
images have positions, orientations, and colorings that 
are a priori unknown. Consequently, training a classifier 
to separate out individual buildings from these views is 

FIGURE 27. Models for 29 buildings around MIT’s east-
ern campus are superposed against the ladar point cloud for 
Cambridge, Mass.

(a) (b)

FIGURE 28. Georegistered ground photos displayed among 3D building models. (a) 230 of 2317 reconstructed photos rep-
resented as frusta. (b) Close up view of frusta illustrates cameras’ geopositions and pointing directions. [video]
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FIGURE 29. The alignment between 2D ground photos and 3D building models can be 
seen after the 3D viewer’s virtual camera assumes the same position and orientation as 
the georegistered cameras and their image planes are faded away. [video]

(c)

(b)

(a)

FIGURE 30. Building segmentation within street-level imagery. (a) Two representative pho-
tos shot around MIT. (b) Colored polygons indicate clipped 3D wall regions that are visible 
within the photos’ georegistered frusta. (c) Image-plane pixels corresponding to individual 
buildings are tinted with distinct colors. 



124 LINCOLN LABORATORY JOURNAL    VOLUME 20, NUMBER 1, 2013

3D EXPLOITATION OF 2D IMAGERY

difficult. But once geometry relationships between image 
planes and the abstract map are known, a machine can 
identify and clip 3D polygons that are visible to the recon-
structed cameras (Figure 30b). When the clipped world-
space polygons are projected onto the 2D image planes 
and colored according to model identity, building masks 
are effectively generated for the photos (Figure 30c). 

Geoaligned ground photos may further be exploited 
to develop photorealistic 3D maps for complex city 
scenes. This ambitious objective represents an active 
area of academic and commercial research. Popular 3D 
modeling programs such as SketchUp provide interactive 
tools for constructing urban buildings [27]. But textur-
ing building facades with digital photo content remains a 
manually intensive process. Therefore, it is instructive to 

investigate how thousands of reconstructed images could 
be used to semiautomatically paint details onto relatively 
coarse 3D models. 

Given a set of digital pictures such as those of MIT’s 
medical center in Figure 31, a machine can identify rect-
angular faces of world-space models onto which they 
backproject. The 3D corners for each building face are 
next converted into 2D planar coordinates, and the cor-
ner points are projected into the photos’ image planes. 
Geometrical relationships between the former and latter 
planes define homographies that can be used to ortho-
rectify building facades. Orthorectified “decals” are gen-
erated by applying the homographies to all facade pixels 
within the original images. Figure 32 exhibits building 
facade decals corresponding to the photos in Figure 31. 

(a)

(c)

(b)

(d)

FIGURE 31. Four different photos of MIT’s medical building.
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Because the decals for any particular building facade 
all reside in the same planar coordinate system, they may 
be mosaiced together to generate a composite that covers 
an entire building wall. We have made no attempt to imple-
ment sophisticated color averaging or outlier detection. 
Instead, we simply average together any non-null pixels 
to compute RGB values inside the mosaic. Figure 33 illus-
trates the composite decal for the medical center’s facade.

We have applied this orthorectification and mosa-
icing procedure to four georegistered ground photos for 
three different walls among our 29 building models. The 
final composite decals appear as 3D textures inside the 
MIT map (Figure 34). The results look visually appealing, 
and with more work could be extended to other build-
ings. Alternatively, orthorectified decals could be used as 
starting points for refining building models to incorpo-

FIGURE 33. Simple RGB color averaging of the orthorectified decals in Figure 32 yields this composite mosaic.

(c)

(a) (b)

(d)

FIGURE 32. The four views in Figure 31 transform into medical building decals after model-induced orthorectification.
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FIGURE 34. Mosaic decals for three building walls, generated from 12 reconstructed 
ground photos, are textured onto 3D models.

Manipulate Fused Data Mode

DSCR1926.rd.jpg
id: 501

longitude: -71.08664
latitude: 42.36143
altitude: 6.65967

azimuth: 32;80345
elevation: 1.99350
roll: -0.59782

Filename:

ID: Go to photo

Go to photo

3D ViewerPhoto - Mozilla Firefox

FIGURE 35. Synchronized Google map and 3D viewer displays of reconstructed ground photos. Camera geolocation and 
geo-orientation information are displayed within the web browser when a user clicks on a colored dot. The Google map inter-
face was developed by Jennifer Drexler. [video]
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rate geometric details like window and door locations. We 
leave such model refinement to future work. 

The digital pictures shot around MIT during sum-
mer 2009 were densely collected in many quasi-random 
pointing directions. As a result, the georegistered pho-
tos form a complicated mess. Trying to pick out a sin-
gle frustum from among thousands within a 3D viewer 
is not simple. We thus combined our OpenSceneGraph 
display tool with a web browser interface in order to 
simplify human interaction with the rich dataset. Figure 
35 displays a Google map of MIT’s campus onto which 
the 2300+ reconstructed photos are overlaid as colored 
dots. When the user clicks on an individual dot, the mes-
sage is sent from the web browser to the 3D viewer that 
commands its virtual camera to assume the position and 
pointing of the reconstructed camera. The user may then 
view the selected photo inside the 3D map. 

The particular picture appearing in Figure 35 is note-
worthy because it was obviously taken indoors. This photo’s 
setting— MIT’s medical center—has large glass walls. Con-
sequently, some images snapped inside the medical build-
ing share SIFT feature overlap with others shot outside. 
The results in Figure 35 thus constitute an existence proof 
that geocoordinates for cameras located inside GPS-denied 
environments can be derived via computer vision. 

Social Media Mining via Many  
Uncooperative Cameras 
The examples of 3D imagery exploitation presented in 
the preceding sections have involved progressively greater 

FIGURE 36. Random Flickr photos of the downtown NYC skyline and Statue of Liberty become geometrically organized fol-
lowing 3D reconstruction. [video]

(a) (b)

a priori camera uncertainty that requires increasingly 
greater data processing to resolve. We now turn to the social 
media mining application depicted at the far right in Fig-
ure 3, working with Internet pictures that have little or no 
useful accompanying metadata. Such uncooperatively col-
lected imagery looks significantly more heterogeneous than 
the datasets considered so far. Nevertheless, the basic algo-
rithm flow in Figure 2 may be applied to exploit thousands 
of digital pictures harvested from the World Wide Web. 

We begin by downloading more than 1000 photos 
of the lower Manhattan skyline and the Statue of Liberty 
from the Flickr website [28]. This photo-sharing site con-
tains vast numbers of pictures that users have tagged as 
generally related to New York City (NYC). But our initial 
dataset is otherwise unorganized (Figure 36a). 

Just as for all the preceding imagery exploitation 
examples, processing of the NYC photos begins with SIFT 
feature extraction and matching. As was done for the rural 
aerial and urban ground pictures shot by mobile cameras, 
we recover 3D structure for the 1000+ Flickr photos via 
the SfM approach of Snavely et al. [9, 10, 21]. Relative 
camera positions along with Statue and skyline geometry 
are illustrated in Figure 36b. These results required four 
hours to generate on LLGrid. 

In order to georegister the Flickr photo reconstruction 
to a longitude-latitude grid, we again need data beyond 
just imagery pixels. So we construct a 3D map for NYC, 
starting with aerial ladar points. In particular, we work 
with a Rapid Terrain Visualization (RTV) map collected on 
15 October 2001 (Figure 37a). These data have a 1-meter 
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ground sampling distance. By comparing geolocations for 
landmarks in this 3D point cloud with their counterparts in 
other geospatial databases, we estimate that the ladar data 
have a maximum local georegistration error of 2 meters. 

Complex urban environments are only partially char-
acterized by their geometry. They also exhibit a rich pat-
tern of intensities, reflectivities, and colors. Therefore, we 
next fuse an overhead image with the ladar point cloud. 
Specifically, we work with Quickbird satellite imagery 
that covers the same area of NYC as the RTV data (Figure 
37b). Its 0.8-meter ground sampling distance is compa-
rable to that of the ladar imagery. 

We also introduce GIS layers into the urban map 
(Figure 37c). Such layers include points (e.g., landmarks), 
curves (e.g., transportation routes), and regions (e.g., 
political zones). GIS databases generally store longitude 
and latitude coordinates for these geometrical structures, 
but most do not contain altitude information. Fortunately, 
height values can be extracted from the ladar underlay 
once lateral GIS geocoordinates are specified. 

After combining together the ladar points, satellite 
image, and GIS data, we derive the 3D map of NYC pre-
sented in Figure 38. In this map, the hue of each point is 

proportional to its estimated altitude, while saturation 
and intensity color coordinates are derived from the satel-
lite imagery. The GIS annotations supply useful context.

The 3D NYC map serves as a global backdrop into 
which information localized in space and time may be incor-
porated. In order to georegister the relative SfM reconstruc-
tion with the absolute map, we select 10 photos with large 
angular coverage and small reconstruction uncertainties. 
We then manually pick 33 features in the ladar map coin-
ciding primarily with building corners and identify counter-
parts to these features within the 10 photos. A least-squares 
fitting procedure subsequently determines the global trans-
formation parameters needed to align all reconstructed 
photos with the 3D map. Figures 39 and 40 illustrate the 
1000+ Flickr pictures georegistered with the NYC map. 

In order to efficiently display large numbers of pic-
tures in our OpenSceneGraph viewer, they are rendered 
as low-resolution thumbnails inside frusta when the vir-
tual camera is located far away in world space. When the 
user clicks on some frustum, the virtual camera zooms in 
to look at the full-resolution version of the selected image. 
For example, the top row of Figure 41 illustrates a Statue 
of Liberty photo in front of the statue’s reconstructed point 

(a) (b) (c)

FIGURE 37. 3D NYC map ingredients. (a) Ladar map colored according to height. (b) Satellite image. (c) GIS layer repre-
senting NYC’s road network. 
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FIGURE 38. Fused 3D map of NYC. [video]

FIGURE 39. 1012 Flickr photos georegistered with the 3D 
NYC map. [video]

cloud (for which we do not have ladar data). By compar-
ing geocoordinates for reconstructed points on the Statue 
of Liberty with their pixel counterparts in Google Earth 
overhead imagery, we estimate that the average angular 
orientation error for the georegistered Flickr cameras is 
approximately 0.1 degree. 

A more stringent test of georegistration accuracy is 
provided by the alignment between projected ladar points 
and their corresponding image pixels, particularly for 
cameras located far away from their target objects. The 
second row in Figure 41 exhibits the match between one 
representative skyline photo and the ladar background. 
Their agreement represents a nontrivial georegistration 
between two completely independent datasets. Similarly 
good alignment holds for nearly all other skyline photos 
and the 3D map. 

Once the reconstructed photo collection is georeg-
istered with the NYC map, many difficult exploitation 
problems become tractable. Here we present four exam-
ples of geometry-based augmentation of geospatially 
organized pictures. 
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FIGURE 40. Reconstructed and georegistered Flickr photos of (a) the Statue of Liberty and (b) lower Manhattan skyline. [video]

(a)

(b)
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Urban Scene Annotation 
Our first example of open-source imagery exploitation is 
automatically annotating static objects in complex urban 
scenes. We specifically would like a machine to label 
buildings within Flickr photos of the NYC skyline. This 
annotation problem is extremely challenging because of 
the wide range of possible viewing and illumination con-
ditions. But once a photo collection is georegistered, we 
leverage the fact that building names are tied to specific 
geolocations. After a camera has been globally recon-
structed, projecting skyscraper labels into its image plane 
is straightforward. This basic projection approach holds 
for other geospatially anchored information such as road-
way networks and political zones. 

One technical problem for urban knowledge projec-
tion arises from line-of-sight occlusion. To overcome this 
issue, we convert the ladar point cloud into a height map 
and assume walls drop straight downward from rooftop 
ladar data. If a ray traced from a world-space point back to a 
reconstructed camera encounters a wall, the point is deemed 
to be occluded from the camera’s view. Information associ-
ated with that point is then not used to annotate the image. 
We note that such raytracing works only for static occluders 
like buildings and not for transient occluders like people and 

cars. Figure 42 displays the results for annotating building 
names using this projection and raytracing procedure. 

Image Information Transfer 
Our second exploitation example demonstrates knowledge 
propagation between image planes. Figure 43 illustrates a 
prototype image-based querying tool that exhibits a Flickr 
photo in one window and the 1000+ georegistered frusta in 
another. When a user selects a pixel in the window on the 
left, a corresponding voxel is identified via raytracing in the 
map on the right. A set of 3D crosshairs marks the world-
space counterpart. The geocoordinates and range for the 
raytraced point are returned and displayed alongside the 
picked pixel. Note that the ocean pixel selected in Figure 
43 is reassuringly reported to lie at 0 meter above sea level. 

Once a 3D point corresponding to a selected 2D 
pixel is identified, it may be reprojected into any other 
camera so long as raytracing tests for occlusion are per-
formed. For instance, distances from different cameras 
to previously selected urban features are reported in Fig-
ure 44. Alternatively, static counterparts in overlapping 
air and ground views could be automatically matched. 
Future video versions of this prototype information-
transfer system could even hand off tracks for dynamic 

FIGURE 41. Flickr photo alignments with combined reconstructed and ladar NYC point clouds are seen after the virtual cam-
era assumes the same position and orientation as georegistered cameras and image planes are faded away. [video]
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FIGURE 42. Two Flickr photos were annotated automatically by projecting building names from the 3D NYC 
map into their image planes. 

FIGURE 43. Image-based querying. (a) A user selects two pixels in a Flickr photo. The machine traces their corre-
sponding rays back into the 3D NYC map. (b) Voxels intercepted by the rays have their ranges and altitudes displayed 
within the photo window. [video]

(a) (b)

      1
Range: 367 m
Altitude: 0 m

0

FIGURE 44. Reprojection of voxels indirectly selected in Figure 43 onto two different Flickr photos. Camera ranges 
to 3D voxels depend upon image, while voxel altitudes remain invariant. [video]
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urban movers between multiple cameras, provided the 
movers’ length scales are a priori known. 

Image Segmentation 
Image segmentation represents a classic problem in com-
puter vision that can be dramatically simplified by geom-
etry. For instance, suppose we want to classify every pixel 
in the NYC skyline photos in Figure 45a as belonging to 
sky, ocean, or land. Once the 2D photo is georegistered, 
we can backproject each of its pixels into world space. If a 
raytraced pixel does not intersect any point in the 3D map 
(with occluding walls taken into account), it is categorized 
as sky. Such identified sky pixels are tinted red, as shown 
in Figure 45b. Pixels backprojecting onto points with zero 
altitude above sea level are labeled as ocean and tinted 
blue. Finally, all pixels not classified as sky or ocean are 
deemed to belong to land. The resulting image segmenta-

tion is quite accurate and simple to compute. While this 
particular algorithm may not work in all cases (e.g., places 
where water is above sea level), it could be extended to 
handle more detailed GIS data.

Image Retrieval 
Our last example of 3D exploitation is image retrieval. 
We present here a simple version of a gazetteer capability 
based upon projective geometry. Specifically, when a user 
enters the name of a building or landmark as a text string, 
our machine returns a list of photos containing that object 
ordered by reasonable visibility criteria. 

Using the GIS layer within the 3D NYC map, the 
computer first looks up the geolocation for a user-
specified GIS label. After performing 2D fill and sym-
metry decomposition operations, it fits a 3D bounding 
box around the ground target of interest (see centers of  

FIGURE 45. Examples of photo segmentation. (a) Flickr photos of NYC skyline. (b) Automatically classified sky [ocean] 
pixels are tinted red [blue]. The vertical arrow indicates locations for skyscrapers built after the Rapid Terrain Visualization 
(RTV) ladar data were collected in 2001. 

(a)

(b)

Skyscrapers
built after 2001
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Figures 46 and 47). The computer subsequently projects 
the bounding box into each georegistered image. In some 
cases, the box does not intersect a reconstructed camera’s 
field of view, or it may be completely occluded by fore-
ground objects. But for some of the georegistered photos, 
the projected bounding box overlaps their pixel contents. 
The computer then ranks the image according to a score 
function comprising four multiplicative terms. 

The first factor in the score function penalizes images 
for which the urban target is occluded. The second factor 
penalizes images for which the target takes up a small 
fractional area of the photo. The third factor penal-
izes zoomed-in images for which only part of the target 
appears inside the photo. The fourth factor weakly penal-
izes photos in which the target appears too far off from 
image plane centers. After drawing the projected bound-
ing box within the input photos, our machine returns the 
annotated images sorted according to their scores. 

Figure 46 illustrates the first, second, fourth, and 
eighth best matches to “Empire State Building” among 
our 1000+ Flickr photos. The computer scored rela-
tively zoomed-in, centered, and unobstructed shots of 
the requested skyscraper as optimal. As one would intu-
itively expect, views of the building for photos located 
further down the sorted list become progressively more 
distant and cluttered. Eventually, the requested target 
disappears from sight altogether. We note that these are 
not the best possible views of the Empire State Build-
ing, as our image database covers a fairly small range 
of Manhattan vantage points. In contrast, the projected 
bounding boxes in Figure 47 corresponding to the first, 
second, fourth, and eighth best matches to “1 Chase Man-
hattan Plaza” are larger than their Empire State Building 
analogs. Our reconstructed skyline cameras have a better 
view of the downtown banking building than the iconic 
midtown skyscraper.

FIGURE 46. Examples of image retrieval. First, second, fourth, and eighth best matches to “Empire State Building” among 
1012 Flickr photos. The projection of the skyscraper’s 3D bounding box is colored red in each image plane.

First match

Fourth match

Second match

Eighth match

3D bounding box
generated for
“Empire State
Building” input
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Future robust versions of this image retrieval capabil-
ity would provide a powerful new tool for mining imag-
ery. Unlike current text-based search engines provided 
by Google, Flickr, and other web archives, our approach 
requires no prior human annotation of photos in order 
to extract static objects of interest from complex scenes. 
To the extent that input photos can be automatically 
reconstructed, the geometrical search technique is also 
independent of illumination conditions and temporal 
variations. It consequently takes advantage of the inher-
ent geometrical organization of all images. 

Ongoing and Future Work 
In this article, we have demonstrated 3D exploitation 
of 2D imagery in multiple contexts. To appreciate the 
broad scope of problems that geometry can help solve, we 
return in Figure 48 to an extended version of the imag-
ery exploitation applications presented in Figure 3 at the 
beginning of this article. 

Defense and intelligence community applications 
are again ordered in the figure by their a priori camera 
uncertainty and data processing complexity. Perimeter 
surveillance and aerial reconnaissance involve imagery 
that is cooperatively collected. For such problems, par-
tial or even complete estimates for camera parameters 
are often obtainable from hardware measurements. 
Therefore, we are currently working to exploit camera 
metadata accompanying cooperatively gathered imagery 
in order to significantly speed up its geometrical pro-
cessing. Near-real-time 3D exploitation of cooperatively 
collected imagery will have major implications for intel-
ligence, surveillance, and reconnaissance applications as 
well as robotic operations. 

On the other end of the imagery-gathering spectrum 
lie Internet pictures that come with little or no useful cam-
era metadata. Parallelized computer clusters are required 
to perform massive calculations to exploit web images 
originating from unorganized online archives. Prelimi-

FIGURE 47. First, second, fourth, and eighth best matches to “1 Chase Manhattan Plaza” among 1012 Flickr photos.

First match Second match

Fourth match Eighth match

3D bounding box
generated for “1 

Chase Manhattan 
Plaza” input
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nary experiments have demonstrated that it is sometimes 
possible to topologically and geometrically match pictures 
gleaned from the Internet with structured data reposito-
ries. When such matching is successful, intelligence can 
propagate from known into unknown images as we have 
repeatedly demonstrated throughout this article.

Looking into the future, we see computer vision inexo-
rably moving toward assigning “fingerprints” to every digital 
photo and video frame. If the technical challenges associ-
ated with fingerprinting and retrieving images on an Inter-
net scale can be overcome, it should someday be possible to 
search for arbitrary electronic pictures just as we search for 
arbitrary text strings on the web today. Much work needs 
to be done before arbitrary image search and geolocation 
will become a reality. But we look forward to continuing 
progress in this direction and the many interesting techni-
cal developments that will transpire along the way. 
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