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Automated Dynamic 
Resource Allocation for 
Wildfire Suppression

Between 2002 and 2012, the U.S.  
Forest Service and the Department of the 
Interior spent on average $3.13 billion per 
year on wildland fire protection [1]. Nearly 

$1 billion of that funding was devoted solely to fire sup-
pression efforts. Currently, allocating resources for fire 
suppression is a subjective process, relying in many cases 
on individual commanders’ decisions that are based on 
insufficient information. An automated system would 
help commanders cope with situational uncertainty, time 
pressures, and limited resources by providing actionable 
recommendations [2]. 

Tactical wildland fire management is one example of 
problems involving resource allocation in highly uncer-
tain, dynamic environments. Similar problems include 
urban search and rescue, flood monitoring and manage-
ment, and earthquake response. Such problems involve 
high dimensionality (e.g., large number of locations or 
resources), uncertain dynamics, many combinations of 
resource assignments, and the balancing of multiple com-
peting objectives. 

Dynamic resource allocation (DRA) problems are spe-
cial cases of a more general class of problems called Mar-
kov decision processes (MDP) (see sidebar titled “Markov 
Decision Processes” on the following page). MDPs are a 
mathematical formulation of problems in which the system 
dynamics are partially random and partially controllable by 
a decision maker. MDPs are a reasonable model for wildfire 
suppression as well as for many other autonomous systems 
problems in defense. For example, MDPs can also be used 
to model fleet protection, military logistics, mine counter-
measures, surveillance missions, battle management, com-

Wildland fires pose a significant threat to life 
and infrastructure, and suppression efforts are 
costly in manpower and resources. Although 
important advances in situational awareness 
tools and communication technologies have 
greatly aided incident commanders in directing 
suppression efforts, there is still a lack of 
effective autonomous dynamic decision support 
systems that provide resource allocation 
recommendations to help commanders cope 
with the uncertainty of evolving fire dynamics 
and time pressures.
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its performance on DRA problems has not, until now, been 
empirically studied. An alternative is to use what we loosely 
term mathematical optimization (MO). The essential idea 
is to approximately model the MDP as a mixed-integer lin-
ear optimization problem and use a commercial solver to 
find either optimal or high-quality, feasible solutions.

Empirical studies involving the wildland fire problem 
indicate that MCTS handles smaller problems better than 
MO does because MCTS is attempting to approximate 
the solution to an exact model, whereas MO is attempt-
ing to find the exact solution to an approximate model. 

mand and control, and many other defense applications. 
In fact, some of the earliest work with MDPs was in opera-
tions research for the military.

This article explores two general approaches for find-
ing approximate solutions to DRA problems represented as 
MDPs. The first approach involves a method called Monte 
Carlo tree search (MCTS), which adaptively samples future 
trajectories (or time sequences of states) to various sam-
pling depths from the probability distribution specified by 
the MDP. It is known that MCTS will asymptotically con-
verge to the optimal solution in the limit of samples, but 

Markov decision processes (MDP) are a 
general framework for formulating sequential deci-
sion problems [a]. The concept has been around 
since the 1950s, and it has been applied to a wide 
variety of important problems. The idea is simple, 
but the effective application can be very complex. 
Figure A shows a small MDP with three states. 
Available from each state is a set of actions. Actions 
A and B are available from all three states. Depend-
ing on the current state and the action taken, the 
next state is determined probabilistically. For 
example, if action A is taken from state 2, there is 
a 60% chance that the next state will be 1 and a 
40% chance the next state will be 2. The benefits 
or rewards of any action are generated when transi-
tions are made. Rewards can be positive, such as 
+1 and +5 in the example, or they can be negative, 
such as −10 for making the transition from state 3 to 
state 2 by action B. The objective in an MDP is to 
choose actions intelligently to maximize the accu-
mulation of rewards or, equivalently, minimize the 
accumulation of costs. Here, for example, action A 
from state 3 shows the highest reward (+5).

Markov Decision Processes

FIGURE A. This simple, three-state system depicts 
the principal features of a Markov decision process. 
From each state (green circles), a decision must be 
made between action A or B. Depending on which action 
is selected, the system will transition to some new state 
according to the probabilities shown in the diagram 
(black numbers). Rewards (orange arrows) are assigned 
to certain transitions on the basis of the advantages of 
the subsequent state (e.g., suppressed fires).

Reference
a. 	 R. Bellman, Dynamic Programming. Princeton, N.J.: 

Princeton University Press, 1957.
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However, MO tends to perform well with larger state 
and action spaces when MCTS is not able to adequately 
sample the relevant spaces. The difficulty with MO is that 
it outputs only feasible solutions, which may or may not 
be truly optimal, and it may not find a feasible solution 
in a reasonable amount of time. In contrast, MCTS is 
an anytime algorithm and will use whatever process-
ing time is available and, if it gets interrupted, it can 
still output the best solution found so far in its search. 

The contributions of this article are the following:
•	 The MCTS-based approach for a problem in-

spired by tactical wildfire management is signifi-
cant as it represents the first application of MCTS 
to a DRA problem motivated by a real-world ap-
plication. This approach combines a number of 
classical features of MCTS, such as banded up-
per confidence bounds, with new features, such 
as double progressive widening (see page 18). 
Furthermore, we also develop a custom heuristic 
for the problem to use as a tree policy and rollout 

policy, and a custom action-generation approach 
to cope with the size of the state and action spaces.

•	 An MO formulation approximates the original dis-
crete and stochastic elements of the problem by 
suitable continuous and deterministic counter-
parts. Although this approximation is in the same 
spirit as discussed in other fluid approximation 
literature in operations research, our particular 
formulation incorporates elements of a linear dy-
namical system. We believe these elements may be 
of independent interest in other DRA problems.

•	 The MCTS and MO approaches both produce high-
quality solutions, generally performing as well as or bet-
ter than a customized heuristic for this problem. MCTS 
appears to have a slight edge over the MO approach 
when the state space of the problem is small. With a 
fixed computational budget, however, the MO ap-
proach begins to outperform the MCTS approach as the 
problem instance grows, either in state space or action 
space. Indeed, for very large action spaces, MCTS can 

Mixed-integer linear optimization refers to 
optimization problems in which (1) all of the con-
straints and the objective functions are linear func-
tions of the controls and (2) some or all of the 
controls are constrained to take integer values. As 
a special case, these controls may further be con-
strained to be binary, i.e., 0 or 1. Many types of 
deterministic optimization problems, including the 
traveling salesman problem (minimizing the total 
distance or time covered between multiple points) 
and certain scheduling problems, can be formulated 
as mixed-integer linear optimizations [a].

There exist computational complexity results 
suggesting that mixed-integer linear optimization 
is computationally intractable for large instances 
from a theoretical point of view. From a practical 
point of view, however, a number of commercial 
and open-source software codes solve problems 

Mixed-Integer Linear Optimization

References
a. 	 W. Cook, In Pursuit of the Traveling Salesman: Math-

ematics at the Limits of Computation. Princeton, N.J.: 
Princeton University Press, 2012.

b. 	 L. Wolsey, Integer Programming. Somerset, N.J.: Wiley 
Press, 1998.

of this type, even for very large instances. Over the 
last 25 years, a 200-billion-factor speedup in these 
codes has resulted from algorithmic advances and 
improved computer hardware. (For example, the 
notorious traveling salesman problem for an area 
the size of the United States can now be solved in a 
few seconds on an iPhone [b].) 

Thus, contrary to theoretical complexity results, 
we consider mixed-integer linear optimization to 
be practically tractable for many problems and will 
later provide evidence supporting this opinion with 
respect to our model.
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begin to perform worse than our baseline heuristic. The 
MO approach by comparison still performs quite well.

Wildland Fire Dynamics
Several methodologies proposed in the literature for simu-
lating fire dynamics differ with regard to the features they 
capture. In the United States, FARSITE simulation soft-
ware is frequently used by federal land management agen-
cies to predict fire growth [3]. Both FARSITE and a more 
recently proposed revision of the model, Prometheus [4], 
use deterministic simulators to model fire growth. These 
models are particularly suited for studying the underlying 
causes of wildland fires and representing the relationships 
between spread rate, terrain slope, fuel type (e.g., dry tin-
der, small shrubs, large trees), and wind [4, 5]. Although 
these models are capable of representing many features 
of wildland fire dynamics with high fidelity, they neglect 
the sources of randomness in the spread. Consequently, 
these models may be unreliable at the time scale needed 
for tactical management.

Stochastic models (e.g., those in [6–8]) provide an 
alternative to deterministic models. In general, these 
approaches divide the terrain into a collection of cells, 
each of which may be burning. A fire in one cell may 
spread to nearby ones. Stochastic models often carry a 
larger computational burden; they must consider mul-
tiple possible trajectories for the fire spread from each 
cell. Nonetheless, uncertainty in the rate and direction 
of spread is a key challenge in tactical fire management.

Most deterministic and stochastic models used 
today are based on early fire-spread models developed 
by Rothermel in the 1970s [9]. The mathematical repre-
sentation characterizes the fire-spread rate and intensity 
as a function of surface fuel type and load, terrain slope, 
wind, and moisture content of the fuel. This representa-
tion allows the specific conditions of a wildland fire to 
inform fire-spread predictions.

Tactical wildland fire managers have access to a 
number of resources to combat a wildland fire: fire-
fighter crews, heavy equipment such as bulldozers, 
and aerial drops [10]. Various tactics can be used to 
apply these resources. One is a direct attack in which 
the resource works directly on the fire. An example of a 
direct attack is dropping water or suppressant chemi-
cals on the fire. Indirect attacks generally involve allo-
cating the resource at some offset from the fire and 

having resources take action that prevents the spread 
of the fire later on. For example, firefighters may build 
a fire line or perform a controlled burn to remove sur-
face fuel from the terrain. Some work has been done on 
modeling the effects of resources on fire spread [11]; 
however, these models are limited compared to the 
mathematical models for describing fire spread.

Modeling Fire Dynamics
The MDP to model tactical wildland fire management 
is inspired by the stochastic model for wildland fire 
simulation [6]. Several key features of the problem 
include stochastic spread over time and this spread’s 
dependence on fuel and weather patterns. 

An environment where a fire is active or where a 
fire might start in the future is broken down into seg-
ments, such as hillsides, valleys, areas with high tin-
der content, and areas of increased threat (populated 
areas). Each segment of the entire landscape is parti-
tioned into a grid of cells. There are two attributes for 
each cell:
•	 B (x), a Boolean variable indicating whether the cell x 

is currently burning, and 
•	 F (x), an integer variable indicating how much fuel is 

remaining in cell x.
The collection of these attributes over all cells in the grid 
represents the state of the MDP.

The MDP decisions correspond to assigning a set of 
suppression resources fighting the wildland fire, Q (x), 
applied at location x. For each suppression resource, 
denote the cell to which it is applied as i. It must be 
assumed that any resource can be assigned to any cell 
at any time step. If the suppression resource is an aer-
ial water drop from an aircraft, for example, then the 
assumption must be made that the travel time between 
cells is small compared to the decision interval in the 
Markov process.

The fuel in an ignited cell decreases at a constant rate. 
Without loss of generality, we can rescale the units of fuel 
in each cell to assume that this rate is one unit. Thus, we 
model the evolution of fuel in the model by

	

Ft (x)

Ft (x) - 1
Ft+1 (x) = { if B (x) U Ft (x) = 0

otherwise.

Notice this evolution is deterministic given Bt (x). The 
reward for a cell burning is R (x) (always negative) and the 
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Our formulation for wildfire dynamics  
resembles Conway’s Game of Life [a], a fully deter-
ministic game played on a (theoretically infinite) 
two-dimensional grid, but with an important differ-
ence. Once the initial configuration is set, the sub-
sequent state for each cell is set deterministically. 
In the Game of Life, an initial state is set by activat-
ing some squares (living cell); this action can be 
done randomly or by specified patterns. Notice that 
each cell of the grid has eight neighboring cells—
four adjacent orthogonally, four adjacent diagonally. 
The rules of the game govern three states: 
•	 Survivals. Every living cell with two or three neigh-

boring cells survives for the next generation.
•	 Deaths. Each living cell with four or more neighbors 

dies (is removed) from overpopulation. Every cell 
with one or no neighbor dies from isolation.

•	 Births. Each empty cell adjacent to exactly three 
neighbors is a birth cell. 

Since each cell has at most eight neighbors, 
these dynamics parallel the sparse probabilistic 
P (x, y) matrix later described in the main text. It is 

Deterministic versus Probabilistic Models
important to understand that all births and deaths 
occur simultaneously. Together they constitute 
a single generation. Figure A shows a few initial 
states and their subsequent few steps, some lead-
ing to stability (e.g., burning locations fixed until 
their fuel runs out). 

In the realm of wildfire suppression, the prior 
three rules can be restated as follows:
•	 Survivals. There is enough fuel in a cell and 

nearby heat to keep the cell burning.
•	 Deaths. The fuel in a cell is completely consumed 

and the fire is extinguished.
•	 Births. Nearby cells ignite the fire in a new 

location.
In this deterministic model, fire suppression 

could be applied to exact locations with perfect 
foreknowledge of where the fire was going to 
spread, killing a fire within a very few number of 
steps. In our model that has random transitions, 
however, we do not have perfect foreknowledge, 
and suppression may take many time steps as the 
fire spreads unpredictably.

FIGURE A. Several 
configurations of three 
and four hot-spot initial 
states show the effects of 
deterministic actions on 
cells. Some configurations 
achieve stability, others grow 
forever, others disappear, 
and still others cycle back 
and forth through states. 
Compare this figure to 
Figure B, in which the 
current state is partially 
unknown and the direction 
of the fire path is unknown. 
Blinkers and beehive are 
Conwayʼs names for the 
bottom two configurations 
respectively.

Iterations

0 1

Stable

2

Blinkers
(stoplights)

3
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(stable)
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total reward received every step is Bt x( )
t, x

∑ R x( ). The 
reward across the grid varies to represent a higher cost of a 
fire in particular areas. For example, we may penalize a fire 
in a populated area more heavily than one in open terrain. 
The evolution of Bt (x), however, is stochastic. Figure 1 
where P(x, y) is the probability that a fire in cell y causes 
cell x to burn during the time step and 

	

1 - ∏y(1 - P (x, y) Bt ( y))
0

ρ
1 = { if Ft (x) > 0

otherwise

	
1 - ∏i (1 - Q (x) δ x (a(i)))

0
ρ

2 = { if Ft (x) = 0

otherwise.

Generally, only the neighbors of x can ignite x, and so 
we expect P (x, y) to be sparse. (See the sidebar titled 
“Deterministic versus Probabilistic Models” for a 
comparison of two distinct methods of fire ignition.) 
The specification of P (x, y) can capture the tendency of 
a fire to propagate primarily in one direction because of 
wind. Later in this article, we discuss how P (x, y) may 
be calibrated to environmental data like wind direction. 
Q (x) is the probability that a suppression effort on cell 
x successfully extinguishes the cell and δx (a(i)) is an 
indicator function, which is 1 when a suppression resource 
is applied to cell x and 0 for cells in which no suppression 
effort is applied. The probability of success for multiple 
suppression attempts on the same cell is assumed to 
be independent. It must be noted that under these 
dynamics, cells that have been previously extinguished 
by a suppression team may later reignite.

Calibrating Fire Dynamics with  
Environmental Data
In order to model a specific fire, the values for the model 
parameters can be estimated from environmental data. 
Specifically, the transition matrix P (x, y) allows a great 
deal of flexibility in incorporating environmental data (e.g., 
hills, types and amounts of fuel). This transition matrix can 

FIGURE B. Conditions near a wild-
fire might give the fire-suppression 
coordinator good indications of where 
a fire might spread, but the situation 
is probabilistic and uncertain. On 
the left, the uncertainty is in the cur-
rent state of the fire; on the right, the 
direction of the spread of the fire is 
uncertain.

Reference
a.	 M. Gardner, “Mathematical Games—The Fantastic Combinations of John Conwayʼs 

New Solitaire Game ‘Life’,” Scientific American, vol. 223, 1970, pp. 120–123. 

FIGURE 1. The stochastic transition model B (x) can be 
represented by two states, false (no fire) and true (fire), and 
by the relative changes from false to true and true to false. 
r1 represents the probability of a location catching fire, and 
r2 represents the probability of the fire at a location being 
extinguished. In general, r1 is larger when neighboring cells 
are on fire and when certain environmental conditions hold 
(e.g., dry weather, dry or dead vegetation, upslope terrain). 
Similarly, r2 is larger when the surface fuel is expelled in 
the area or when more suppression efforts are applied to  
an area.
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ρ 1

ρ 2
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slow spread
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be calibrated by leveraging existing deterministic models 
for wildland fire dynamics [6]. Specifically, we let

	 P (x, y) =1 e t ,

where the rate of spread l is described as a function of
•	 the location of (and therefore distance between) x and y,
•	 direction of y to x, relative to the
•	 direction (and speed) of the wind, and
•	 a constant lb .
The constant lb is a terrain-specific base rate of spread, cal-
culated from the Canadian Forest Fire Behavior Prediction 
System [12]. As described therein, lb is a function of the 
fuel type and assumes zero wind speed. The maximum 
rate of spread lmax is a function of both the fuel type and 
the current wind speed. The computed rates of spread, 
lb and lmax , include a slope spread factor that is a func-
tion of the terrain elevation angle—a fire will spread 
faster uphill than downhill. Figure 2 shows our visualiza-
tion tool’s depiction of a simulated wildland fire. In this 
simulation, the fire spreads faster uphill. The appendix 
describes in further detail the visualization tool and simu-
lator that we developed.

Monte Carlo Tree Search
One of the most successful sampling-based online 
approaches for solving MDPs in recent years is MCTS, 
illustrated in Figure 3 [13]. In contrast with many 
other online methods, the complexity of MCTS does 
not grow exponentially with the planning horizon 

(depth and breadth of the search). In MCTS, a gen-
erative model produces samples of the next state and 
reward given the current state and action. All of the 
information about the state transitions and rewards is 
represented by the generative model; the state transi-
tion probabilities and expected reward function are 
not used directly. The generative model can be thought 
of as a simulator.

The initial algorithm involves running many simu-
lations from the current state while updating an esti-
mate of the state-action value function Q (s, a)—that 
is, the expected reward for taking an action a from a 
given state s. There are three stages in each simulation:
•	 A search stage is initiated if the current state in the 

simulation has already been visited during the exe-
cution of the algorithm. During the search stage, the 
state-action value function is updated for the states 
and actions visited and tried. The number of times that 
a state is visited, N (s), is maintained, as is the num-
ber of times action is taken from a state N (s, a). Dur-
ing the search, we execute the action that maximizes 

	
Q (s, a) + c

log N (s)
N (s, a)

,

where c is a parameter that controls the amount 
of exploration in the search. The square-root term 
is an exploration bonus that encourages selecting 
actions that have not been tried as frequently (i.e., 
new states).

FIGURE 2. This illustration 
shows a simulated fire with 
dynamics based on environmen-
tal data. The fire is spreading 
faster uphill (toward the top of 
the figure) in this simulation. In 
such a case, although the cost for 
the homes located downhill to the 
fire might be significantly higher 
than that for open woods, sup-
pression efforts should focus on 
the uphill regions.
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•	 The expansion stage occurs once a state that has 
not yet been visited is reached. We iterate over all 
of the actions available from that state and initial-
ize N (s, a) and Q (s, a) with N0 (s, a) and Q0 (s, a), 
respectively. The functions N0 and Q0 can be based 
on prior expert knowledge of the problem; if none is 
available, then both functions can be initialized to 0. 

•	 The rollout (depth search) follows the expansion stage. 
We simply select actions according to some rollout 
(or default) policy π0 until the desired depth (level of 
action and appropriate result) is reached. Typically, 
rollout policies are stochastic; thus, the action to ex-
ecute is sampled. The rollout policy does not have 
to be close to optimal, but it is a way for an expert 
to bias the search into areas that are promising. The 
expected value is returned and is used in the search 
to update the value for Q  (s, a) for the search phase.

Simulations are run until some stopping criteria are 
met, often simply a fixed number of iterations. The action 
that maximizes Q (s, a) is executed. Once that action has 
been executed, the MCTS is run with the new Q (s, a) 
to select the next action. It is common to carry over the 
values of N (s, a), N (s), and Q (s, a) computed in the previ-
ous step. Figure 3 shows examples of the search tree after 
different numbers of algorithm iterations.

Double Progressive Widening
Monte Carlo tree search with double progressive 
widening (MCTS-DPW) is a variation of MCTS that 
explicitly controls the branching factor of the search 
tree [14]. This variation is specifically necessary 
when the action space is continuous or so large that 
all actions cannot possibly be explored. For example, 
consider the case in which the number of permissible 
actions is greater than the number of iterations; the 
standard MCTS algorithm presented in the last section 
will never expand the search tree past a depth of one step.

The modified algorithm applies the simulate function 
used in MCTS-DPW to control the number of actions and 
the number of next states considered from state s:
1.	 The first progressive widening controls the number 

of actions considered from a state. A new action 
is generated only if the number of actions already 
explored from a state N (s, a) is below a certain 
parameter-defined limit. A default strategy for gen-
erating new actions is to randomly sample from 

candidate actions. Once N (s, a) reaches the limit-
ing number, we execute the action that maximizes 
 
 
	

Q (s, a) + c
log N (s)
N (s, a)

,

the same function as in the standard MCTS. 
2.	 Next, a sample (s', r), the transitioned state and its 

reward, is selected. New parameters related to state 
s' limit the number of states transitioned from s. We 
then continue our search from s', the new state.

Action Generation
As previously mentioned, a default strategy for generat-
ing new actions during the search stage of the algorithm 
involves randomly selecting an action from all candidate 
actions. Another approach is to randomly select actions 
that focus on a portion of the action space defined by 
some heuristic. Eventually both of these strategies will 
sample the entire action space; however, a downside of 
these approaches is that action generation does not lever-
age any information received during previous iterations 
of the algorithm. Consider MCTS after several iterations. 
Prior Q (s, a) states and actions could provide some indi-
cation of the portions of the action space from which it is 
promising to sample.

Another approach involves using the estimates 
of Q(s, a) to bias the sampling procedure through a 
sampling scheme inspired by genetic algorithm search 
heuristics [15]. The approach outperforms the default 
strategies. It involves generating actions using one 
of three approaches with individual probabilities for 
each:
•	 An existing action in the search tree is mutated,
•	 Two existing actions in the search tree are recom-

bined by joining allocation subsets from each of the 
actions, or

•	 A new random action is generated from the default 
strategy. 

When actions mutate or recombine, the existing 
action (or actions) is selected from A (s) using a method 
in which the fitness for each action is proportional to 
Q (s, a).

Rollout Policy
A heuristic for the rollout policy, or action state, in MCTS 
assigns a reward weight to each cell x,
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FIGURE 3. Representative examples of MCTS search trees can show additional information beyond sim-
ple connections. Here, circles correspond to states, while squares correspond to actions. The thickness 
of the intersecting lines is proportional to the number of times that the part of the tree has been searched. 
Darker node colors correspond to higher Q (s, a) estimates.
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W (x)=
R (y)
D (x,y)

,
y
∑

where R (y) is the reward for cell y and D (x, y) is the short-
est distance between x and y assuming that the distance 
between adjacent cells is P (x, y). Values for D (x, y) can be 
determined using a graph analysis algorithm, such as the 
Floyd-Warshall (FW) algorithm [16]. The weight for each 
cell is calculated offline because the weight does not depend 
on how much fuel is left or whether or not a cell is burning.

During MCTS, the rollout policy involves selecting the 
cells that are burning and assigning resources to the high-
est-weighted cells. We are also able to generate candidate 
actions by randomly sampling the corresponding weights. 
Figure 4 shows example weights assigned to different cells 
on an eight-by-eight grid with varying reward profiles.

Mathematical Optimization
A deterministic optimization problem approximating 
the original MDP is applied at each decision step. This 
approximation is resolved based on the current state of the 
process, and the first prescribed allocation of resources is 
selected. These types of optimization schemes are some-
times referred to as model predictive control. 

The key feature of the MO formulation is the use of 
a deterministic, “smoothed” version of the dynamics 
presented earlier. Rather than modeling the state with 
a discrete level of fuel and binary state of burning, fuel 
is modeled as a continuous quantity, as is a new (con-
tinuous) intensity level of each cell representing the 
rate at which fuel is consumed. Other authors in the 
operations research literature have used similar ideas 
when motivating various fluid approximations. For 
example, continuous fluid approximations have been 
used to study the control of queuing networks [17]; the 
size of each queue in the network can be modeled con-
tinuously through systems of differential equations, 
and the decision at each time step for each server in 
the network is the “rate” at which each queue is being 
served or emptied. Another example comes from rev-
enue management. In a typical revenue management 
problem, the decision maker needs to sell some fixed 
inventory of a product and must at each point in time 
set a price for this product. The price determines the 
rate of a stochastic demand process, with the goal of 
maximizing the total revenue at the end of the sell-

ing period. The optimal solution of the exact problem 
is, with few exceptions, extremely difficult to obtain. 
However, if the dynamics of the problem are relaxed so 
that the demand is continuous and arrives at a deter-
ministic rate that varies with the price, one can obtain 
useful bounds and near-optimal pricing policies for the 
exact stochastic problem [18].

Smoothing the dynamics allows for two impor-
tant simplifications. First, the probabilistic dynamics 
described earlier can be replaced with simpler, determin-
istic dynamics governing the evolution of the intensity 
of the fire. Second, and most importantly, it is no longer 
necessary to consider the entire exponentially large state 
space of the MDP but rather only its evolution along the 
one path defined by the deterministic dynamics.

Optimization Model
Let At (x, i) be a binary variable that is 1 if suppression 
resource i is assigned to cell x at time t, and 0 otherwise; 

FIGURE 4. Various example heuristic weights were used in 
the rollout policy. Lighter-shaded cells correspond to higher 
weights and are generally applied to cells closest to the high-
est-value cells.

(a) Uniform reward (b) Large negative reward
      in bottom row

(d) Large negative reward
      in all corners

(c) Large negative reward
      in lower left
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At is the main decision variable of the problem. Recall 
that Ft (x) denotes the amount of fuel available at the start 
of period t in cell x. Furthermore, let It (x) represent the 
intensity of the fire in cell x at time t. Intensity is a con-
tinuous decision variable that will be determined by the 
optimization algorithm. Unlike in the original MDP for-
mulation, it is no longer possible to rescale the parameters 
so that exactly one unit of fuel is consumed per period.

The objective of this process is the sum of the intensi-
ties over all of the time periods and over all cells, weighted 
by the importance factor of each cell in each time period. 
Several restrictions—a combination of linear and integer 
constraints—must be considered while performing this 
calculation: 
1.	 Without intervention and without regard for fuel, the 

intensity of a cell one step into the future is the cur-
rent intensity plus the sum of the intensities of the 
neighboring cells weighted by the transmission rate. 
If suppression team i is assigned to cell x at time t – 1, 
the intensity is reduced. If the cell’s fuel is below a 
certain value at time t – 1, then the intensity is again 
reduced. Recall that the intensity of a cell is upper 
bounded by the initial fuel of that cell.

2.	 The remaining fuel at a particular point in time is a 
function of the intensity (intensity is assumed to be 
the fuel burned in a particular time period).

3.	 If there is insufficient fuel in cell x at period t, then 
the intensity of that cell in the next time point is 0. 
If there is sufficient fuel, then the intensity is at most 
F0 (x), the initial fuel in the cell, which is already 
implied in the formulation.

4.	 Each suppression team or vehicle is assigned to at 
most one cell in each period.

5.	 The fuel and intensity are continuous nonnegative 
variables, and the sufficient fuel and team assignment 
variables are binary.
The mixed-integer linear optimization model has 

two sets of binary variables: the At (x, i) variables that 
model the assignment of suppression teams i to cells x 
over time t, and the variables that model the loss of fuel 
over time. 

In highly resource-constrained environments (when 
it is not possible to solve the above model to optimal-
ity), extremely good approximate solutions can still be 
obtained by relaxing the At (x, i) variables to be con-
tinuous within the unit interval [0, 1]. Then, given an 

optimal solution with fractional values for the At (x, i) 
variables at t = 0, we can compute a score value v (x) for 
each cell x as v (x) =     ( A (x, i)) over i. Suppression teams 
are then assigned to the cells with the highest values of 
the index v.

Calibrating the Optimization Model
Given the parameters for the original MDP formulation 
of the tactical wildland fire management problem, the 
parameters for our nominal optimization formulation are 
obtained as follows:
1.	 The intensity in a cell at time t is computed by a 

modified version of the fire dynamics that assumes no 
intervention and infinite fuel. Further, this approach 
assumes that transmission rates between cells are 1, 
which implies that the fire spreads as quickly as possible.

2.	 The initial fuel in a cell is obtained by summing 
the fuel threshold (minimum fuel capable of sus-
taining fire) and the intensity values over times  
t = 0, 1, …, min {T, F (x)}, where F (x) is the num-
ber of periods that cell x can burn into the future, 
according to the original MDP dynamics.

3.	 Intuitively, since the intensity It (x) can be thought of 
as how much fuel was consumed by the fire in cell x 
at time t, the initial fuel value F0 (x) can be thought 
of as a limit on the cumulative intensity in a cell over 
the entire horizon. Once the cumulative intensity has 
consumed most of the fuel, the fuel in the cell enters 
the interval [0, d], at which point the intensity is 
forced to zero for all remaining time periods.

Computational Experiments
This section presents experiments comparing MCTS and 
the MO formulation in order to understand their rela-
tive strengths and weaknesses. Two principal insights are 
obtained from the computations:
•	 Overall, MO performs as well as or better than MCTS 

performs, and for even reasonably large problems, 
the solution times are acceptable.

•	 Although the MCTS approach works well for certain 
smaller examples, its performance can degrade for 
larger examples (with a fixed computational budget). 

Algorithmic Parameters and Experimental Setup
In what follows, we use a custom implementation of 
MCTS written in C++ and use the mixed-integer opti-

W (x)=
R (y)
D (x,y)

,
y
∑
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FIGURE 5. In these graphs of the rewards for grid one, the magnitude of rewards increases from lower 
left to upper right (the upper right corner is fixed at –10 in each case). The general objective of fighting a 
fire in the grid one scenario is to prevent the fire from spreading to the upper right corner.

mization software Gurobi Optimizer 5.0 [19] to solve 
the MO formulation. All experiments were conducted 
on a computational grid with 2.2 GHz cores with 4 GB 
of RAM in a single-threaded environment. Although it 
is possible to parallelize many of the computations for 
each of the four methods, we do not explore this pos-
sibility in these experiments.

To ease comparison in what follows, we generally 
present the performance of each of our algorithms rela-
tive to the performance of a randomized suppression 
heuristic. At each time step, the randomized suppres-
sion heuristic chooses cells (without replacement) from 
those cells that are currently burning and assigns sup-
pression teams to them. This heuristic should be seen 
as a naïve straw man for comparison only. We will also 
often include the performance of our more tailored 
heuristic, the FW heuristic, as a more sophisticated 
straw man.

Grid One
The primary purpose of this experiment is to explore the 
scalability of the various approaches.

In this setup, a k-by-k grid is generated with a vary-
ing reward function. There is a –1 reward received when 
the lower left cell is burning, and the reward for a cell 
burning increases by 1 when moving one box up or to the 

right across the grid. Also, the reward in the upper right-
hand corner is always −10. Figure 5 shows the rewards for 
k = 8 and k = 12 grids. The fire in this experiment propa-
gates with a probability of ignition from nearest neigh-
bors of 0.06. For this experiment, suppression efforts are 
successful with an 80% probability—Q (x) = 0.8 for all x 
in the grid space.

For a single simulation, we randomly generate an 
initial fire configuration (whether or not each cell is burn-
ing and what the fuel level is in each cell). After an initial 
fire is simulated, suppression then begins according to 
one of our four approaches with i teams. The simulation 
and suppression efforts continue until the fire is extin-
guished or the entire area is burned out.

A typical experiment will repeat this simulation 
many times with different randomly generated initial 
fire configurations and will aggregate the results. Table 
1 shows summary statistics for the initial fire configura-
tions used in this experiment.

The specific process for initializing the fire configura-
tion in a simulation is as follows:
1.	 Initialize all of the cells with a fuel level and seed a 

fire in the lower left-hand cell.
2.	 Allow the fire to randomly propagate for a certain 

number of steps. Note that the lower left-hand cell 
will naturally extinguish at some point.
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3.	 Next, scale the fuel levels by a factor of k–0.25. This 
rescaling of the fuel levels is necessary to reduce the 
length of experiments when the number of suppres-
sion teams is insufficient to successfully fight the fire. 
 

Grid Two
This experiment was designed to explore the ability of the 
various approaches to evaluate how the current alloca-
tion of suppression teams will impact the future reward 
received. Because the reward function may be very differ-
ent outside the local region of the fire, the approaches may 
need to plan many steps into the future.

This setup mirrors the setup in the previous experi-
ment with two exceptions. First, we initialize fires in the 
middle of the grid. Second, the reward function for cells 
is exponential across the grid. Specifically, at time t = 0 
we ignite the cell in the middle of the grid. The reward 
for cell x = (i,  j) is proportional to e i  (the reward only 
depends on the horizontal location of the cell in the grid). 
In other words, cells located to the left are more valu-
able. The value of l controls the rate at which the reward 
grows. Some typical reward curves are shown in Figure 6 
for a k = 20 grid. Observe that for large values of l , the 
local reward structure at the site of the fire may seem quite 
flat (e.g., for larger values of i). Good strategies need to 
account for the fact that, despite this local structure, sup-
pression of cells on the right-hand side of the fire is ulti-
mately more valuable than suppression to the left.

In this experiment, suppression efforts are still 80% 
successful. The spread probabilities P (x, y) are 0.02 for y 
nearest neighbors of x; otherwise they are 0. As in the pre-
vious experiment, we begin with a random initial fire con-
figuration. Table 2 shows summary statistics for the initial 
fire configurations randomly generated in this experiment.

State Space Size
We first study the performance of our algorithms as the 
size of the state space grows. We simulate the perfor-
mance of each of our methods on grid one with either 
four or eight suppression teams, using our default val-
ues of the hyperparameters and varying the grid size. 
For each algorithm and combination of parameters, we 
simulate 256 runs and amalgamate the results.

Figures 7a and 7b show the average and maximum 
solution time per iteration of the MO methodology when 
requesting at most 120 s of computation time. Notice 
that for most grids, the average time is well below the 
threshold; in these instances, the underlying integer 
program is solved to optimality. For some grids, though, 
a few iterations require much longer to find a feasible 

FIGURE 6. The reward structure for various values of l is 
shown for grid two. When l is large, it is more important to con-
sider future fire trajectories because there is significantly more 
value in preventing the fire from spreading to the right-hand 
side than in minimizing the size of the fire in the left-hand side.
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Table 1. Grid One Initial Fire Statistics
k = 8 k = 12 k = 16 k = 20 k = 30

Mean cells burning 37.6 91.4 168.7 275.5 664.2

Maximum cells burning 62 142 244 372 845

Mean fuel level for burning cells 15.8 19.9 22.8 25.7 31.4

Fuel level for nonburnt cells 24 29 34 38 46
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FIGURE 7. The average (a) and maximum (b) iteration solution times with eight teams are well below the desired time limit 
of 120 s (dotted line). Instances that exceed their allotted time are typically not solved to optimality. In this figure and in the 
subsequent similar figures, the boxplots summarize the data distribution using Tukey’s conventions [20]. Each “box” spans 
from the first quantile to the third quantile, with the horizontal line indicating the median. The whiskers (top and bottom of 
boxes) are nonparametric estimates of the range of the data. Any outliers beyond the whiskers are plotted as points.
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Table 2. Grid Two Initial Fire Statistics
k = 9 k = 17 k = 25

Mean cells burning 37.8 154.9 363.7

Maximum cells burning 69 224 487

Mean fuel level for burning cells 5.3 7.5 8.9

Fuel level for nonburnt cells 8 11 13

when the lower whisker on the MO plot is smaller than 
the corresponding whisker on the MCTS plots.

To assess some of the statistical significance of 
these differences, we fit two additive-effects models to 
the data: one for eight suppression teams and one for 
four teams. In both cases, there are no significant sec-
ond-order interactions. The results suggest that the two 
MCTS methods are very similar, with a slight advantage 
for the 120 s run, and that the MO method with a time 
limit of 60 s outperforms both.

To further understand the effect on performance of 
varying the time limit per iteration of the MCTS method, 
we reran the above experiment with 60 s, 90 s, and 120 s. 

integer solution (cf. the long upper tail for k = 30 in Fig-
ure 7b). Consequently, we compare our MO to the MCTS 
methodologies with both 60 s and 120 s of computation 
time.

A summary of the results is seen in Figures 8a and 
8b. We stress that the runs with four suppression teams 
are more difficult than those with eight teams; these 
instances are more resource constrained. Several fea-
tures are evident in the plot. First, all three methods 
seem to outperform the FW heuristic, but there seems to 
only be a small difference between the two MCTS runs. 
The MO method does seem to outperform the MCTS 
method, especially for tail-hard instances—namely, 
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Results showed that the difference in performance is 
small. In summary, these results suggest that the MCTS 
algorithm performs comparably to the MO methodology 
as the state space grows large, but that the MO methodol-
ogy does have a slight edge.

Action Branching Factor
Intuition suggests that the performance of the MCTS 
algorithm is highly dependent on the magnitude of the 
action branching factor, i.e., the number of actions avail-
able from any given state. Without progressive widening, 
when the action branching factor is larger than the num-
ber of iterations, the MCTS algorithm will only expand 
the search tree to depth one. Even with progressive 
widening, choosing good candidate actions is critical to 

growing the search tree in relevant directions. Conse-
quently, in this section we study the performance of our 
algorithms with respect to the action branching factor.

We compute the relative improvement of the MCTS 
and MO approaches over the randomized suppression 
heuristic on grid one over 256 simulations with k = 10. 
Figure 8 summarizes the average relative improvement 
for each of our methods. Consider two scenarios: one 
with a fire being suppressed by a small team of resources 
and another by a large team of resources. In the case of 
the small team, intelligently allocating the resources is 
very important to extinguishing the fire because if the fire 
grows too large, the team will never be able to keep up 
with the spread of the fire. With more resources, their 
allocation is less critical. Thus, our methods are able to 

FIGURE 8. Performance is the 
percentage improvement over the random 
assignment of resources and is presented 
as a function of state space size. All three 
methods outperform the FW heuristic. 
The MO method seems to outperform 
the MCTS method, while there is little 
difference between the two MCTS runs. 
There are eight teams assigned in (a) and 
four teams in (b).
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(a)

FIGURE 10. In many instances, MO can return a solution within a few seconds. However, in some cases, MO requires 
hundreds of seconds to return a feasible solution. Here, (a) has k = 10 and (b) has k = 20.
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FIGURE 9. The number of 
suppression teams affects the 
performance. Note that the MCTS 
and MO methods perform better than 
FW when there are fewer suppression 
teams and that MO always performs 
better than MCTS. In general, fires 
are more difficult to fight with a simple 
heuristic algorithm when there are 
fewer suppression teams.

improve more upon random allocations with a small team 
than with a large team, a result that is most evident in the 
case shown in Figure 9.

Recall that it is not possible to control the exact time 
used by the MO algorithm. Figure 10 shows a boxplot of 
the average time per iteration for the MO approach. As 
shown in the plot, the results of the MCTS algorithm with 
60 s of computational time are a fair comparison.

The relative performance of all computational meth-
ods degrades as the number of teams becomes large, 
principally because the randomized suppression heuris-

tic improves with more teams. Although the FW heuris-
tic is clearly inferior, the remaining approaches appear 
to perform similarly. Indeed, analysis of variance testing 
suggests the differences between MO and MCTS are not 
statistically significant. To try to isolate more significant 
differences between the methodologies, we reran the 
above experiment with k = 20. The results can be seen in 
Figure 11 and the average solution times in Figure 10b.

In contrast with the previous experiment, MO 
appears to outperform MCTS. Interestingly, although 
MCTS seems to outperform the FW heuristic for a small 
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number of suppression teams, it performs worse than FW 
for more teams. To test the significance of these differ-
ences, we used a linear regression model for the improve-
ment over the randomized suppression heuristic as a 
function of the number of teams, the algorithm used, and 
potential interactions between the number of teams and 
the algorithm used. However, MO outperforms FW for 
all team sizes with statistical significance while MCTS is 
statistically worse than FW with 16 or 32 teams.

In summary, differences between the MO and MCTS 
methods become visible only when the grid size k is large, 
i.e., when the instances are sufficiently difficult to solve. 

It appears that although progressive widening and the 
genetic algorithm for action selection partially address 
the challenges of a large action-state branching factor, the 
MO approach is better suited to these instances.

Asymmetric Costs and Horizon Length
Recall that in grid two the cost structure is asymmetric; 
cells to the right of the grid are more valuable than cells to 
the left. At the same time, the local reward structure at the 
point of ignition is relatively flat. A good algorithm must 
recognize the differential value despite the local reward 
structure.

FIGURE 11. Performance is affected by 
the number of suppression teams (k = 20). 
MCTS performs better than the FW heuris-
tic for fewer teams, while MO outperforms 
FW for all team sizes tested.
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FIGURE 12. Different panels correspond to different values of k ∈ {9, 17, 25} and l ∈ {0.1, 0.2, 0.4}. 
MO performs best compared to the other methods for small l values, while the difference is less 
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We consider different combinations of exponen-
tial scaling factor l, grid size k, and horizon length (the 
amount of time into the future that the algorithms consider 
for each decision step). Figure 12 summarizes the perfor-
mance of each of our methods. For all the methods, there is 
an upward trend as l increases. For small values of l (i.e., 
flatter reward structure), MO has a marked edge over the 
other methods. As l increases, the difference shrinks. 

Looking Forward
A number of future directions emerge. A significant 
research effort remains to incorporate parameters 
informed by real wildfire data into the model. Once the 
model is properly calibrated, it can be used to compare the 
effectiveness of the methods described here against the 
performance of decision makers experienced in wildfire 
suppression. The appendix describes a prototype decision 
support tool that could be used to inform decision makers.

Several important issues also merit further inves-
tigation. Although we attempted to understand how the 
hyperparameters of MCTS affect its performance, our 
results show that this relationship is complex, and further 
investigation is needed to better elucidate it. Regarding the 
optimization-based methods, our MO formulation is only 
one way to approximate the discrete, stochastic dynam-
ics of the true Markov decision process. Lastly, it may be 
interesting to consider a hybrid method in which the MO 
formulation and the MCTS approach are combined. For 
example, the MO formulation may be used to guide action 
generation or as part of the rollout heuristic within MCTS. 
Such a hybrid approach could improve on both of the pure 
approaches.
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To evaluate and demonstrate the performance of the 
algorithms from the perspective of the end user, we built 
a decision support tool for wildland fire incident com-
manders. The tool was built using an implementation 
of the National Aeronautics and Space Administration’s  
(NASA) open-source geographical World Wind applica-
tion programming interface (API), shown in Figure A1. 
This API allowed us to simulate stochastic wildland fires 
across a three-dimensional globe. The tool can import 
a variety of different data layers that inform the wild-
fire model and can be used as a training program for the 
pre-evaluation of scenarios in highly dangerous areas.

Concept of Operations
An incident commander would use this software during 
a wildland fire to simulate the probabilistic direction of 
a spreading fire and the location of future flare-ups. The 
commander either shift-clicks anywhere on a map and 
ignites a fire or free draws any shaped fire and instantly 
gathers information, such as the perimeter length and 
fire area (shown in Figure A2). The incident command-
er’s knowledge of the local region may include informa-
tion about past fires that may lead to improved selection 
of initial flare-up locations rather than to the selection of 
random locations.

The wildland fire simulator uses an adaptable grid 
structure to display the spread. Once a fire is placed and 
zero resources are set, the user plays the simulation, 
which is driven by the transition probability equation, 
and watches the fire spread. Each cell is colored by a scale 
ranging from yellow (full fuel) to red (near-zero fuel). The 
user can pause the simulation at any time and go back 
and forth between steps in the fire progression and in the 
suppression efforts or reinitiate fire locations and fuel lev-
els. During the active simulation, the user is able to easily 
change the dynamics of the fire. Under the simulation set-
tings option, the user sets the time interval, the size of the 
cells, and the wind direction.

Once a wildland fire situation has been created, a user 
inputs the quantity and the type of resources at his or her 

disposal. Included are three air resources (airplanes, heli-
copters, and unmanned aerial vehicles) and three ground 
resources (fire engines, hotshot crews [readiness teams], 
and bulldozers) that can be allocated for fire suppression. 
We focused on applying only air resources to the fire, giv-
ing us a wider range of actions because those actions are 
not restricted to the fire perimeter (as is the case with 
ground crews working near the fire boundaries). After 
the resources are set, the user plays the simulation and 
watches as the resources are allocated by the recommen-
dations of the algorithms. At any time, a user can pause 
the resource allocation and change algorithm parameters.

Data Acquisition
The user places water, population, and different vegeta-
tion types onto the map. A major factor in how incident 
commanders allocate their resources is population. Popu-
lated areas (shown on the left in Figure A2 and in three 
corners in Figure A3) have a much higher cost (reduced 
rewards) associated with them.

Serialization
This software allows the user to see the output of the 
implemented algorithms and to experiment with the 
results. The scenarios can be saved to a JavaScript Object 
Notation file and loaded back into the simulator at a later 
time. Every step of the simulation is saved so a user can 
review the scenario from start to finish. Saving each wild-
land fire map is useful for continuous tests on a single situ-
ation. Each simulation can be saved as a video file of the 
fire spread, resource placement, and fire suppression.

Appendix

Wildland Fire Decision Support Tools
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FIGURE A1. Active wildland fires (red/orange areas in upper image) and land-cover classification layers (varying patches 
of color in lower image) are shown in these screenshots. NASA’s Moderate Resolution Imaging Spectroradiometer 
(MODIS) satellite often updates layers, such as land cover maps, wildland fire locations, population density, and  
vegetation index.
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FIGURE A3. Air resources are allocated to a simulated wildland fire. Blue grids (in several points in the lower 
left of the burning region) are those locations where suppressants are applied (airplane symbols above).

FIGURE A2. Simulation settings and algorithm parameter settings allow a user to create different specific 
scenarios of wildland fires.
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