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Disclaimer of Endorsement and Liability

• The video courseware and accompanying viewgraphs presented on this 
server were prepared as an account of work sponsored by an agency of the 
United States Government. Neither the United States Government nor any 
agency thereof, nor any of their employees, nor the Massachusetts Institute 
of Technology and its Lincoln Laboratory, nor any of their contractors, 
subcontractors, or their employees, makes any warranty, express or 
implied, or assumes any legal liability or responsibility for the accuracy, 
completeness, or usefulness of any information, apparatus, products, or 
process disclosed, or represents that its use would not infringe privately 
owned rights. Reference herein to any specific commercial product, 
process, or service by trade name, trademark, manufacturer, or otherwise 
does not necessarily constitute or imply its endorsement, recommendation, 
or favoring by the United States Government, any agency thereof, or any of 
their contractors or subcontractors or the Massachusetts Institute of 
Technology and its Lincoln Laboratory.

• The views and opinions expressed herein do not necessarily state or reflect 
those of the United States Government or any agency thereof or any of 
their contractors or subcontractors
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Detection and Pulse Compression
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Outline

• Detection of Target Echoes in Noise
– Basic Concepts

– Integration of Pulses 

– Fluctuating Targets Issues

– Adaptive Thresholding Techniques

• Pulse Compression
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Target Detection in the 
Presence of Noise
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• The radar return is sampled at regular intervals with A/D (Analog to 
Digital) converters

• The sampled returns may include the target of interest and noise

• A threshold is used to reject noise
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The Detection Problem
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• The area under the noise 
probability curve, from 
the detection threshold 
to infinity (way, way out 
to the right) is the 
probability of false alarm.

• The entire area under the 
noise density curve is 1.
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The Detection Problem
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Detection Examples with Different SNR

Detection
Threshold

Signal-to-Noise Ratio = 20 dB

For a fixed threshold, a higher SNR (or S/N) will result in 
a higher of probability of detecting the target
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Probability of Detection vs. SNR

Figure by MIT OCW.

Numbers to Remember
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Outline

• Detection of Target Echoes in Noise
– Basic Concepts

– Integration of Pulses 

– Fluctuating Targets Issues

– Adaptive Thresholding Techniques

• Pulse Compression
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Integration of Radar Pulses

• Improve ability of radar to detect targets by combining the 
returns from multiple pulses

• Coherent Integration
– No information lost (amplitude or phase)

• Non-coherent integration techniques
– Some information lost (phase)
– Non-coherent (video) Integration
– Binary Integration 
– Cumulative detection
– For most cases, coherent integration is more efficient than non- 

coherent integration
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Coherent Integration 

• Real and Imaginary (In-phase and Quadrature) parts of the 
complex radar return are added, and the magnitude of the 
voltage is calculated

– V=(I2 + Q2 )1/2 

• This quantity is then thresholded
• The coherent integration gain is equal to the number of pulses 

coherently integrated
– 2 pulses 3 dB
– 10 pulses 10 dB
– 20 pulses 13 dB

• For this gain to be realized, the noise samples, from pulse to 
pulse must be independent

– The background noise is white Gaussian noise
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Noncoherent Integration 
Steady Target
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Different Types of Non-Coherent 
Integration

• Non Coherent Integration – General (aka video integration) 
– Generate magnitude for each of N pulses

– Add magnitudes and then threshold

• Binary Integration
– Generate magnitude for each of N pulses and then threshold 

– Require at least M detections in N scans

• Cumulative Detection
– Generate magnitude for each of N pulses and then threshold 

– Require at least 1 detection in N scans
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Outline

• Detection of Target Echoes in Noise
– Basic Concepts

– Integration of Pulses 

– Fluctuating Targets Issues

– Adaptive Thresholding Techniques

• Pulse Compression
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Target Fluctuations 
Swerling Models
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RCS Variability for Different 
Target Models
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Detection Statistics for Fluctuating Targets 
Single Pulse Detection

Fluctuating Targets Require More SNR than Non-fluctuating
Targets to Maintain a High Probability of Detection

Figure by MIT OCW.
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Outline

• Detection of Target Echoes in Noise
– Basic Concepts

– Integration of Pulses 

– Fluctuating Targets Issues

– Adaptive Thresholding Techniques

• Pulse Compression
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Constant False Alarm Rate 
(CFAR) Thresholding

• Problem: Must know (or 
estimate) noise floor to 
set threshold 

• Solution: Estimate noise 
floor using noise-only 
samples

– Adaptive thresholding

• CFAR thresholding:
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The Mean Level CFAR

• Use mean value of surrounding range cells to determine 
threshold for cell under test

• Nearby targets can raise threshold and suppress detection

Cell Under Test

“Guard” Cells

Data Cells for Mean Level Computation

Window Slides Through Data



MIT Lincoln LaboratoryRadar Course_22.ppt
ODonnell 10-26-01

Effect of Rain on CFAR Thresholding
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Effect of Rain on CFAR Thresholding
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Greatest-of Mean Level CFAR

• Find mean value of N/2 cells before and after test cell 
separately

• Use larger noise estimate to determine threshold

• Helps reduce false alarms near sharp clutter or interference 
boundaries

• Nearby targets still raise threshold and suppress detection

Cell Under Test

“Guard” CellsData Cells for Mean Level 1

Window Slides Through Data

Data Cells for Mean Level 2

Use Larger Value
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Outline

• Detection of Target Echoes in Noise

• Pulse Compression
– Introduction

– Phase Coded Waveforms

– Linear Frequency Modulation Waveforms
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Pulsed CW Radar Fundamentals 
Range Resolution

• Range Resolution  (      )
– Proportional to pulse width (T)

– Inversely proportional to bandwidth (B = 1/T)
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Pulse Width, Bandwidth and Resolution 
for a Square Pulse 

Cannot Resolve Features Along the Target

Can Resolve Features Along the Target

Pulse Length is Larger than Target Length

Pulse Length is Smaller than Target Length

Resolution:
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Motivation for Pulse Compression

• Hard to get “good” average power and resolution at the 
same time using a pulsed CW system

– Higher average power is proportional to pulse width

– Better resolution is inversely proportional to pulse width

• A long pulse can have the same bandwidth (resolution) as 
a short pulse if the long pulse is modulated in frequency 
or phase

• These pulse compression techniques allow a radar to 
simultaneously achieve the energy of a long pulse and the 
resolution of a short pulse
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Matched Filter Concept

Matched
Filter
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• Matched Filter maximizes the peak-signal to mean noise ratio
– For rectangular pulse, matched filter is a simple pass band filter
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Frequency and Phase Modulation of Pulses 

• Resolution of a short pulse can be achieved by 
modulating a long pulse, increasing the time-bandwidth 
product

• Signal must be processed on return to “pulse 
compress”

Binary Phase
Coded Waveform

Linear Frequency
Modulated Waveform

Bandwidth = 1/TCHIP

Pulse Width, T

Frequency F1 Frequency F2
Bandwidth = ΔF = F2-F1

Square Pulse
Pulse Width, TPulse Width, T

TCHIP

Bandwidth = 1/T

Time × Bandwidth = 1 Time × Bandwidth = T/TCHIP Time × Bandwidth = TΔF
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Binary Phase Coded Waveforms

• Changes in phase can be used to 
increase the signal bandwidth of a 
long pulse

• A pulse of duration T is divided into 
N sub-pulses of duration TCHIP

• The phase of each sub-pulse is 
changed or not changed, according 
to a binary phase code

• Phase changes 0 or  π radians (+ or -) 
• Pulse compression filter output will 

be a compressed pulse of width TCHIP 
and a peak N times that of the 
uncompressed pulse

Binary Phase
Coded Waveform

Bandwidth = 1/ TCHIP

Pulse Width, T

TCHIP

Pulse Compression Ratio = T/ TCHIP
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• Matched filter is implemented by “convolving” the 
reflected echo with the “time reversed” transmit pulse

• Convolution process: 
– Move digitized pulses by  each other, in steps 

– When data overlaps, multiply samples and sum them up

Reflected echo          Time reversed pulse

Implementation of Matched Filter
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• Matched filter is implemented by “convolving” the 
reflected echo with the “time reversed” transmit pulse

• Convolution process: 
– Move digitized pulses by  each other, in steps 

– When data overlaps, multiply samples and sum them up

Reflected echo          Time reversed pulse

Implementation of Matched Filter
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• Matched filter is implemented by “convolving” the 
reflected echo with the “time reversed” transmit pulse

• Convolution process: 
– Move digitized pulses by  each other, in steps 

– When data overlaps, multiply samples and sum them up

Reflected echo          Time reversed pulse

Implementation of Matched Filter

1

3

1

2

0
One sample overlaps  1x1 =1

O
ut

pu
t o

f 
M

at
ch

ed
 F

ilt
er

Time



MIT Lincoln LaboratoryRadar Course_35.ppt
ODonnell 10-26-01

• Matched filter is implemented by “convolving” the 
reflected echo with the “time reversed” transmit pulse

• Convolution process: 
– Move digitized pulses by  each other, in steps

– When data overlaps, multiply samples and sum them up

Reflected echo          Time reversed pulse

Implementation of Matched Filter

1

3

1

2

0Two samples overlap (1x1) + (1x1) = 2

O
ut

pu
t o

f 
M

at
ch

ed
 F

ilt
er

Time



MIT Lincoln LaboratoryRadar Course_36.ppt
ODonnell 10-26-01

• Matched filter is implemented by “convolving” the 
reflected echo with the “time reversed” transmit pulse

• Convolution process: 
– Move digitized pulses by  each other, in steps 

– When data overlaps, multiply samples and sum them up

Reflected echo          Time reversed pulse

Implementation of Matched Filter
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• Matched filter is implemented by “convolving” the 
reflected echo with the “time reversed” transmit pulse

• Convolution process: 
– Move digitized pulses by  each other, in steps

– When data overlaps, multiply samples and sum them up

Reflected echo          Time reversed pulse

Implementation of Matched Filter
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• Matched filter is implemented by “convolving” the 
reflected echo with the “time reversed” transmit pulse

• Convolution process: 
– Move digitized pulses by  each other, in steps

– When data overlaps, multiply samples and sum them up

Reflected echo          Time reversed pulse

Implementation of Matched Filter

1

Time

3

1

2

0

O
ut

pu
t o

f 
M

at
ch

ed
 F

ilt
er

One sample overlaps  1x1 =1



MIT Lincoln LaboratoryRadar Course_39.ppt
ODonnell 10-26-01

• Matched filter is implemented by “convolving” the 
reflected echo with the “time reversed” transmit pulse

• Convolution process: 
– Move digitized pulses by  each other, in steps

– When data overlaps, multiply samples and sum them up

Reflected echo          Time reversed pulse

Implementation of Matched Filter
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Pulse Compression 
Binary Phase Modulation Example

Figure by MIT OCW.
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Linear FM Pulse Compression

Because range is measured by a shift in 
Doppler frequency, there is a coupling 
of the range and Doppler velocity 
measurement

Figure by MIT OCW.
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Summary

• Detection of Targets in Noise
– Both target properties and radar design features affect the ability to 

detect signals in noise
– Coherent and non-coherent integration pulse integration can improve 

target detection
– Adaptive thresholding (CFAR) techniques are needed in realistic 

environments

• Pulse compression offers a means to simultaneous have high 
average power and good resolution

– A long pulse can have the same bandwidth (resolution) as a short 
pulse, if it is modulated in frequency or phase

– Phase-encoded pulse compression divides long pulses into binary 
encoded sub-pulses 

– With frequency-encoded pulse compression, the radar frequency is 
increased linearly as the pulse is transmitted
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