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Disclaimer of Endorsement and Liability

• The video courseware and accompanying viewgraphs presented on this 
server were prepared as an account of work sponsored by an agency of the 
United States Government. Neither the United States Government nor any 
agency thereof, nor any of their employees, nor the Massachusetts Institute 
of Technology and its Lincoln Laboratory, nor any of their contractors, 
subcontractors, or their employees, makes any warranty, express or 
implied, or assumes any legal liability or responsibility for the accuracy, 
completeness, or usefulness of any information, apparatus, products, or 
process disclosed, or represents that its use would not infringe privately 
owned rights. Reference herein to any specific commercial product, 
process, or service by trade name, trademark, manufacturer, or otherwise 
does not necessarily constitute or imply its endorsement, recommendation, 
or favoring by the United States Government, any agency thereof, or any of 
their contractors or subcontractors or the Massachusetts Institute of 
Technology and its Lincoln Laboratory.

• The views and opinions expressed herein do not necessarily state or reflect 
those of the United States Government or any agency thereof or any of their 
contractors or subcontractors
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Antenna Definition

* IEEE Standard Definitions of Terms  for Antennas (IEEE STD 145-1983)

• “Means for radiating or receiving radio waves”*
– A radiated electromagnetic wave consists of electric and 

magnetic fields which jointly satisfy Maxwell’s Equations

• Transitional structure between guiding device and free space

Figure by MIT OCW.
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Antenna Characteristics

• Accentuates radiation in some directions, suppresses in others
• Designed for both directionality and maximum energy transfer

Courtesy of Raytheon. 
Used with permission.

Courtesy of Raytheon. Courtesy of Raytheon. 
Used with permission.Used with permission.

Courtesy of U. S. Navy.
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Outline

• Introduction

• Fundamental antenna concepts

• Reflector antennas

• Phased array antennas

• Summary
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Presenter�
Presentation Notes�
The first is radiation.  How is radiation caused?



Well, it is caused by a time-varying current, or an acceleration/deceleration of charge.  I hook up a voltage source to my antenna.  If I drive the source then I can get the electrons on the metal of the antenna to accelerate and decelerate.  This is what causes the radiation!



Let’s take an example of a simple dipole (hold it up) which is perhaps the simplest antenna that can be made.  It consists of a single wire a half-wavelength long.  I can take an oscillating voltage source and hook it up to my dipole.  As the source oscillates, it causes electrons on the dipole to accelerate and decelerate which creates radiation (start movie).



Point out:

Electromagnetic waves propagating with time

Similar to dropping a stone in a lake to create water waves.

Spherical wavefronts - the separation between the wavefronts is determined by the frequency of the oscillating source (slower oscillation, separated more).

Unlike water waves, the power is not radiated out in all directions equally.  Some is concentrated broadside to the dipole, shown in red.  The dipole is a directional antenna.  The enhancement in power in this region is called gain which we’ll discuss next.�
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Antenna Gain

Isotropic Antenna

G = Gain

.

Directional Antenna

• Same power is radiated
• Radiation intensity is power density over sphere (watt/steradian)
• Gain is radiation intensity over that of an isotropic source 

Radiation
Intensity

Radiation
Intensity
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Antenna Pattern

• Pattern is a plot of gain 
versus angle

• Dipole example

0 30 60 90 120 150 180-35

-30

-25

-20

-15

-10

-5

0

5

G
ai

n 
(d

B
i)

Theta θ

 

(deg)

0.5

1

1.5

2

60

120

30

150

0

180

30

150

60

120

90 90

Theta θ

 

(deg)

Polar Plot Linear Plot

( )
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛

=
θ

θπ

θ 2

2

sin

cos
2

cos
643.1  G

Gmax = 1.64 = 2.15 dBi
Figure by MIT OCW.

Presenter�
Presentation Notes�
Antenna pattern is simply a plot of gain versus angle.  There are different ways to plot:



3D first, then polar, then linear.



Then, explain the meaning of units of gain, or dBi.�
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Aperture diameter D:  5 m
Frequency:  300 MHz
Wavelength:  1 m

Gain:  24 dBi
Isotropic Sidelobe Level:  6 dBi 
Sidelobe Level:  18 dB 
Half-Power Beamwidth:  12 deg

Antenna Pattern Characteristics

Figure by MIT OCW.
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Effect of Aperture Size on Gain
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Reflector Comparison 
Kwajalein Missile Range Example

Operating frequency:  162 MHz (VHF)
Wavelength λ:  1.85 m
Diameter electrical size:  25 λ
Gain:  34 dB
Beamwidth:  2.8 deg

Operating frequency:  35 GHz (Ka)
Wavelength λ:  0.0086 m
Diameter electrical size:  1598 λ
Gain:  70 dB
Beamwidth:  0.00076 deg

ALTAIR
45.7 m diameter

MMW
13.7 m diameter

scale by
1/3
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Polarization

E
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Presenter�
Presentation Notes�
Polarization is another important radar property.



-Definition

-Applications...

H:  air surveillance to ping off horizontal wings

V:  better for propagation (multi-path) problem.  Give example.



Lead out:  Horizontal and linear polarization can be combined to form circular polarization...�
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Circular Polarization (CP)

• “Handed-ness” is defined by observation of electric field along 
propagation direction

• Used for discrimination, polarization diversity, rain mitigation

Right-Hand
(RHCP)

Propagation Direction
Into Paper

Left-Hand
(LHCP)

Figure by MIT OCW.

Electric
Field

Presenter�
Presentation Notes�
Again, you are watching the position of the electric field with time, which in the case of circular polarization, is cork-screwing as it propagates forward.



Go through the exercise of defining LHCP vs. RHCP and actually show them the right-hand rule with your hand.



Talk about the application of discrimination (spheres).�



Radar Antennas - 15
PRH 6/18/02

MIT Lincoln Laboratory

Circular Polarization (CP)

• “Handed-ness” is defined by observation of electric field along 
propagation direction

• Used for discrimination, polarization diversity, rain mitigation

Right-Hand
(RHCP)
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Into Paper

Left-Hand
(LHCP)

Electric Field

Figure by MIT OCW.

Presenter�
Presentation Notes�
Again, you are watching the position of the electric field with time, which in the case of circular polarization, is cork-screwing as it propagates forward.



Go through the exercise of defining LHCP vs. RHCP and actually show them the right-hand rule with your hand.



Talk about the application of discrimination (spheres).�
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Field Regions

• All power is radiated out 
• Radiated wave is a plane wave
• Far-field antenna quantities

– Pattern
– Gain and directivity
– Polarization
– Radar cross section (RCS)

• Energy is stored in vicinity of antenna
• Near-field antenna quantities

– Input impedance
– Mutual coupling
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Antenna Input Impedance

• Antenna can be modeled as an impedance
– Ratio of voltage to current at feed port

• Design antenna to maximize power transfer from transmission line
– Reflection of incident power sets up standing wave

• Input impedance usually defines antenna bandwidth
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Outline

• Introduction

• Fundamental antenna concepts

• Reflector antennas

• Phased array antennas

• Summary
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Parabolic Reflector Antenna

• Design is a tradeoff between maximizing dish illumination 
and limiting spillover 

• Feed antenna choice is critical

Feed Antenna
at Focus

Beam Axis

Parabolic Surface

Wavefront

FD

Figure by MIT OCW.
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Cassegrain Reflector Antenna

Ray Trace of 
Cassegrain Antenna

Geometry of 
Cassegrain Antenna

Figure by MIT OCW.
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ALTAIR

Dual frequency

VHF Parabolic

UHF Cassegrain

FSS (Frequency Selective 
Surface) used for reflector
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Outline

• Introduction

• Fundamental antenna concepts

• Reflector antennas

• Phased array antennas

• Summary
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• Multiple antennas combined to enhance radiation and shape pattern
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Two Antennas Radiating
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Array Controls

• Geometrical configuration
– Linear, rectangular, 

triangular, circular grids 

• Element separation

• Phase shifts

• Excitation amplitudes
– For sidelobe control

• Pattern of individual 
elements

– Isotropic, dipoles, etc.
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Increasing Array Size by
Adding Elements

• Gain ~ 2N(d / λ) for long broadside array
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Figure by MIT OCW.
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Increasing Array Size by
Separating Elements

Limit element separation to d < λ

 

to prevent
grating lobes for broadside array

Limit element separation to d < λ

 

to prevent
grating lobes for broadside array

d = λ/4 separation d = λ/2 separation d = λ

 

separation

• Linear Broadside Array
• N = 10 Isotropic Elements
• No Phase Shifting
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Figure by MIT OCW.

Presenter�
Presentation Notes�
(Explain problem of grating lobes... you get the increase in gain, but you have target position ambiguity!)



Lead out:  Let’s scan the linear array to the edge of its space, straight up, and repeat this test.�
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Increasing Array Size of Scanned Array
by Separating Elements

• No grating lobes for element separation d < λ / 2
• Gain ~ 4N(d / λ) ~ 4L / λ for long endfire array without grating lobes

• Linear Endfire Array
• N = 10 Isotropic Elements
• Phase Shifted to Point Up
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Figure by MIT OCW.

L = (N-1) d

Presenter�
Presentation Notes�
Grating lobes pop up earlier!!



Emphasize half-wavelength spacing.



Now, what if I scanned between those two limits?�
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Linear Phased Array
Scanned every 30 deg, N = 15, d = λ/4

To scan over all space without grating lobes, 
keep element separation d < λ / 2 

To scan over all space without grating lobes, 
keep element separation d < λ / 2 

Figure by MIT OCW.
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Planar Arrays

• As scan to θo off broadside:
– Beamwidth broadens by 1/cosθo

– Directivity decreases by cosθo

To scan over all space without grating lobes, 
keep element separation in both directions < λ / 2

To scan over all space without grating lobes, 
keep element separation in both directions < λ / 2

Pattern
No Scanning

Figure by MIT OCW.
Figure by MIT OCW.
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Mutual Coupling

• Effect of one element on another
– Near-field quantity
– Makes input impedance dependent on 

scan angle

• Can greatly complicate array design
– Hard to deliver power to antennas for all 

scan angles
– Can cause scan blindness where no 

power is radiated

• Can limit scan volume and array 
bandwidth

Z Z

~

Antenna
m

Antenna
n

~

Drive Both Antennas

But... mutual coupling can sometimes be exploited
to achieve certain performance requirements
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Phased Arrays vs Reflectors

• Phased arrays provide beam agility and flexibility 
– Effective radar resource management (multi-function capability) 
– Near simultaneous tracks over wide field of view

• Phased arrays are significantly more expensive than 
reflectors for same power-aperture

– Need for 360 deg coverage may require 3 or 4 filled array faces
– Larger component costs
– Longer design time
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Outline

• Introduction

• Fundamental antenna parameters

• Reflectors

• Phased arrays

• Summary
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Summary

• Fundamental antenna parameters and array topics have been 
discussed

– Radiation
– Gain, pattern, sidelobes, beamwidth
– Polarization
– Far field
– Input impedance
– Array beamforming
– Array mutual coupling

• Reflector antennas offer a relatively inexpensive method of 
achieving high gain for a radar 

– Parabolic reflectors
– Cassegrain feeds

• Phased array antennas offer beam agility and flexibility in use
– But much more expensive than reflector antennas
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Increasing Array Size by
Separating Elements

Limit element separation to d < λ

 

to prevent
grating lobes for broadside array

Limit element separation to d < λ

 

to prevent
grating lobes for broadside array

d = λ/4 separation d = λ/2 separation d = λ

 

separation

• Linear Broadside Array
• N = 10 Isotropic Elements
• No Phase Shifting
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Presenter�
Presentation Notes�
(Explain problem of grating lobes... you get the increase in gain, but you have target position ambiguity!)



Lead out:  Let’s scan the linear array to the edge of its space, straight up, and repeat this test.�
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Presenter�
Presentation Notes�
Take away is very important.�
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