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Communication
Daniel W. Bliss, Keith W. Forsythe, and Amanda M. Chan

■ Wireless communication using multiple-input multiple-output (MIMO) 
systems enables increased spectral efficiency for a given total transmit power. 
Increased capacity is achieved by introducing additional spatial channels that are 
exploited by using space-time coding. In this article, we survey the environmental 
factors that affect MIMO capacity. These factors include channel complexity, 
external interference, and channel estimation error. We discuss examples of 
space-time codes, including space-time low-density parity-check codes and space-
time turbo codes, and we investigate receiver approaches, including multichannel 
multiuser detection (MCMUD). The ‘multichannel’ term indicates that the 
receiver incorporates multiple antennas by using space-time-frequency adaptive 
processing. The article reports the experimental performance of these codes and 
receivers. 

M- multiple-output (MIMO) sys-
tems are a natural extension of developments 
in antenna array communication. While the 

advantages of multiple receive antennas, such as gain 
and spatial diversity, have been known and exploited for 
some time [1, 2, 3], the use of transmit diversity has 
only been investigated recently [4, 5]. The advantages 
of MIMO communication, which exploits the physi-
cal channel between many transmit and receive anten-
nas, are currently receiving significant attention [6–9]. 
While the channel can be so nonstationary that it can-
not be estimated in any useful sense [10], in this article 
we assume the channel is quasistatic.

MIMO systems provide a number of advantages 
over single-antenna-to-single-antenna communication. 
Sensitivity to fading is reduced by the spatial diversity 
provided by multiple spatial paths. Under certain envi-
ronmental conditions, the power requirements associ-
ated with high spectral-efficiency communication can 
be significantly reduced by avoiding the compressive re-
gion of the information-theoretic capacity bound. Here, 
spectral efficiency is defined as the total number of in-
formation bits per second per Hertz transmitted from 
one array to the other. 

After an introductory section, we describe the con-
cept of MIMO information-theoretic capacity bounds. 
Because the phenomenology of the channel is impor-
tant for capacity, we discuss this phenomenology and 
associated parameterization techniques, followed by ex-
amples of space-time codes and their respective receivers 
and decoders. We performed experiments to investigate 
channel phenomenology and to test coding and receiver 
techniques.

Capacity

We discuss MIMO information-theoretic performance 
bounds in more detail in the next section. Capacity in-
creases linearly with signal-to-noise ratio (SNR) at low 
SNR, but increases logarithmically with SNR at high 
SNR. In a MIMO system, a given total transmit power 
can be divided among multiple spatial paths (or modes), 
driving the capacity closer to the linear regime for each 
mode, thus increasing the aggregate spectral efficiency. 
As seen in Figure 1, which assumes an optimal high 
spectral-efficiency MIMO channel (a channel matrix 
with a flat singular-value distribution), MIMO systems 
enable high spectral efficiency at much lower required 
energy per information bit. 
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The information-theoretic bound on the spectral ef-
ficiency is a function of the total transmit power and 
the channel phenomenology. In implementing MIMO 
systems, we must decide whether channel estimation 
information will be fed back to the transmitter so that 
the transmitter can adapt. Most MIMO communica-
tion research has focused on systems without feedback. 
A MIMO system with an uninformed transmitter 
(without feedback) is simpler to implement, and at high 
SNR its spectral-efficiency bound approaches that of an 
informed transmitter (with feedback). 

One of the environmental issues with which com-
munication systems must contend is interference, ei-
ther unintentional or intentional. Because MIMO sys-
tems use antenna arrays, localized interference can be 
mitigated naturally. The benefits extend beyond those 
achieved by single-input multiple-output systems, that 
is, a single transmitter and a multiple-antenna receiver, 
because the transmit diversity nearly guarantees that 
nulling an interferer cannot unintentionally null a large 
fraction of the transmit signal energy. 

Phenomenology

We discuss channel phenomenology and channel pa-
rameterization techniques in more detail in a later sec-
tion. Aspects of the channel that affect MIMO system 
capacity, namely, channel complexity and channel sta-
tionarity, are addressed in this paper. The first aspect, 
channel complexity, is a function of the richness of scat-
terers. In general, capacity at high spectral efficiency 
increases as the singular values of the channel matrix 
increase. The distribution of singular values is a mea-
sure of the relative usefulness of various spatial paths 
through the channel. 

Space-Time Coding and Receivers

In order to implement a MIMO communication sys-
tem, we must first select a particular coding scheme. 
Most space-time coding schemes have a strong connec-
tion to well-known single-input single-output (SISO) 
coding approaches and assume an uninformed trans-
mitter (UT). Later in the article we discuss space-time 
low-density parity-check codes, space-time turbo codes, 
and their respective receivers. Space-time coding can 
exploit the MIMO degrees of freedom to increase re-
dundancy, spectral efficiency, or some combination 

of these characteristics [11]. Preliminary ideas are dis-
cussed elsewhere [6]. 

A simple and elegant solution that maximizes diver-
sity and enables simple decoupled detection is proposed 
in Reference 12. More generally, orthogonal space-time 
block codes are discussed in References 13 and 14. A 
general discussion of distributing data across transmit-
ters (linear dispersive codes) is given in Reference 15. 
High SNR design criteria and specific examples are giv-
en for space-time trellis codes in Reference 16. Unitary 
codes optimized for operation in Rayleigh fading are 
presented in Reference 17. Space-time coding without 
the requirement of channel estimation is also a com-
mon topic in the literature. Many differential coding 
schemes have been proposed [18]. Under various con-
straints at the transmitter and receiver, information-
theoretic capacity can be evaluated without condition-
ing on knowledge of the propagation channel [19, 20]. 
More recently, MIMO extensions of turbo coding have 
been suggested [21, 22]. Finally, coding techniques for 
informed transmitter systems have received some inter-
est [23, 24]. 

Experimental Results

Because information-theoretic capacity and practical 
performance are dependent upon the channel phenom-
enology, a variety of experiments were performed. Both 
channel phenomenology and experimental procedures 
are discussed in later sections. Experiments were per-
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FIGURE 1. Spectral-efficiency bound as a function of noise-
spectral-density-normalized energy per information bit 
(Eb/N0). The graph compares four different M × M multiple-
input multiple-output (MIMO) systems, assuming channel 
matrices with flat singular-value distribution.



• BLISS, FORSYTHE, AND CHAN
MIMO Wireless Communication

VOLUME 15, NUMBER 1, 2005 LINCOLN LABORATORY JOURNAL 99

formed in an outdoor nonstationary environment in a 
mixed residential, industrial, and light urban settings. 
Intentional high-power interference was included. 

Information-Theoretic Capacity

The information-theoretic capacity of MIMO systems 
has been widely discussed [7, 25]. The development of 
the informed transmitter (“water filling”) and unin-
formed transmitter approaches is repeated in this sec-
tion, along with a discussion of the relative performance 
of these approaches. (The concept of “water filling” is 
explained in the sidebar entitled “Water Filling.”) In 
addition, we introduce the topic of spectral-efficiency 
bounds in the presence of interference, and we discuss 

spectral-efficiency bounds in frequency-selective envi-
ronments. Finally, we summarize alternative channel 
performance metrics. 

Informed Transmitter

For narrowband MIMO systems, the coupling between 
the transmitter and receiver for each sample in time can 
be modeled by using 

 z Hx n= + ,  (1)

where z is the complex receive-array output, 

 H ∈ ×


n nR T

is the nR × nT (number of receive by transmit antenna) 

WAT E R  F I L L I N G

W  is a metaphor for the solution 
of several optimization problems related to 

channel capacity. The simplest physical example is 
perhaps the case of spectral allocation for maximal 
total capacity under a total power constraint. Let xk 
denote the power received in the kth frequency cell, 
which has interference (including thermal noise) de-
noted nk. If the total received power is constrained 
to be x, then the total capacity is maximized by 
solving 
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to find a solution. The solution satisfies xk + nk = 
µ–1 for all nonzero xk. Figure A illustrates the solu-
tion graphically as an example of water filling. The 
difference between the water level (blue) and the 
noise level (red) is the power allocated to the signal 
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FIGURE A. Notional water-filling example.

in each frequency cell. The volume of the water is 
the total received power of the signal. Note that cells 
with high levels of interference are not used at all. 

A similar solution results when the capacity is ex-
pressed by 

 

log( )1+∑ g xk k
k

for gains gk. One can write the gains as g nk k= −1 
and use the water-filling argument above. In this 
context, cells with low gains may not be used at all. 
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channel matrix, x is the transmit-array vector, and n is 
zero-mean-complex Gaussian noise. 

The capacity is defined as the maximum of the mu-
tual information [26] 

 

I ( , | ) log
( | , )
( | )

,z x H
z x H
z H

=








2

p
p

 

(2)

over the source conditional probability density p( | )x H  
subject to various transmit constraints, where the ex-
pectation value is indicated by the notation 


. Not-

ing that the mutual information can be expressed as the 
difference between two conditional entropies 

 I ( , | ) ( | ) ( | , ),z x H z H z x H= −h h  (3)

that 

 h h n eR n( | , ) ( ) log ( ),z x H n= = 2
2π σ

and that h( | )z H  is maximized for a zero-mean Gauss-
ian source x, the capacity is given by 
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(4)

where the notation   indicates determinant, † indi-
cates Hermitian conjugate, and InR

 indicates an identity 
matrix of size nR . A variety of possible constraints ex-
ist for xx† , depending on the assumed transmitter 
limitations. Here we assume that the fundamental limi-
tation is the total power transmitted. Optimization over 
the nT × nT noise-normalized transmit covariance ma-
trix, P xx= /† ,σn

2  is constrained by the total noise-
normalized transmit power Po. By allowing different 
transmit powers at each antenna, we can enforce this 
constraint by using the form tr{ }P ≤ Po. The informed 
transmitter (IT) channel capacity is achieved if the 
channel is known by both the transmitter and receiver, 
giving 
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(5)

To avoid radiating negative power, we impose the addi-
tional constraint P > 0 by using only a subset of channel 
modes. 

The resulting capacity is given by 
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(6)

A water-filling argument establishes that the entries dm 
in the diagonal matrix

 D ∈ + +×


n n

contain the n+ top-ordered eigenvalues of HH†. The 
values dm must satisfy 
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(7)

If Equation 7 is not satisfied for some dm, it will not be 
satisfied for any smaller dm. 

In this discussion we assume that the environment is 
stationary over a period long enough for the error asso-
ciated with channel estimation to vanish asymptotically. 
In order to study typical performance of quasistationary 
channels sampled from a given probability distribution, 
capacity is averaged over an ensemble of quasistationary 
environments. Under the ergodic assumption (that is, 
the ensemble average is equal to the time average), the 
mean capacity CIT is the channel capacity. 

Uninformed Transmitter

If the channel is not known at the transmitter, then 
an optimal transmission strategy is to transmit equal 
power from each antenna P I= /P no T nT

[7]. Assum-
ing that the receiver can accurately estimate the chan-
nel, but the transmitter does not attempt to optimize its 
output to compensate for the channel, the uninformed 
transmitter (UT) maximum spectral efficiency bound 
is given by 
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(8)

This is a common transmit constraint, as it may be dif-
ficult to provide the transmitter channel estimates. The 
sidebar entitled “Toy 2 × 2 Channel Model” discusses 
an example of IT and UT capacities for a simple line-
of-sight environment.

Capacity Ratio

At high SNR, CIT and CUT converge. This can be ob-
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served in the large Po limit of the ratio of Equations 6 
and 8, 
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where the nmin diagonal entries in D contain all non-
zero eigenvalues of H†H. If nT > nR, then the conver-
gence to one is logarithmically slow. 

At low SNR the ratio CIT/CUT is given by 
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(10)

using Equation 6 with n+ = 1 and Equation 8. Given 
this asymptotic result, we can make a few observations. 
The spectral-efficiency ratio is given by the maximum 
to the average eigenvalue ratio of H†H. If the channel 
is rank one, such as in the case of a multiple-input sin-
gle-output (MISO) system, the ratio is approximately 
equal to nT. Finally, in the special case in which H†H 
has a flat eigenvalue distribution, the optimal transmit 
covariance matrix is not unique. Nonetheless, the ratio 
CIT/CUT approaches one. 

Interference

By extending the discussion in the previous section [8, 
27], we can calculate capacity in the presence of unco-
operative (worst case) external interference η, in addi-
tion to the spatially-white complex Gaussian noise n 
considered previously. The mutual information is again 
given by Equations 2 and 3, where entropy h( | , )z x H  
in the presence of the external interference becomes 
h( )n + η , 

 
h e n n( | ) logz x H I R, ≤ +{ },2

2 2π σ σ

and σn
2R is the spatial-interference covariance matrix. 

Equality is achieved if and only if the interference am-
plitudes have a Gaussian distribution. Thus the worst-
case informed capacity, the maximum-minimum mu-
tual information, 

 C I
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|
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using 

 
H I R H≡ + .− /( ) 1 2

 (14)

Gaussian interference corresponds to a saddle point of 
the mutual information at which the maximum-mini-
mum capacity is achieved. The capacity in the pres-
ence of Gaussian interference has a form identical to 
Equation 6 under the transformation D D→  , where 
D  contains the eigenvalues of  HH†. The transmitted 

noise-normalized power covariance matrix P  is calcu-
lated by using H. Similarly, the uninformed transmit-
ter spectral-efficiency bound in the presence of noise is 
given by the same transformation of H H→  .

In the limit of high spectral efficiency for nJ infinite 
J/S jammers, the loss in capacity approaches 
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T R
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In general, the theoretical capacity is not significantly 
affected as long as the number of antennas is much 
larger than the number of jammers. This resistance to 
the effects of jammers is demonstrated experimentally 
later in the article. 

Frequency-Selective Channels

In environments in which there is frequency-selec-
tive fading, the channel matrix H(f ) is a function of 
frequency. Exploiting the orthogonality of frequency 
channels, the capacity in frequency-selective fading can 
be calculated by using an extension of Equations 6 and 
8. For the uninformed transmitter, this leads to the fre-
quency-selective spectral-efficiency bound 
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T OY  2  ×  2  C H A N N E L  M ODE L

beamwidths closely approximates many ad hoc 
definitions for physical arrays. Figure A displays the 
eigenvalues µ1 and µ2 as a function of generalized 
beamwidth separation. When the transmit and re-
ceive arrays are small, indicated by a small separa-
tion in beamwidths, one eigenvalue is dominant. 
As the array apertures become larger, indicated by 
a larger separation, one array’s individual elements 
can be resolved by the other array. Consequently, 
the smaller eigenvalue increases. Conversely, the 
larger eigenvalue decreases slightly. 

Equations 6 and 7 in the main article are em-
ployed to determine the capacity for the 2 × 2 sys-
tem. The “water-filling” technique (explained in a 
previous sidebar) must first determine if both modes 
in the channel are employed. Both modes are used 
if the following condition is satisfied, 
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assuming µ1 > µ2. 
If the condition is not satisfied, then only the 
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FIGURE A. Eigenvalues of HH† for a 2 × 2 line-of-
sight channel as a function of antenna separation.

B   of channel matrix 
eigenvalues is essential to the effectiveness of 

multiple-input, multiple-output (MIMO) commu-
nication, we employ a toy example for the purposes 
of introduction, and we discuss the eigenvalue dis-
tribution of a 2 × 2 narrowband MIMO system in 
the absence of environmental scatterers. To visualize 
the example, we can imagine two receive and two 
transmit antennas located at the corners of a rect-
angle. The ratio of channel matrix eigenvalues can 
be changed by varying the shape of the rectangle. 
The columns of the channel matrix H (in Equation 
1 in the main article) can be viewed as the receiver-
array response vectors, one vector for each transmit 
antenna, 

 H v v= ( ),2 1 1 2 2a a

where a1 and a2 are constants of proportionality 
(equal to the root-mean-squared transmit-to-receive 
attenuation for transmit antennas 1 and 2 respec-
tively) that take into account geometric attenuation 
and antenna gain effects, and v1 and v2 are unit-
norm array response vectors. For the purpose of this 
discussion, we assume a = a1 = a2, which is valid if 
the rectangle deformation does not significantly af-
fect overall transmitter-to-receiver distances. 

The capacity of the 2 × 2 MIMO system is a 
function of the channel singular values and the total 
transmit power. Eigenvalues of HH† are given by 

 
µ1 2

2
1 22 1, = ±( ),a v v†

where the absolute value is denoted by  . The 
separation between receive array responses can be 
described in a convenient form in terms of general-
ized beamwidths [40], 

 
b12 1 2

2= { }.
π
arccos †v v

For small angular separations, this definition of 
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stronger channel mode is employed and the capac-
ity, from Equation 6, is given by 

 

C P
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otherwise, both modes are used and the capacity is 
given by 
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Figure B displays the resulting capacity as a func-
tion of a2Po (mean single-input single-output SNR) 
for two beamwidth separations, 0.1 and 0.9. At low 
values of a2Po the capacity associated with small 
beamwidth separation performs best. In this regime, 
capacity is linear with receive power, and small 
beamwidth separation increases the coherent gain. 
At high values of a2Po large beamwidth separation 
produces a higher capacity as the optimal MIMO 
system distributes the energy between modes. 

The total received power is given by 

 2 1 2
2v v† a Po

when using one mode, and 

FIGURE B. The informed transmitter capacity of a 
2 × 2 line-of-sight channel, assuming antenna beam-
width separations of 0.1 (solid line) and 0.9 (dashed 
line).
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when using two modes, where Po is the total noise-
normalized power. In both cases, the total received 
power is much larger than a2Po. 

In complicated multipath environments, small 
arrays employ scatterers to create virtual arrays of 
a much larger effective aperture. The effect of the 
scatterers upon capacity depends on their number 
and distribution in the environment. The individual 
antenna elements can be resolved by the larger ef-
fective aperture produced by the scatterers. As dem-
onstrated in Figure A, the ability to resolve antenna 
elements is related to the number of large singular 
values of the channel matrix and thus the capacity. 
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(16)

where the distance between frequency samples is given 
by ∆f and the nf -bin frequency-partitioned channel 
matrix is given by 
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For the informed transmitter channel capacity, pow-
er is optimally distributed amongst both spatial modes 
and frequency channels. The capacity can be expressed 
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which is maximized by Equation 6 with the appropriate 
substitutions for the frequency-selective channel, and 
diagonal entries in D in Equation 7 are selected from 
the eigenvalues of 

 

HH†. Because of the block diagonal 
structure of H, the ( ) ( )n n n nT f T f⋅ × ⋅  space-frequency 
noise-normalized transmit covariance matrix 



H is a 
block diagonal matrix, normalized so that 

 tr{ } .


P ≤ n Pf o  

Other Performance Metrics

The information-theoretic capacity is not the only pos-
sible metric of performance. As an example, another 
useful performance metric is the outage capacity [16], 
or the achievable spectral-efficiency bound, assuming a 
given probability of error-free decoding of a frame. In 
many practical situations this metric may be the best 
measure of performance, for example, in the case in 
which the system can resend frames of data. 

Channel Phenomenology

In this section we describe tools for modeling, estimat-
ing, and characterizing MIMO channels. These topics 
are discussed in greater detail elsewhere [25, 28]. First 
we introduce the standard model and simple modifica-
tions to it. Then we discuss the simplest channel char-
acterization, which is mean receive power, followed by a 
description of channel estimation techniques, methods 
for determining how much channels have changed, and 
channel parameterization and estimation techniques.

Standard Model

A variety of techniques are used to simulate the channel 
matrix [29]. The simplest approach is to assume that 

all the entries in the channel matrix are sampled from 
identical independent complex Gaussians H G . This 
assumption corresponds to an environment with com-
plicated multipath scattering. While this approach is 
convenient from the perspective of performing analytic 
calculations, it may provide a channel eigenvalue distri-
bution that is too flat. At the other extreme, channels 
can be characterized by a diversity order [30], which is 
used to indicate an effective cut-off in the eigenvalue 
distribution induced by spatial correlation. A number of 
approaches that introduce spatial correlations have been 
suggested. One approach uses the form 

 H M GM= .L R  (19)

The above model results in a ( ) ( )n n n nT R T R⋅ × ⋅  link-
by-link covariance matrix of the Kronecker product 
form ( ) ( )† †M M M ML L R R⊗ ∗ for the entries in the chan-
nel matrix H. This product structure can arise from a 
spherical Green’s function model of propagation, pro-
vided several additional conditions are met. First, scat-
terers are concentrated around (but not too close to) the 
transmitter and receiver. Second, multiple scattering of 
a particular kind (from transmitter element to trans-
mitter scatterer to receiver scatterer to receiver element) 
dominates propagation. Third, scatterers are sufficient-
ly separated in angle when viewed by their associated 
array. 

Received Power

It is often convenient to parameterize the incoming 
signal power in terms of a2Po, where a2 is the mean-
squared link attenuation. It can be employed to eas-
ily compare performance by using different constraints 
and environments. This choice corresponds to the typi-
cal noise-normalized received power for a single receive 
and single transmit antenna radiating power σn oP2 . 
However, this choice can be mildly misleading because 
the total received power will, in general, be much larger 
than a2Po. In general, a2 is defined by the Frobenius 
norm squared of the channel matrix normalized by the 
number of transmitters and receivers, 

 
a

n nT R

2 = .tr{ }†HH
 

(20)

The total received noise-normalized power produced 
by a set of orthogonal receive beamformers is given by 
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tr{ }†HPH . The uninformed transmitter rate is maxi-
mized by sending equal power to all transmit antennas 
so that tr{ }†HPH  becomes P n n a Po T R o/ =tr{ }†HH 2 . 
It is worth noting that P is not in general optimized by 
the informed transmitter to maximize received power 
but to maximize capacity. 

The total received power for the capacity-optimized 
informed transmitter, given an arbitrary channel ma-
trix, is 
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The first term in Equation 21 is bounded from below 
by 
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(22)

The second term in Equation 22 is bounded from be-
low by zero. Consequently, the total received power is 
greater than or equal to max{ }n n a PT R o, 2 . 

For very small a2Po, far from the nonlinear regime of 
the Shannon limit, the optimal solution is to maximize 
received power. This is done by transmitting the best 
mode only, setting n+ = 1. In this regime the total re-
ceived power is given by 

 tr maxeig{ } { }† †HP H HHIT oP→ .  (23)

This result is bounded from above by n n a PT R o
2 , which 

is achieved if there is only a single nontrivial mode in 
the channel. 

Channel Estimation

The Gaussian probability density function for a multi-
variate, signal-in-the-mean, statistical model of the re-
ceived signal Z, assuming T ∈ ×



n nT s  is the transmit 
sequence, is given by 
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(24)

where R is the noise-plus-interference covariance ma-

trix. The maximum-likelihood estimate of H is given 
by 

 
ˆ ( )† †H Z T TT= ,−1

 (25)

assuming that the reference signals in T are known and 
TT† is nonsingular. 

The previous channel-estimation discussion explicit-
ly assumed flat fading. However, the frequency-selective 
channels can be estimated by first estimating a finite 
impulse-response MIMO channel, which can be trans-
formed to the frequency domain. 

A finite impulse-response extension of Equation 1 
is given by introducing delayed copies of T at delays 
δ δ δ1 2, , , ntaps

, 
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(26)

so that the transmit matrix has dimension ( )n n nT taps s⋅ × . 
The resulting wideband channel matrix has the dimen-
sion ( )n n nT taps s⋅ × , 

 

[ ˆ ( ) ˆ ( ) ˆ ( )]

( )† †

H H H

ZT TT

δ δ δ1 2

1



  

ntaps

= .−  
(27)

Using this form, an effective channel filter is associated 
with each transmit-to-receive antenna link. By assum-
ing regular delay sampling, we can use a discrete Fou-
rier transform to construct the explicit frequency-selec-
tive form, 

 

[ ˆ ( ) ˆ ( ) ˆ ( )]

[ ˆ ( ) ˆ ( ) ˆ (

H H H

H H H

f f fntaps1 2

1 2



= δ δ δδn n ntaps taps T
)]( ) ⊗ ,I

 

(28)

where the n-point discrete Fourier transform is repre-
sented by n  and the Kronecker product is represented 
by ⊗. 

Channel-Difference Metrics

A variety of metrics are possible. In investigating chan-
nel variations, no one metric will be useful for all situa-
tions. As an example, two completely different channels 
can have the same capacity. Depending upon the issue 
being investigated, we may wish to think of these matri-
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ces as being similar or very different. Here two metrics 
are discussed. Both metrics are ad hoc, but motivations 
are provided. The first metric measures differences in 
channel singular-value distributions. The second metric 
is sensitive to differences in both the singular-value dis-
tribution and the channel eigenvector structure. 

Eigenvalue-Based Metric

As was mentioned earlier, MIMO capacity is only a 
function of the channel singular values. Equivalently, 
capacity is invariant under channel-matrix transforma-
tions of the form 

 H W HW→ ,1 2
†

 (29)

where W1 and W2 are arbitrary unitary matrices. Con-
sequently, for some applications it is useful to employ a 
metric that is also invariant under this transformation. 
Because capacity is a function of the structure of the 
channel singular-value distribution, the metric should 
be sensitive to this structure. 

The channel capacity is a function of HH†. A natu-
ral metric would employ the distance between the ca-
pacity for two channel matrices at the same average to-
tal received power, that is, the same a2Po, 
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(30)

However, there are two problems with this definition. 
First, the difference is a function of Po. Second, there is 
degeneracy in H singular values that gives a particular 
capacity. To address the first issue, the difference can be 
investigated in a high SNR limit, giving 
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where λm( )X  indicates the mth largest eigenvalue of X. 
To increase the sensitivity to the shape of the eigenvalue 
distribution, the metric is defined to be the Euclidean 
difference, assuming that each eigenvalue is associated 
with an orthogonal dimension, giving 

    

δ

λ

2

1
2 2

( , )

[log ( ) log
min( )

†

H H

H H

a b

m

n n

m a a

T R

≡ −
=

,

∑ λλm b b( )]†H H .

Fractional Receiver Loss Metric

In this section we introduce a power-weighted mean 
cos2θ  metric. The metric takes into account both the 
eigenvalue and eigenvector structure of the channels. It 
is motivated by the effect of receive-beamformer mis-
match on capacity. Starting with Equation 8, the low 
SNR uninformed transmitter capacity approximation is 
given by 
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where hm is the column of the channel matrix associat-
ed with transmitter m, and   indicates the l2 norm. 
In the low SNR limit, the optimal receive beamformer 
is given by the matched response given in wm. If some 
other beamformer is employed, labeled ′wm , then signal 
energy is lost, adversely affecting the capacity, 
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One possible reason that a beamformer might use the 
wrong matched spatial filter is channel nonstationarity. 
The fractional capacity loss is given by 
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(31)

(32)
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which is the power-weighted mean cos2θm estimate, 
where cos θm  is defined to be the inner product between 
the “good” and “bad” unit-norm array responses for the 
mth transmitter. It is generally desirable for metrics to 
be symmetric with respect to H and ′H , thus avoiding 
moral attributions with regard to channel matrices. Us-
ing the previous discussion as motivation, a symmetric 
form is given by 

 

γ
θ

( )
cos

H H
h h

h h
, ′ ≡

′

′
,

∑
∑
m m m m

m m m

2

 

(36)

where the “power-weighted” expectation is evaluated 
over transmitters. 

Singular Values

The singular-value distribution of H, or the related ei-
genvalue distribution of HH†, is a useful tool for un-
derstanding the expected performance of MIMO com-
munication systems. From the discussion earlier, we can 
see that the channel capacity is a function of channel 
singular values, but not the singular-vector structure of 
the channel. Thus channel phenomenology can be in-
vestigated by studying the statistics of channel singular-
value distributions. 

Channel Parameterization

A commonly employed model assumes the channel is 
proportional to a matrix G, where the entries are inde-
pendently drawn from a unit-norm complex circular 
Gaussian distribution. While the distribution is conve-
nient, it does suffer from a singular-value distribution 
that is overly optimistic for many environments. As was 
previously discussed, one solution is to introduce spatial 
correlations using the transformation F M GM= b L R

†  
[29]. While this approach is limited, it produces simply 
more realistic channels than the uncorrelated Gaussian 
model. The spatial correlation matrices can be factored 
so that M UA UL L

= α
† and M VA VR R

= α
†, where U 

and V are unitary matrices, and AαL
 and AαR

 are posi-
tive-semidefinite diagonal matrices. 

Assuming that the number of transmit and receive 
antennas are equal and have similar spatial correlation 
characteristics, the diagonal matrices can be set equal, 
A A Aα α α= =

L R
, producing the new random channel 

matrix F, where 

 

F UA U G VA V

UA GA V

= ′

=

b

b
α α

α α

† †

†  

(37)
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(38)

where b is used to set overall scale, n is given by the size 
of Aα, and U and V indicate random unitary matrices. 
Used here is the fact that arbitrary unitary transforma-
tions do not affect the statistics of the Gaussian matrix. 
The form of Aα given here is somewhat arbitrary, but 
has the satisfying characteristics that as α → 0 , a rank-
one channel matrix is produced, and as α →1, a spa-
tially uncorrelated Gaussian matrix is produced. Fur-
thermore, empirically this model provides good fits to 
experimental distributions. The normalization for Aα is 
chosen so that the expected value of F F

2  is b n nT R
2 , 

where  F
2  indicates the Frobenius norm. 

Channel Parameter Estimation

An estimate for α̂  associated with particular transmit 
and receive locations is given by minimizing the mean-
square metric given in Equation 32, 

 ˆ argmin [ ( )]
^ ^

α δ α= , ,2 H F  (39)

where X̂ indicates the estimated value of X. Here the 
expectation, denoted by 


, indicates averaging is over 

an ensemble of F for a given α and an ensemble of H for 
given transmit and receiver sites. 

It is worth noting that this approach does not neces-
sarily provide an unbiased estimate of α. Estimates of α, 
using the metric introduced here, are dependent upon 
the received SNR. Data presented later in the article 
have sufficiently high SNR such that α can be estimat-
ed within ±0.02. 

Space-Time Low-Density Parity-Check Codes

This section of the article introduces low-density parity-
check (LDPC) codes, which were studied extensively 
by R.G. Gallager [31]. The significance of modern im-
plementations of LDPC codes rests on iterative decod-
ing algorithms that, for LDPC codes, are applications 
of techniques formulated for Bayesian belief networks, 
which are introduced below. This section also discusses 
a simple application of LDPC to space-time codes. 
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B A Y E S I A N  B E L I E F  N E T WOR K S

G  is often 
based on the Bayesian belief 

networks popularized by Pearl, in 
the context of machine learning, in 
a well-known monograph [1]. An 
interpretation of various decoding 
algorithms in terms of Bayesian be-
lief networks is presented elsewhere 
[2]. 

To appreciate the use of belief 
networks for decoding, consider 
the probability density function de-
noted p x x x x( )1 2 3 4, , ,  in Figure A. 
This function factors in the man-
ner shown in the figure, expressing 
simpler variable dependencies than 
those allowed by the multivariate 
notation p x … xl( )1, , . The factor-
ization can be represented by a di-
rected acyclic graph as shown, with 
directed arrows expressing condi-
tional probabilities of the more gen-
eral form p x u … ul( )| , ,1 . 

For decoding purposes, each 
node in the graph maintains an al-
phabet (for example, the symbol al-
phabet for coding applications) and 
several (probability) distributions 
over this alphabet. One probability 
distribution, denoted π(x), can be 
interpreted as a prior density on the 
alphabet while another (nonnega-
tive, but not a normalized density) 
distribution, denoted λ(x), can be 
interpreted as a likelihood function 
on the alphabet. 

In addition, each node keeps 
track of a belief function that is the 
product of priors and likelihoods: 
π(x) λ(x). The maximum of the be-
lief function can be used as a deci-
sion on the value of the node’s al-
phabet. 

To evaluate a consistent set of 
distribution functions, messages 
are received and transmitted from 

each node. Messages that flow from 
parent to child are denoted πk

P
ku( ) 

and are treated as if they were priors, 
while messages that flow from child 
to parent are denoted λk

C x( ) and are 
treated as if they were likelihoods. 
At each node, messages received 
from parents and children are used 
to update the internal (for that 
node) prior and likelihood func-
tions π(x) and λ(x) for the node’s 
alphabet. 

Nodes are activated in any order, 
subject only to the requirement that 
all incoming messages are available. 
When a node is activated, it calcu-
lates its internal prior and likeli-
hood functions and then makes its 
messages available to its parent and 
child nodes. Initial settings of the 
internal functions are provided (but 
not shown in the figure) to enable 
the process to start. 

Low-Density Parity-Check Codes

LDPC codes were developed by Gallager, who studied 
their distance properties and decoding in a well-known 
monograph [31]. With the advent of graphical decod-
ing techniques, soft-decision decoding of LDPC codes 
became practical, resulting in renewed interest in these 
codes. Subsequent developments in code design and 
decoding have led to codes that achieve levels of per-
formance astonishingly close to the Shannon capacity 
[32], albeit at the cost of extremely long codewords. 
However, decoding complexity of LDPC codes scales 
linearly (with a fixed number of iterations) with the 
code length, making relatively long codes practical. 

LDPC codes are linear block codes defined by a 
parity-check matrix. Each symbol in the codeword is 

involved in only a few parity-check equations. Con-
sequently, most entries in the parity-check matrix are 
zero. Regular LDPC codes have nC parity-check equa-
tions for each symbol, and each parity-check equation 
involves nR symbols. Thus, if the dimensionality of the 
parity-check matrix is r × c, we have rnR = cnC for regu-
lar LDPC codes. As an example, the LDPC code used 
for some of the experiments described later satisfies (r, c) 
= (512, 1024) and (nR, nC) = (8, 4). More powerful 
codes that are not regular are also known [33]. 

LDPC Decoding

Recently, graphical decoding techniques have motivat-
ed practical code design. Bayesian belief networks [34] 
can be used to formulate decoders for LDPC codes and 
turbo codes (the sidebar entitled “Bayesian Belief Net-
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For loopless graphs, the order of 
activation does not matter and the 
process converges. Unfortunately, 
for decoding applications, interest-
ing graphs have loops, so order of 
activation matters and convergence 
is not guaranteed. Typically, nodes 
are activated in a repetitive pattern 
for a certain number of iterations 
until a stopping criterion is met. 
Symbol decisions are based on the 
belief function.
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FIGURE A. Bayesian belief networks provide a framework for representing conditional probabilities in a graphi-
cal manner. Each node has a symbol alphabet on which it maintains a belief function that factors as a product of a 
prior-like function and a likelihood-like function. Beliefs are updated by passing messages among nodes in a man-
ner suggested by the terminology. Initial states and a node update order must be chosen. Only in special cases do 
the iterations converge to a Bayesian decision, but for many interesting applications, the iterative technique is both 
practical and effective. Turbo codes and low density parity-check codes have decoders based on this paradigm.

works” provides more information). However, beyond 
connecting the decoding algorithm of LDPC codes to 
Bayesian belief networks, a thorough explanation of the 
steps in this algorithm is outside the scope of this ar-
ticle; we present only a concise summary. 

For LDPC codes, Figure 2 shows a graph illustrat-
ing data and parity-check dependencies for the code-
words. In general, each nonzero entry in the parity-
check matrix indicates the edge of a graph connecting a 
parity-check node (row index) and a codeword symbol 
(column index). The example in Figure 2 is a single par-
ity-check code on four symbols. The graph shows the 
symbol nodes c1,…, c4, the data nodes z1,…, z4, and 
the parity-check nodes, labeled by zeroes. Each edge 
between a parity-check node and a symbol node corre-
sponds to a nonzero entry in the parity-check matrix. 

Decoding occurs by treating the graph as a Bayes-
ian belief network using the conditional probabilites 
p z ck k( )| , which express the likelihood ratios, and

 
p c … c ci i ikl k
( ) ,0

1
| , , = ( )∑δ

which expresses the parity-check relation. The resulting 
algorithm can be viewed as sweeping through the rows 
and columns of the parity-check matrix, updating like-
lihood ratios lk for each nonzero entry in the matrix. 
The notation below denotes lij

 as the likelihood ratio 
stored with the ij-th (nonzero) entry in a fixed (for the 
given step) row or column of the parity-check matrix. In 
this form, the iterative steps of the algorithm are sum-
marized for the simple case of a binary symbol alphabet 
by the equations: 
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1. Row sweeps 
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For the code used in the experiments, each row sweep 
involves eight lij

 per row and each column sweep four lij
 

per column. 
Each of the row (column) operations is independent 

of any other row (column operation) and hence can be 

implemented in any order or in parallel. This allows 
considerable acceleration of hardware decoders. Decod-
ing can be halted after a fixed number of iterations or 
after the parity-check equations are satisfied. 

Some simplifications that are not possible for nonbi-
nary symbol alphabets are involved in the binary case. 
In this more general context, the row/column sweeps 
are expressed by: 

1. Row sweeps 
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2. Column sweeps 
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3. Symbol decisions 
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Fixed likelihoods for 
evidentiary nodes:   k(x) =    (x − zk)
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FIGURE 2. Application of Bayesian belief networks to low-density parity-check codes. Soft-decision 
decoding of low density parity-check codes can be based on Bayesian belief networks. Both the re-
dundancies in codewords ck and the relationship between the codewords and the data zk can be rep-
resented graphically. The data-codeword relationship is expressed through the probability densities 
p(z|c), which are assumed to be independent sample-to-sample. Redundancies in the codewords are 
expressesed in a similar notation as p(0|ci1

,…, cis
) where the symbols cik

, 1 ≤ k ≤ s, are involved in a par-
ity check. In this manner, all depedancies are expressed graphically through conditional probability 
densities as required for the formalism of Bayesian belief networks.



• BLISS, FORSYTHE, AND CHAN
MIMO Wireless Communication

VOLUME 15, NUMBER 1, 2005 LINCOLN LABORATORY JOURNAL 111

The components of the vector pk express probabilities 
for the values of the kth symbol, the permutation πk in-
dicates the effect of a particular nonbinary coefficient 
in the parity-check equation, Un is a Walsh-Hadamard 
matrix, and the notation  denotes the Hadamard 
(component by component) product. 

Space-Time Extension LDPC

There are a variety of extensions of LDPC codes to 
space-time codes, which are introduced and explained 
in the sidebar entitled “Space-Time Codes.” For the ex-
periments described below, only one type of extension 
was considered. 

Each space-time channel transmits one of several 
possible quadrature phase-shift keying (QPSK) wave-
forms with slightly offset carrier frequencies. The dif-
ferential frequencies are sufficiently large to effectively 
decorrelate the transmitted waveforms over the length 
of a codeword (1024 bits) even if the data sequences in 
each channel are identical. These differential frequen-
cies are also large compared to the expected Doppler 
spreads and small compared to the signal bandwidth. 

In the simplest example of such a code, the I and 
Q components of a transmitter represent, respectively, 
two different LDPC codewords. Each transmitter sends 
the same complex baseband sequence (QPSK) shifted 
in frequency. The transmitter outputs, viewed collec-
tively as a vector at any instant, vary in time and thus 
effectively probe the environment characterized by the 
channel matrix. Since the transmitted vector varies sig-
nificantly over the duration of a codeword, the coding 
provides spatial diversity. Decoding occurs by forming 
likelihood ratios based on channel-matrix estimates and 
then using the iterative decoder described above. Note 
that the channel matrix can change during the code-
word, in which case channel-matrix estimates can vary 
sample to sample. 

The LDPC space-time code just described exhibits 
full spatial redundancy among all transmitters. Less 
redundancy, and therefore higher data rates, can be 
achieved by dividing the transmitters into subsets, each 
of which is fully redundant yet different from any other 
subset. For example, the space-time code discussed lat-
er, in the section on experiments, uses four transmitters. 
The first two transmitters send two bits (redundant 
in I and Q) of a symbol of an LDPC codeword over 

GF(16). The remaining two transmitters send the oth-
er two bits of the same symbol. Decoding is based on 
likelihood functions built over GF(16) using estimates 
of the channel matrices. Again, differential frequencies 
among transmitters enable spatial diversity. 

Space-Time Turbo Code and Multichannel  
Multiuser Detectors

While the theoretical performance is determined by 
the channel phenomenology, practical MIMO perfor-
mance requires the selection of a space-time code and 
an appropriate matched receiver. In this section we dis-
cuss the space-time turbo code used in this example. 
We develop a maximum-likelihood formulation of a 
multiple-antenna multiuser receiver, and we discuss 
suboptimal implementations of the receiver. We also 
introduce minimum-mean-squared-error extensions of 
the receiver, and we discuss the value and use of train-
ing data. 

Space-Time Turbo Code

Turbo codes, introduced elsewhere [35], illustrate that 
codes constructed with simple components, such as 
with interleavers and convolutional encoders, combined 
with an iterative decoding process can achieve near-
Shannon capacity performance. The iterative decod-
ing process, taking advantage of information exchange 
among component decoders, provides a feasible way to 
approach optimal performance. For each component 
decoder, the best decoding algorithm is the maximum 
a posteriori (MAP) algorithm or the BCJR algorithm 
[36], which is derived from the MAP principle. Modi-
fications of the MAP algorithm include log-MAP and 
max-log-MAP [37]. Recently, implementation of turbo 
decoders has been carried out and high data-rate decod-
ing is possible [38]. 

A number of space-time extensions of turbo coding 
have been suggested [21, 22]. The approach used here, 
which was introduced elsewhere [39], provides a 2-bit/
sec/Hz link for a 4 × 4 MIMO system with independent 
QPSK waveforms from each transmitter. A single data 
stream is turbo encoded and the encoded data stream is 
distributed redundantly amongst the transmitters. The 
turbo encoder employs a rate-1/3, 16-state convolution-
al encoder twice with two different 4096-bit random 
interleavers. The distribution of systematic bits is such 
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S PAC E -T I M E  C ODE S

S-  are used with 
multiple transmitters to provide 

spatial as well as temporal redun-
dancy in the data received by an ar-
ray of antennas. There are two basic 
approaches to space-time coding. 
In the first approach, the transmit-
ter can be informed of the propa-
gation channel by the receiver and 
thus adjust its coding accordingly. 
This approach offers the largest in-
formation-theoretic capacity but 
can be difficult to accomplish in a 
dynamic environment. The second 
approach, which is taken here, uses 
fixed codes of various rates that of-
fer good performance on average 
(over all channels). These codes 
share transmitted power equally 
among all spatial channels.

The number of different types of 
space-time codes is too large to pro-
vide a useful overview here. Instead 
we briefly describe two important 
categories of space-time codes that 
are not treated in the text.

Block Orthogonal Codes

For data Z and channel matrix H, 
consider a set of matrix symbols S 

contained in S. The information 
bits are encoded in matrices that 
are constrained to lie in the class S. 
This class is defined by the property 
that SS† is proportional to the iden-
tity matrix with a fixed (indepen-
dent of S) proportionality constant. 
The maximum-likelihood decision 
for S is based on finding 
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which involves a linear function in 
the entries of S. For some simple 
classes S, linearity of the likelihood 
function decouples decisions on the 
data symbols. For example, consid-
er the Alamouti code [1]. 
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The information symbols s1 and 
s2 are sent redundantly over both 
channels. The likelihood function 
is linear in each sk, decoupling de-
modulation decisions. 

Another example of an orthogo-
nal matrix code is 
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Space-Time Trellis Codes

Figure A provides an example of a 
space-time trellis code. A pair of bits 
( )I It t

1 2,  at time t enters a convolu-
tional encoder with integer coeffi-
cients ak

p  and bk
p at the pth lag in 

the kth channel. The input bits are 
interpreted as the integers 0 or 1. 
Computations occur modulo 4 and 
result in an integer value between 
0 and 3 for each channel. A fixed 
mapping between these four inte-
gers and the quadrature phase-shift 
keying (QPSK) alphabet completes 
the coding and modulation. 

The trellis code is defined by 
the coefficients { }a bk

p
k
p, . These are 

often chosen under one of several 
design criteria, also shown in the 
figure. Each codeword is a matrix 
symbol C. The probability of an er-
ror in deciding between two such 

that each systematic bit is sent twice on two different 
transmitters. The parity bits are sent once, distributed 
randomly amongst the transmitters. The difference in 
weighting between the systematic and parity bits pro-
vides an effective puncturing of the code. Because more 
energy is dedicated to systematic bits, remodulation er-
rors have a reduced effect on subtraction performance, 
in principle improving the performance of the iterative 
multiuser detection for a given bit error rate. 

Multichannel Multiuser Detector

The multichannel multiuser detector (MCMUD) algo-
rithm, discussed elsewhere [3, 39, 40], is a minimum-
mean-squared-error (MMSE) extension to an iterative 
implementation of a maximum-likelihood multiple-an-
tenna receiver. The MCMUD algorithm employed for 
this analysis iteratively combines a blind space-time-fre-
quency adaptive beamformer with a multiuser detector. 



• BLISS, FORSYTHE, AND CHAN
MIMO Wireless Communication

VOLUME 15, NUMBER 1, 2005 LINCOLN LABORATORY JOURNAL 113

Example of space-time trellis code (ak, bk      {0, 1, 2, 3})

Design criteria for space-time trellis codes (4 ≤ rnR or rnR ≥ 4)

transmitters  receivers

Notation: rank r matrix codeword C

nT nR

kth transmitter

data: bit pair

(It
1, It

2 ) xt
k

trellis coding codeword
symbol 

QPSK
modulation

ix
t
k

∈

Σ  It
1
–p ap

k  +  Σ  It
2
–q bq

k  mod4
p=0 q=0

v1 v2

   pe ≤    Π      [(C1 – C2)(C1 – C2]
†  

–nR
      E     

–rnR

k=1

r

kλ |

4N0

pe  ≤  14
–e –n

R 4N0
tr[(C1–C2)(C1–C2)†]|E

FIGURE A. Space-time trellis codes introduce spatial as well as temporal 
redundancy in the transmitted data. Code design often involves a pruned 
search over a class of codes based on a simple figure of merit. For exam-
ple, the minimum least-squares distance between codewords (represent-
ed by space-time matrices Ck) can be maximized. In the example shown, 
an alphabet consisting of the integers modulo 4 is used for convolutional 
encoding at each transmitter. The resulting output symbols are mapped to 
a QPSK alphabet. The coefficients ak, bk determine the code. Note that the 
spectral efficiency is 2 bits/sec/Hz.

symbols can be bounded by (Bhat-
tacharyya bound) 

 p ee

E
N≤ .

− − −4 1 2 1 20
( ) ( )† †C C H H C C

The approximation H H† ≈ n IR nT
motivates one of the design crite-
ria shown in the figure. Integrating 
over H motivates the other. 

In both cases r denotes the rank 
of the matrix difference C1 – C2. 
Constrained searches over the code 
coefficients are commonly used to 
find codes with the smallest pos-
sible error between closest code-
words under either criterion. When 
4 ≥ rnR, it is important to ensure 
that the rank of the matrix differ-
ence is not too small. When 4 < rnR , 
maximizing the Euclidean distance 
between the two codewords Ck be-
comes important. 

Reference
1. S.M. Alamouti, “A Simple Transmit Di-

versity Technique for Wireless Com-
munications,” IEEE J. Sel. Areas Com-
mun., 16 (8), 1998, pp. 1451–1458.

We present here the results of the maximum likeli-
hood (ML) formulation of MCMUD, employing a 
quasistatic narrowband MIMO-channel model. The 
number of receive antennas nR by number of samples, ns 
data matrix, Z ∈ ×



n nR s , is given by 

 Z HT N= + ,  (44)

where the channel matrix H ∈ ×


n nR T  contains the 
complex attenuation between each transmit antenna 
and receive antenna; T ∈ ×



n nT s is the transmitted se-
quence; and N ∈ ×



n nR s  is additive Gaussian interfer-
ence plus noise. The probability density for a multivari-
ate signal-in-the-mean model is given by 

 
p

e
n n ns R s

( )
( ) ( )†

Z R H T
R

Z HT R Z HT

| , , =
| |

− − −{ }−tr 1

π
,,
 

(41)

where R indicates the spatial covariance matrix of the 
interference plus noise, | |  indicates the determinant 
of a matrix, † indicates the Hermitian conjugate, and tr 
indicates the trace of a matrix. Maximizing the prob-
ability density with respect to H is equivalent to mini-
mizing the tr{ }  in Equation 41, 

 tr ( )( )†Z HT Z HT R− − ,−{ }1  (42)

which is satisfied by 

 
ˆ ( )† †H ZT TT= ,−1

 (43)

assuming TT† is not rank deficient. Substituting Ĥ , 

 
p

e
n n ns R s

→
| |

,
− ⊥ −{ }tr ZP Z RT

R

† 1

π  (44)

where the matrix P T TT TT ≡ −† †( ) 1  projects onto the 
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row space spanned by T, and P I PT T
⊥ = −ns  projects 

onto the orthogonal complement of the row space of T. 
Maximizing with respect to an internal parameter of R 
gives 

 tr tr{ } { }†R ZP Z R R R R− ⊥ − −− = ,1 1 1 0T sn 

 (45)

where R  indicates the derivative of R with respect to 
some internal parameter. This relationship is satisfied 
when 

 
ˆ

†

R
ZP ZT= ,

⊥

ns  
(46)

assuming that R is not rank deficient. Using these re-
sults, the ML statistic for estimating T is given by 

 
max ( ) †

R H
TZ R H T ZP Z

,

−
⊥ −| , , =







| |p
e
n

n n

s

n
s R

s
π ..

 
(47)

The determinant of ZP ZT
⊥ †  is minimized to demodu-

late the signals for all transmitters jointly. 
Although it is theoretically possible to use the statis-

tic ZP ZT
⊥ †  directly for demodulation, an iterative ap-

proach is much more practical. We define T T TA B≡ ( )† † † 
to be a partitioned form of T, where the nA × ns ma-
trix TA contains the signals associated with a particular 
subset of nA transmit antennas and the (nT – nA) × ns 
matrix TB contains the signals associated with all other 
transmit antennas. By factoring P X XTB

⊥ = † , the rows 
of X form an orthonormal basis for the complement 
of the row space of TB such that XX I† = , where the 
symmetric identity matrix has a dimension of ns minus 
the number of rows in TB. By defining Z ZXX ≡ †  and 
T T XX A≡ † , we can show that 

 ZP Z Z P ZT X T XX

⊥ ⊥= .† †
 (48)

The determinant can be factored into terms with and 
without reference to TA, 

 
Z P Z Z Z I P PX T X X X T ZX X X

⊥ = − .† †
ns  (49)

Because the first term is free of TA, demodulation is per-
formed by minimizing the second term. This form sug-
gests an iterative approach, where the signal associated 
with each transmitter, in turn, is considered to be user 
A and is demodulated by minimizing I P PT ZX Xns

− . 
If TA is a row vector, such that nA = 1, then the sec-

ond term can be simplified and interpreted in terms of 
a beamformer 
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(50)

where 
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The nR × 1 vector wA contains the receive beamforming 
weights, R̂ X is the interference-mitigated signal-plus-
noise covariance matrix estimate, and AĤ  is the chan-
nel estimate associated with TA. It is worth noting that 
the form for AĤ  is simply the column of Ĥ, given in 
Equation 43, associated with TA.
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(52)

By focusing on the first column and substituting in for 
M1,1, M1,2, and M2,2, we can find AĤ .
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which is the same form found in Equation 51. 
Demodulation is performed by maximizing the 

magnitude of the inner product of the beamformer out-
put w ZA

†  and the interference-mitigated reference sig-
nal T PA TB

⊥ . 

Suboptimal Implementation

A variety of suboptimal but computationally more ef-
ficient variants are possible. In general, these approxi-
mations become increasingly valid as the number of 
samples in the block increases. 

The first computational simplification is found by 
noting that the normalization term of the channel esti-
mate in Equation 51 can be approximated by 

A T A A T A
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(54)

(We did not assume that TA is a row vector in the previ-
ous discussion.) 

The second approximation reduces the computation 
cost of the projection operator. The operator that proj-
ects on the orthogonal complement of the row space of 
M is given by 

 P I M MM MM
⊥ −= − .† †( ) 1

 (55)

This operator can be approximated by 

 P I M M M MM
⊥ −≈ − ,∏

m
m m m m
† †( ) 1

 (56)

where m indicates the mth row in the matrix. By re-
peating the application of this approximate projection 
operator, we can reduce the approximation error at the 
expense of additional computational complexity. 

MMSE Extension

Because of the effects of delay and Doppler-frequency 
spread, the model given in Equation 40 for the received 
signal is incomplete for many environments, adversely 
affecting the performance of the spatial-beamformer 
interpretation of the ML demodulator. Because turbo 

codes require relatively long block lengths to be effec-
tive, they are particularly sensitive to Doppler offsets. 
Extending the beamformer to include delay and Dop-
pler corrects this deficiency. With this approach, the 
spatial-beamformer interpretation presented in Equa-
tion 50 is formally the same, but all projectors are ex-
tended to include delay and Doppler spread. The data 
matrix is replaced with 
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(57)

which is a ( )n n n nR f t s⋅ ⋅ ×δ δ  matrix that includes pos-
sible signal distortions. The new channel estimate has 
dimension ( )n n n nR f t T⋅ ⋅ ×δ δ , but T remains the same. 
The MMSE beamformer is given by 
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(58)

Figure 3 shows a diagram for this demodulator (MC-
MUD). 
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FIGURE 3. Diagram of a multichannel multiuser detector 
(MCMUD) space-time turbo-code receiver. The receiver 
iteratively estimates the channel and demodulates the sig-
nal. The space-time frequency-adaptive beamformer com-
ponent compensates for spatial, delay, and frequency-off-
set correlations. By iteratively decoding the signal, previous 
signal estimates can be used to temporally remove contri-
butions from other transmitters, which is a form of multius-
er detection.
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Training Data

In principle, there is no need for training data, because 
the channel and information can be estimated jointly. 
Furthermore, the use of training data competes directly 
with information bits. For reasonably stationary chan-
nels, the estimate for the previous frame can be em-
ployed as an initial estimate for the demodulator. How-
ever, for more quickly moving channels some training 
data is useful. Here, a small amount of training data 
is introduced within a frame (20%). This provides an 
initial channel estimate for the space-time-frequency 
adaptive beamformer. 

In the experiment, knowledge of the encoded sig-
nal is used to provide that training data. Because the 
number of training samples is relatively small, it is use-
ful to use a small number of temporal and frequency 
taps during the first iteration. Larger dimension space-
time-frequency processing is possible by using estimates 
of the data. 

Phenomenological Experiment

This section presents channel-complexity and channel-
stationarity experimental results for MIMO systems. 
We introduce the experiments and then discuss chan-
nel mean attenuation and channel complexity. We then 
discuss the variation of MIMO channels as a function 
of time and as a function of frequency. 

Experimental System

The employed experimental system is a slightly modi-
fied version of the system used previously at Lincoln 
Laboratory [3, 41]. The transmit array consists of up to 
eight arbitrary waveform transmitters. The transmitters 
can support up to a 2-MHz bandwidth. These trans-
mitters can be used independently, as two groups of 
four coherent transmitters, or as a single coherent group 
of eight transmitters. The transmit systems can be de-
ployed in the laboratory or in vehicles. When operat-
ing coherently as a multiantenna transmit system, the 
individual transmitters can send independent sequences 
by using a common local oscillator. Synchronization 
between transmitters and receiver and transmitter geo-
location is provided by GPS receivers in the transmitters 
and receivers. 

The Lincoln Laboratory array receiver system is a 

high-performance sixteen-channel receiver system that 
can operate over a range of 20 MHz to 2 GHz, sup-
porting a bandwidth up to 8 MHz. The receiver can 
be deployed in the laboratory or in a stationary “bread 
truck.” 

MIT Campus Experiment

The experiments were performed during July and Au-
gust 2002 on and near the MIT campus in Cambridge, 
Massachusetts. These outdoor experiments were per-
formed in a frequency allocation near the PCS band 
(1.79 GHz). The transmitters periodically emitted 1.7-
sec bursts containing a combination of channel-probing 
and space-time-coding waveforms. A variety of coding 
and interference regimes were explored for both mov-
ing and stationary transmitters. The space-time-coding 
results are discussed later in the article [39, 40]. Chan-
nel-probing sequences using both four and eight trans-
mitters were employed. 

The receive antenna array was placed on top of a 
tall one-story building (at Brookline Street and Henry 
Street), surrounded by two- and three-story buildings. 
The transmit array was located on the top of a vehicle 
within two kilometers of the receive array. Different 
four- or eight-antenna subsets of the sixteen-channel re-
ceiver were used to improve statistical significance. The 
receive array had a total aperture of less than 8 m, ar-
ranged as three subapertures of less than 1.5 m each. 

The channel-probing sequence supported a band-
width of 1.3 MHz with a length of 1.7 msec repeated 
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FIGURE 4. Scatter plot of the peak-normalized mean-
squared single-input single-output (SISO) link attenuation 
a2 versus link range for the outdoor environment near the 
PCS frequency allocation. The error bars indicate a range 
of plus or minus one standard deviation of the estimates at 
a given site.
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ten times. All four or eight transmitters emitted nearly 
orthogonal signals simultaneously. 

Attenuation

Figure 4 displays the peak-normalized mean-squared 
SISO attenuation averaged over transmit and receive 
antenna pairs for a given transmit site for the outdoor 
environment. The uncertainty in the estimate is evalu-
ated by using a bootstrap technique. 

Channel Complexity

We present channel complexity by using three differ-
ent approaches: variation in a2 estimates, eigenvalue cu-
mulative distribution functions (CDF), and α estimate 
CDFs. Table 1 is a list of transmit sites used for these 
results. The table includes the distance (range) between 
transmitter and receiver, the velocity of the transmitter, 

the number of transmit antennas, and the estimated α 
for the transmit site. Uncertainty in α is determined by 
using the bootstrap technique [42]. The CDF values re-
ported here are evaluated over appropriate entries from 
Table 1. The systematic uncertainty in the estimation 
of α caused by estimation bias, given the model, is less 
than 0.02. 

Figure 5 displays CDFs of a n nT R
2 = /tr{ } ( )†HH  

estimates normalized by mean a2 for each transmit site. 
CDFs are displayed for narrowband SISO, 4 × 4, and 
8 × 8 MIMO systems. Because of the spatial diversi-
ty, the variation in mean antenna-pair received power 
decreases dramatically as the number of antenna pairs 
increases, as we would expect. This reduction in varia-
tion demonstrates one of the most important statistical 
effects that MIMO links exploit to improve commu-
nication link robustness. For example, if we wanted to 

Table 1. List of Transmit Sites

 Site Location Range Velocity Number of α 
   (m) (m/sec) antennas 

 1 Henry and Hasting 150 0.0 8 0.79 ± 0.01

 2 Brookline and Erie 520 0.0 8 0.80 ± 0.01

 3 Boston University (BU) 430 0.0 8 0.78 ± 0.01

 4 BU at Storrow Drive 420 0.0 4 0.72 ± 0.01

 5 Glenwood and Pearl 250 10.0 4 0.85 ± 0.01

 6 Parking lot 20 0.1 4 0.78 ± 0.02

 7 Waverly and Chestnut 270 0.2 4 0.67 ± 0.02

 8 Vassar and Amherst 470 0.7 4 0.68 ± 0.02

 9 Chestnut and Brookline 140 0.1 4 0.70 ± 0.02

 10 Harvard Bridge 1560 11.6 4 0.69 ± 0.02

 11 BU Bridge 270 2.7 4 0.83 ± 0.04

 12 Vassar and Mass Ave 1070 7.6 4 0.59 ± 0.01

 13 Peters and Putnam 240 9.1 4 0.87 ± 0.05

 14 Glenwood and Pearl 250 5.2 4 0.76 ± 0.02

 15 Brookline and Pacific 780 7.2 4 0.86 ± 0.03

 16 Pearl and Erie 550 0.1 4 0.71 ± 0.04

 17 Storrow Drive and BU Bridge 410 9.2 4 0.85 ± 0.03

 18 Glenwood and Magazine 370 0.0 4 0.78 ± 0.02
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operate with a probability of 0.9 to close the link, we 
would have to operate the SISO link with an excess 
SISO SNR (a2Po) margin of over 15 dB. The MIMO 
systems received the added benefit of array gain, which 
is not accounted for in the figure.

Figures 6 and 7 present CDFs of eigenvalues for 4 × 4 
and 8 × 8 mean-squared-channel-matrix-element-nor-
malized narrowband channel matrices, eig{ }†HH . The 
CDFs are evaluated over all site lists. Some care must be 
taken in interpreting these figures because eigenvalues 
are not independent. Nonetheless, the steepness of the 
CDFs is remarkable. We might interpret this to indicate 
that optimized space-time codes should operate with a 
relatively high probability of success. 

Figure 8 shows the CDFs for α estimates. The mean 
values of α for each environment are 0.76 for 4 × 4 sites 
and 0.79 for 8 × 8 sites, where the form x ± y indicates 
the estimated value x with statistical uncertainty y es-
timated by using a bootstrap uncertainty estimation 
technique. While we might expect smaller variation in 
the 8 × 8 systems because of the much larger number of 
paths, this effect may have been exaggerated in Figure 8 
because of the limited number of 8 × 8 sites available in 
the experiment. 

Channel Stationarity

Figure 9 displays the temporal variation of eigenvalues 
of HH† for stationary and moving transmitters. In this 
figure the normalization is fixed, allowing for overall 
shifts in attenuation. As we would expect, the eigenval-
ues of the moving transmitter vary significantly more 
than those of the stationary environment. However, the 

eigenvalues of the stationary transmitter do vary some-
what. While the transmitters and receivers are physi-
cally stationary, the environment does move. This effect 
is particularly noticeable near busy roads. Furthermore, 
while the multiple antennas are driven with the same lo-
cal oscillator, given the commercial grade transmitters, 
there are always some small relative-frequency offsets. 
The example variation is given for transmit sites 7 and 
14 from Table 1. 
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FIGURE 5. Cumulative distribution function (CDF) of chan-
nel a2 estimates, normalized by the mean a2 for each site, for 
SISO, 4 × 4, and 8 × 8 MIMO systems.
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tions for 4 × 4 MIMO systems.

FIGURE 7. CDF of narrowband channel eigenvalue distribu-
tions for 8 × 8 MIMO systems.
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While the moving-transmitter eigenvalues fluctuate 
more than those of the stationary transmitter, the values 
are remarkably stable in time. Conversely, an example 
of the time variation of the power-weighted mean cos2θ 
metric (from Equation 36), displayed in Figure 10, 
varies significantly for the moving transmitter within 
10 msec. This variation indicates that the eigenvector 
structure varies significantly, while the distribution of 

eigenvalues tends to be more stable. In the example, the 
stationary transmitter is located at site 7, and the mov-
ing transmitter is located at site 14. Over the same pe-
riod the stationary transmitter is relatively stable. Fig-
ures 11 and 12 display CDFs for stationary and moving 
transmitters. The significant variation of the moving 
transmitter is an indication that implementing an in-
formed transmitter MIMO system would be very chal-
lenging for the moving transmitter, but might be viable 
for some stationary MIMO systems. 

Frequency-Selective Fading

Figure 13 gives an example of the frequency variation of 
the power-weighted mean cos2θ. The variation is indi-
cated by using the metric presented in Equation 36. In 
the example, the stationary transmitter is located at site 
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ples.
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FIGURE 11. CDF of time variation of power-weighted mean 
cos2θ, γ { ( ), ( )}0H Ht t , for a stationary 4 × 4 MIMO system. The 
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FIGURE 12. CDF of time variation of power-weighted mean 
cos2θ, γ { ( ), ( )}0H Ht t , for a moving 4 × 4 MIMO system. Con-
tours of CDF probabilities of 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 
and 0.9 are displayed.
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7. Relatively small frequency offsets induce significant 
changes in γ { ( ) ( )}H Hf f0 , . Figure 14 shows the CDF 
of the frequency-selective channel variation. This sen-
sitivity indicates that there is significant resolved delay 
spread and that, to safely operate with the narrowband 
assumption, bandwidths less than 100 kHz should be 
employed. We note that delay spread, and the result-
ing frequency-selective fading, are both a function of 
environment and link length. Consequently, some care 
must be taken in interpreting this result. 

Space-Time Low-Density  
Parity-Check-Code Experiments

A low-density parity-check code over GF(16) provides 
the basis of the example of experimental and simulated 
results shown in Figure 15. The code used is half rate 
with length 1024. The MIMO wireless link is realized 
with four cohered transmitters located on a stationary 

van several hundred meters away from an array of re-
ceivers situated on a one-story building. The environ-
ment consists predominantly of two- and three-story 
residential buildings and some commercial buildings of 
similar heights in an urban setting. Propagation delay 
spreads are typically several microseconds and Dop-
pler spreads are at most a few hundred hertz. There is 
typically no identifiable line-of-sight component in 
the propagation. The signal has a pulse-shaped QPSK 
modulation and bandwidth of about 100 kHz. Coding 
provides a spectral efficiency of 2 bits/sec/Hz. 

The receiver consists of sixteen channels fed by low-
gain elements with wide azimuth beamshapes. The 
elements are oriented in various directions, not neces-
sarily pointing at the sources. For the example below, 
four element subarrays are chosen at random to provide 
multichannel receivers. In other words, C(16, 4) 4 × 4 
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(LDPC) code at a spectral efficiency of 2 bits/sec/Hz. Bit 
error rates are evaluated for an ensemble of 4 × 4 MIMO 
systems. The estimated channel matrices are used in the 
simulation to model propagation. Each estimated channel 
matrix suppports a theoretical capacity that can be in ex-
cess of 2 bits/sec/Hz. The matrix is scaled until it supports 
a capacity of exactly 2 bits/sec/Hz. The resulting scale fac-
tor is used to evaluate the excess (beyond Shannon) Eb/N0 
associated with the (unscaled) channel matrix. Agreement 
between measured and simulated results are good to about 
1 dB. About 4 to 5 dB excess Eb/N0 is required to reliably 
complete the link. 
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MIMO links can be evaluated. The channel transfer 
matrices have a random structure that varies from sub-
array to subarray. 

Figure 15 shows symbol-error probability as a func-
tion of excess Eb/N0, which is related to the excess spec-
tral efficiency (beyond 2 bits/sec/Hz) predicted by a 
capacity bound, given the measured channel transfer 
matrix. For this example, in a comparatively station-
ary environment, the channel transfer matrices are used 
both for the simulated results and for the computation 
of excess Eb/N0. As the figure shows, about 4.5 dB ex-
cess Eb/N0 is required to complete the link at 2 bits/sec/
Hz. Simulations agree to within about 1 dB. 

Space-Time Turbo-Code Experiments

In this section we present the experimental performance 
of a space-time turbo code. We begin by discussing the 
experimental parameters, and then we summarize the 
performance of the MIMO system with stationary 
transmitter and receiver in a dynamic environment. Ad-
ditionally, for an even more complicated environment, 
we describe performance results with a mobile transmit-
ter and multiple strong interferers. 

Experimental Parameters

Outdoor experiments were performed in a frequency 
allocation near the PCS band, using a sixteen-channel 
receiver. A variety of coding and interference regimes 
were explored for both moving and stationary transmit-
ters. Channel-probing sequences and four- and eight-
transmitter space-time codes were transmitted. This 
section reports on the outdoor performance results of 
space-time turbo codes for 4 × 4 MIMO systems. The 
outdoor experiments were performed during July and 
August 2002 on and near the MIT campus. The receive 
antenna array was placed on top of a one-story building 
(at Brookline Street and Henry Street) surrounded by 
two- and three-story buildings. 

For the examples discussed in this article, quadra-
ture-phase-shift-key (QPSK) signals were transmitted 
on four antennas at 123 × 103 chips per second for a 
total data rate of 246 kb/sec, using the space-time code 
discussed earlier. A 160-kHz spectral limit was enforced 
by using a root-raised-cosine pulse shaping. Total trans-
mit power was approximately 100 mW, radiated from 
0-dBi antennas. We discuss two examples with differ-

ent transmit locations. In both examples the link does 
not have line of sight. Different four-antenna subsets of 
the sixteen-channel receiver were used to improve statis-
tical significance.

Example 1. In this example, the transmitter was lo-
cated in the parking lot at Boston University (Universi-
ty Road and Storrow Drive) with about a half-kilometer 
separation between the transmitter and receiver. Figure 
16 shows the geometry of the experiment. Traffic on 
Storrow Drive is typically heavy and the posted speed 
limit of 45 mph is generally misinterpreted as the mini-
mum allowed speed. While the transmitter is stationary, 
the environment is nonstationary because of the traffic. 

Example 2. The transmitter was moving at 10 m/sec 
at a range of 500 m. Figure 17 shows the geometry of 
the experiment. To simulate the effects of local oscilla-
tor errors, we introduced artificial frequency offsets at 
the transmitters. These errors were within ±80 Hz. 

Two wideband jammers were transmitting at a range 
of 100 m. Each jammer was received at a jammer-to-
noise ratio (JNR) of approximately 25 dB. Figure 18 
shows the eigenvalues of the noise-normalized interfer-
ence-plus-noise spatial covariance matrix. The “noise” 
eigenvalues of the jammer spatial eigenvalue distribution 

Boston
University

Receive
array

Cambridge

MIT

Transmit
array

FIGURE 16. Example 1: map of MIMO communication exper-
iment near the MIT campus, including the locations of the 
transmitter and receiver.
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are slightly higher than we would naively expect, given 
the 0-dB noise normalization. This behavior is probably 
an indication of either delay spread or nonstationarity in 
the received jammer signal. Either of these explanations 
presents additional challenges to the receiver. 

Both the delay and the Doppler spread affect the 
design and performance of the receiver. Here a space-
time-frequency adaptive processor is employed. The 
number of delay and frequency taps in the adaptive pro-
cessor depends upon the phenomenology. Delay spread 
was found to be less than ±4 µsec. For the stationary 
environment, in quiet regions (no nearby traffic), no 
Doppler spread was detected. For the stationary trans-
mitter near heavy traffic in experimental example 1, the 
Doppler spread was found to be within ±150 Hz. For 
the moving transmitter in experimental example 2, the 
Doppler spread was found to be within ±180 Hz. 

Experimental Example 1

Bit error rates for various detector alternatives are re-
ported as a function of mean single-input single-output 
(SISO) SNR, a2Po. Here, a2 is the mean-squared link 
attenuation. Figure 19 displays the results for four de-
tection variations: 

1. Training-data-based adaptive spatial beamform-
ing (three turbo iterations).

2. Coarse training-data-based space-frequency beam-
forming (one turbo iteration; Doppler taps: {–1, 0, 1}).

3. Space-time-frequency beamforming employing 
decision-directed channel estimation without multiuser 
detection (three turbo iterations; Doppler taps: {–4/3, 
–2/3, 0, 2/3, 4/3}; temporal taps: {–1/2, 0, 1/2}).

4. MCMUD with space-time-frequency beamform-

ing (three turbo iterations; Doppler taps: {–4/3, –2/3, 
0, 2/3, 4/3}; temporal taps: {–1/2, 0, 1/2}), and where 
Doppler taps are represented in resolution cells (60 
Hz). 

Performance improves with receiver complexity; the 
algorithm, however, must bootstrap up in complexity 
iteratively. Starting with the highest complexity on the 
first iteration increases the probability of converging to 
the wrong solution. Because the channel contains sig-
nificant Doppler spread, the spatial beamformer per-
forms poorly. With the relatively long block lengths of 
the turbo code, Doppler beamforming is required in 
this environment. We note that experimental perfor-
mance is essentially the same as was found in simula-
tions. Furthermore, the experimental performance is 

FIGURE 17. Example 2: map of MIMO communication ex-
periment near the MIT campus, including the locations of 
the transmitter, receiver, and jammers at a fixed jammer-to-
noise ratio (JNR).

Receive
array

Transmitter
25 mph

Jammers
25 dB JNR

100 m

1 2 3 4
0

10

20

30

40

Eigenvalue number

R
el

at
iv

e 
po

w
er

 (d
B

)

FIGURE 18. Eigenvalue distribution of the noise-normalized 
interference-plus-noise spatial covariance matrix.

10–1

10–2

10–3

10–4

a2Po (dB)

B
it 

er
ro

r r
at

e

 3.0  3.5   4.0 4.5 5.0 5.5 6.0

Spatial beamforming
Training-data-based  
  SFAP

STFAP
MCMUD

FIGURE 19. Bit error rate of 4 × 4, 2-bit/sec/Hz space-time 
turbo code as a function of mean SISO signal-to-noise ra-
tio (SNR) (a2Po) for a Boston University transmit location, 
using adaptive spatial beamforming, coarse training-data-
based space-frequency adaptive beamforming (SFAP), 
space-time-frequency adaptive beamforming (STFAP) em-
ploying decision-directed channel estimation, and MCMUD 
with space-time-frequency adaptive beamforming.



• BLISS, FORSYTHE, AND CHAN
MIMO Wireless Communication

VOLUME 15, NUMBER 1, 2005 LINCOLN LABORATORY JOURNAL 123

similar to the simulated performance of the best space-
time codes. 

Experimental Example 2

The experimental data includes the effects of two high-
power wideband jammers, a moving transmitter, and 
local oscillator errors. Experimental performance of this 
space-time turbo code for a stationary transmitter in the 
absence of interference is discussed elsewhere [39]. 

Figure 20 shows the bit error rate of the space-time 
turbo code using the MCMUD receiver. The bit error 
rate is displayed in terms of the mean SISO signal-to-
interference-plus-noise ratio (SINR). This is the aver-
age SINR at a given receive antenna, assuming that 
all power of the transmit array is transmitted from a 
single transmit antenna. We note that this experimen-
tal system in this difficult environment operates at an 
SINR that is 25 dB better than the information-theo-
retic SISO bound, and operates probably at least 35 dB 
better than a practical SISO system. Furthermore, there 
is only approximately a 3-dB loss in a2Po performance 
compared to the performance in an environment with-
out jammers. The effectiveness of the receiver is due in 
part to its ability to compensate for delay and frequency 
spread. The MCMUD employs a space-time-frequen-
cy adaptive processor that uses a four-antenna receiver 
with temporal and frequency taps that cover a range of 
±4 microseconds and ±200 Hz. 

Summary

In this article we addressed information-theoretic, phe-
nomenological, coding, and receiver issues for MIMO 

communication. Performance bounds assuming either 
an informed transmitter or an uninformed transmitter 
were presented for flat-fading, frequency-selective, and 
jammed environments. A channel phenomenology pa-
rameterization was introduced. Experimental phenom-
enological results were reported, the results indicating 
that the observed channels can be typically character-
ized by high degrees of complexity. Furthermore, for 
environments with transmitters on moving vehicles, 
the channel varies significantly on a time scale less than 
10 msec. Two space-time coding techniques were in-
troduced, one based on LDPC and the other on turbo 
codes. Experimental demodulation performance results 
were presented for a variety of environments, including 
those with wideband jammers. In the presence of the 
jammer, the MIMO system (using the MCMUD re-
ceiver) operated dramatically better than SISO systems. 
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