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Chemical and biological (CB) detection 

technologies have become more mature, 

and some are now available for operational 

use. As the sensor availability has increased, 

so too has the realization that the interpretation of the 

sensor output is nontrivial. The sensor data can be cou-

pled with non-sensor information about the operational 

and environmental conditions prevailing at the time of 

the sensor’s output. We refer to this combined informa-

tion—from sources such as intelligence, adversary or 

agent dissemination surveillance, weather conditions, and 

situational vulnerabilities—as contextual information. 

For example, a battlefield chemical sensor alert may be 

interpreted differently if additional contextual informa-

tion indicates that there was an artillery shell that landed 

upwind of the sensor position in the recent past.

What is needed is information fusion—that is, the 

intelligent combination of multiple information sources 

to enhance the decision maker’s understanding of the data 

and its implications. The mere combination of this infor-

mation through networking, communications, databases, 

and displays does not constitute true information fusion. 

One category of fusion problems requires automated 

pattern recognition. Pattern recognition methods pro-

duce decisions about which one out of multiple possible 

hypotheses is true with respect to a given object or event. 

One such hypothesis space is the question of whether a 

biological or chemical agent is present in the environ-

ment. Decision makers lack experience responding to CB 

contamination events, and so could use automated assis-

tance in choosing the appropriate course of action. We 

define this assistance as response guidance.

By the definitions above there are few if any infor-

mation-fusion or response-guidance solutions available 

The uncertain and disparate information sources 
needed to properly assess potential threats, 
and the relatively untrained and inexperienced 
users, make development of decision support 
technologies critical for full realization of the 
value of chemical and biological (CB) defense 
technologies. Lincoln Laboratory is pursuing 
several research and development efforts in 
decision support for CB defense. We discuss 
here fusion of information sources in the context 
of several example algorithmic efforts, and 
describe applications such as decision support 
for mail screening and detection of biological 
agents in a subway station.

»
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in either military or civilian settings for CB defense. The 

Joint Warning and Reporting Network (JWARN) is a 

joint Department of Defense acquisition program that 

is networking radiological, biological, and chemical sen-

sors and the output from hazard estimation models with 

joint and service command and control systems [1]. 

The Biological Warning and Incident Characterization 

(BWIC) system is a Department of Homeland Security 

system that establishes a common view of data related to 

a potential biological incident [2]. These data can con-

sist of relevant maps, sensor data from multiple sources, 

weather data, atmospheric dispersion models, population 

information, disease progression, facility maps, and pub-

lic health surveillance data. Both JWARN and BWIC are 

the necessary first steps in improving post-attack deci-

sion processes by assembling data relevant to a decision. 

More work is needed, however, in the areas of automated 

information fusion or response guidance.

CB defense decision makers fall into four broad cat-

egories: public health and medical authorities, opera-

tions managers and planners, law enforcement, and 

political leadership. All of these people 

must be armed with information on the 

degree of health concern and the scale 

of the event. Public health and medical 

authorities must decide on the appropri-

ate medical response. Operations man-

agers such as urban facility operators or 

military command positions must decide 

on how to change operations (e.g., close a facility or have 

troops don protective gear) in response to the event. Law 

enforcement and political leadership have critical roles 

in attribution of the attack to individuals or groups and  

in public relations.

CB attacks have been rare, and none in recent his-

tory have been large scale. Thus none of the people with 

the responsibility for deciding how to respond to a large 

CB attack have actually experienced one. Public health 

responders have had practice in responding to naturally 

occurring health events, but this experience may actually 

adversely influence decisions following a large-scale CB 

event. The reasons for this are twofold. Naturally occur-

ring health events relevant to CB attack decision making 

(e.g., infectious disease outbreaks, poisonings) are gener-

ally small scale; resource limits are not tested, and large-

scale health care responses are not warranted. Further, 

exposure or illness may occur over extended time scales, 

and the exposure generally is of low lethality. Rapid 

response is therefore not required, and excessive cau-

tion is rarely penalized. In contrast, too slow a response 

to a large-scale biological or chemical terrorism event  

could be catastrophic.

Current training of CB decision makers is inadequate 

to test rapid and dynamic decision-making skills. Emer-

gency preparedness exercises for homeland defense are 

based on scenarios decided upon well in advance. Since 

responders have had significant time prior to the event 

to think of what the responses will be, these exercises 

tend to test organizational roles and responsibilities, 

communication, and mechanisms for implementing a 

response, rather than the decision process for deciding 

on the response. The military has conducted few battle-

field exercises that practice operations in a chemical or 

biological environment.

Well-constructed tabletop exercises are more use-

ful than scripted exercises for testing the response  

decision-making process. Rarely, however, are the tabletop  

participants given objective feedback on whether they 

chose the best of the available alternative courses of 

action. Moreover, the process of deciding whether an 

attack has occurred is rarely practiced. Tabletop exercises 

generally do not provide realistic and complete data sim-

ulating what would be available in the aftermath of a real 

attack, and so decision making in these practice sessions 

can be highly speculative.

Information fusion aims to provide the decision 

maker with the best possible information on the likeli-

hood, type, extent, and spread of chemical or biological 

contamination. It needs to provide these answers using 

information sources that can have high uncertainty, 

that have disparate origins and information types, that 

may conflict with one another, and that were collected 

at different locations or times. The information sources 

can be from biological and chemical sensors of different 

Current training of chemical and biological 
defense decision makers is inadequate to test 
rapid and dynamic decision-making skills. 
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When the probability of occur-
rence of an event is low, as we hope 
is the case for future biological and 
chemical attacks, the confidence 
that a sensor alert corresponds to 
a real attack is also low. This is true 
even for highly discriminating sen-
sors. For example, imagine a sensor 
network with the following charac-
teristics: 

If one assumes that an attack 
will occur every 100 years, then 
that translates into the presence 
of an attack once per 2.92 × 107 
samples (8 samples per day x 365 
days per year × 100 years × 100 
sensors). 

For each individual alert, deci-
sion makers care about how likely 
it is that the alert corresponds to a 
real attack. For example, the medi-
cal community is interested in the 
probability that a positive diagnos-
tic test indicates a patient who has 
the corresponding condition; they 
refer to this as the positive predic-
tive value of a test. Bayes’s theorem 
expresses the probability that a sen-
sor alarm means an attack has actu-
ally occurred as

P
P P

P P P P
( ) ,attack alarm d a

d a fa a
=

+ − 1

where Pa is the probability of an 
attack occurring, Pd is the probabil-
ity that an attack that does occur 
will be detected, and Pfa is the 
probability of a false alarm. With 
the assumptions specified above, 
the probability that any one sensor 
alarm indicates a true attack is only 
3 × 10–4.

In other words, the confidence 
that any given alarm from this sen-
sor network is true is very small. 
This does not mean that no action 
should be taken. The decision on 
whether to take action must con-
sider the cost of the action and 	
the frequency of alerts. Actions 	
that impose a high cost (be it eco-
nomic, health, social, or political) 
must be reserved for when we 	
have a predictive value near 1.0. 	
For example, large-scale antibiotic 
distribution in response to a sus-
pected biological attack will cer-
tainly have a high economic cost 
and may pose a health risk to 	
the population as a result of side 
effects and drug interactions. 	
And if distribution is later shown to 
be unnecessary—that is, the result 
of a false alarm—then the loss of 
confidence in the government and 
the biological defense system could 
be dramatic. 

Developing a single sensor that 
has a low enough false-positive rate 
to result in a high positive predic-
tive value of an alert is a significant 
technical challenge. Assuming the 
probability of attack is small and 
the probability of detection is high, 
Bayes’s theorem indicates that a 
high predictive value requires that 
the probability of a false alarm be 
much lower than the probability of 
an attack. In the situation specified 
above, the probability of false alarm 
would need to be 3 × 10–10 in order 
to have a 99% chance that the 
alarm represents a true attack.

One simplifying assump-
tion implicit in the above discus-
sion of Bayes’s theorem is that 
the sensor network provides an 
alert that indicates whether an 
attack has occurred. In reality, 
however, today’s sensors indicate 
only whether an agent is present 
in the environment. For example, 
biological sensors that detect the 
presence of DNA or proteins from 
various agents do not provide con-
clusive evidence as to whether the 
material is unnatural or endemic 
to the environment or whether it 
was alive and pathogenic when 
released. These pieces of informa-
tion will inevitably arise from dif-
ferent sources. Even when using 
perfect sensors, therefore, informa-
tion fusion is necessary.

Assessing a Sensor’s Predictive Value
How much should we trust a chemical or biological detector’s alarm?

Probability of detection	 0.9

Probability of false alarm	 10–4

No. independent sensors	 100

Sample analysis period	 3 hr
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mechanisms and specificities. In addition, other contex-

tual information such as meteorological data, dispersion 

models, operations information, intelligence, additional 

surveillance data, and ancillary chemical or biological 

sensing information can be considered as sources.

Response guidance takes as input the situation assess-

ment computed by the information fusion subsystem and 

helps decision makers decide what to do as a result of 

that information. There should be a strong interaction 

between the information fusion and response guidance 

modules; a good information fusion subsystem can help 

decision makers understand what additional information 

would improve the certainty or accuracy of the answers. 

A key requirement of response guidance for either pre- 

or post-attack decision making is the ability to esti-

mate the impact of various actions on life, property, and  

operational missions. 

In this article, we emphasize the use of information 

fusion and response guidance following a chemical or bio-

logical attack. But similar activity is also important before 

such an attack occurs. In the pre-attack period, informa-

tion fusion is largely an intelligence function used to dis-

cover weapon development activity or plans, or enemy 

doctrine and tactics. The mission planning function in 

the pre-attack period is a good analog for the post-attack 

response guidance module.

Ways to Do Fusion
There are several types of information that decision mak-

ers may want at their disposal following a CB attack. In 

addition to information about whether an agent is pres-

ent, they will want to understand the extent and time 

period of contamination, whether the release was inten-

tional, and whether it poses a health hazard. Information 

fusion output that informs decision makers about aspects 

of the current situation will demand information from a 

number of different sources, collected and analyzed over 

markedly different time scales (e.g., minutes for chemical 

attacks to potentially days for biological attacks). 

Some approaches might hold significantly less 

promise than others for CB defense. Basic probabilistic 

inference methods, for example, normally require a con-

struction of probability distributions representing catego-

ries of interest, such as those of the background and agent 

release. These methods are well established and accessible 

to many engineering professionals. However, it is often 

difficult to acquire a statistically significant amount of 

experimental data to construct reliable probability dis-

tributions. Simple signal processing methods work best 

when the sensors can be modeled reliably and when the 

sensing phenomenology, background clutter, and sensor 

response characteristics are well understood.

In biological and to some extent chemical sensing, 

such precision cannot be expected. Reasons include 

insufficient level of knowledge of the underlying biologi-

cal phenomena, complexity of aerosol/fluid dynamics, or 

limited verifiability of theories that attempt to describe 

these phenomena. Approaches that rely strongly on 

models are brittle; constructing robust models in the CB 

domain, such as those of transport and dispersion, is dif-

ficult because of the lack of phenomenological knowledge 

and uncertainty in model input parameters.

Approaches that encode information derived from 

human experts are appealing because of the human 

comprehensibility of the rules they implement. How-

ever, such rule-based methods require an ample body 

of extractable human expertise, which is deficient for 

many tasks of biological-chemical defense. Certain forms 

of machine learning and automatic reasoning can cope 

with the uncertainty, sparseness, and incompleteness of 

data, and do not rely directly on the phenomenological 

models. The methods we developed for subway aerosol 

anomaly detection, microarray pattern recognition, and 

the FLASH (fusion, learning, adaptive super-hybrid) 

architecture belong in this category. The drawback to 

these techniques is that they are complex and thus their 

development requires skill and expertise.

Fusion of Disparate and Colocated Sensors

One way to improve the predictive value of a sensing sys-

tem is to combine information from multiple colocated 

sensors. If the sensors operate on completely different 

measurement principles, then it is often the case that they 

respond differently when measuring actual chemical or 

biological agents from the way they do when measuring 

potentially interfering materials. 

As an example of the use of disparate sensors, con-

sider the measurement of chemical nerve agent A with a 

commercial ion mobility spectrometer (IMS). Such spec-

trometers detect chemical vapors by measuring the time it 

takes for an ionized vapor to drift through an electric field. 

But an innocuous chemical B produces the same drift time 
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exposed to pathogens [3]. Cells obtained from 

commercially available cell lines are exposed 

in vitro to various pathogens. Messenger RNA 

(mRNA) is extracted from the cells after patho-

gen exposure. The mRNA is transformed into 

a stable complementary DNA, which is labeled 

and hybridized to DNA microarrays. This 

yields patterns of gene expression. The goal of 

the algorithms developed in this project is to 

enable automatic recognition of these patterns 

and thereby to identify the pathogen.

Such pattern recognition with DNA 

microarrays is challenging because of the large 

number of information sources; each micro-

array has thousands of sensing probes. The 

multiplicity of information sources yields a 

high-dimensional input space. In high-dimen-

sionality spaces the process of deciding which 

patterns correspond to one category versus 

another—e.g., agent versus no agent—is more 

difficult than for low-dimensionality spaces. 

Much of the input data may be extraneous 

to the decision problem, and the algorithm must sort 

through which sources are important.

Most importantly, high-dimensionality spaces 

require a large number of training patterns—example 

combinations of input sources used by the learning algo-

rithm. Unfortunately, measuring the response of a large 

number of microarrays to pathogens is time consuming 

and expensive, and a large number of training samples 

are not available. One alternative is to use a model of the 

expected DNA expression by the cells in response to a 

pathogen, and to use that model to predict the reaction 

of the DNA microarrays. However, biological science does 

not currently provide the knowledge and models needed  

for such predictions. 

Under these circumstances—a large number of infor-

mation sources, no available predictive model, and few 

training patterns—there are no existing techniques that 

can be fruitfully applied. For that reason, Lincoln Labora-

tory developed a new machine-learning-based approach, 

the structure of which is shown on the left side of Figure 

2. The process called input space partitioning divides the 

input space into a number of subspaces, and different rec-

ognizers are trained for each of the subspaces. The sub-

spaces are constructed in a manner that facilitates the 

as measured by an IMS as does agent A; it is therefore 

not possible to completely separate these two chemicals 

by using information only from this IMS. Chemicals can, 

however, be sensed by other mechanisms to improve the 

overall discrimination. For example, a commercial sur-

face acoustic wave (SAW) chemical sensor produces out-

put that is strongly correlated with the concentration of 

benign chemical B, but uncorrelated with harmful agent 

A. The SAW information on the concentration of B can 

be effectively subtracted from the IMS data to reveal the 

true amount of agent A (Figure 1).

Fusion of Many Information Sources

Multiple sensors do not necessarily need to use differ-

ent detection principles or transduction mechanisms, 

or be housed in separate packages. In the case of bio-

logical detection, for example, multiple DNA fragments 

could be used to detect various DNA signatures. Such a 

DNA microarray, also called a gene chip, could analyze 

samples for hundreds or even thousands of different  

DNA fragments.

A DNA microarray project at Lincoln Laboratory has 

developed an approach that identifies pathogens by recog-

nizing the gene expression patterns of cells that had been 
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FIGURE 1. Fusing information from two sources improves accuracy. 
Shown here are plots of the calculated concentration of a nerve gas sim-
ulant versus the true concentration for two tests: one in which an ion 
mobility spectrometer (IMS) was used alone, and one in which data from 
the IMS data were fused with surface acoustic wave (SAW) data. The red 
line represents ideal performance. 
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FIGURE 2. Addition of algorithm components improves discrimination between the pathogen that causes cholera and the 
cholera toxin (left). A block diagram of the microarray pattern analysis process is shown at right. 

An example of the performance of the algorithm in 

identifying the DNA expression pattern from the organ-

ism that causes cholera from the cholera toxin is shown 

on the right side of Figure 2. No other algorithm tech-

nique was appropriate for this fusion task, so a compa-

rable algorithm performance is not shown. This plot 

shows that additional algorithm modules improve per-

formance. Those module additions which do not improve 

classification performance in this performance graph do 

demonstrate improvement for other pathogen classifica-

tion problems. From this chart, we can see that improv-

ing discrimination performance by 10% to 20% requires 

making the algorithm significantly more complex. This 

requirement is common for other fusion problems as well. 

We don’t know for certain what could be the best possible 

performance of a fusion algorithm, as such estimates can-

not currently be made a priori.

Fusion of Qualitative and Quantitative Data
Information sources include systems that are not sen-

sors as the term is usually defined. Nor is all information 

numeric. Indeed, one challenge facing comprehensive 

information fusion systems is the need to work with 

discrimination process, and the quality of the subspaces is 

characterized by fitness measures. Another process, called 

dynamic fitness measure, generates information about the 

discrimination quality of regions within the subspaces. 

Although input space partitioning alleviates the issue of 

input space dimensionality to an extent, the dimensional-

ity of subspaces generated by it still remains significant. 

The subspace recognizers in our approach are based on 

support vector machines (SVM)—recognition methods 

that can cope with such challenges better than classical 

pattern recognition methods can.

When a test pattern is presented for recognition, 

the values of some of the pattern data can be modified to 

account for their uncertainty, using a process called fea-

ture corrective adjustment. The pattern is classified by 

multiple subspace classifiers, each operating in its respec-

tive subspace. The classification results and the subspace 

fitness measures are supplied to the final decision stage. 

That stage uses Dempster-Shafer theory, an approach 

that can be thought of as an alternative to and an exten-

sion of probability theory. Each subspace is considered a 

separate source of evidence and the subspace results are 

represented by the belief function values.
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FIGURE 3. Information fusion is built into a decision support system for screening mail. This diagram shows the transforma-
tion of quantitative and qualitative information sources into fuzzy state memberships.

fusion process, as shown in Figure 3, uses a fuzzy version 

of Bayes’s Rule to estimate the likelihood that a package 

or letter is hazardous.

Fusion of Geographically Dispersed Sensors 
Biological and chemical releases in air spread material 

over an area large enough to expose multiple sensors to 

the agent. Information fusion algorithms can take advan-

tage of the additional information from the multiple sen-

sor measurements. For the additional sensor information 

to help determine whether the agent is present, however, 

the multisource information available to the system must 

contain aspects that the fusion system could exploit to dis-

tinguish a release from the background clutter. Unfortu-

nately, we have only a weak understanding of the content, 

sources, and spatial-temporal patterns of biological and 

chemical sensor background clutter. Therefore, we usually 

need to determine the background patterns empirically. 

In contrast, observations of agent or simulant releases are 

sparse, and so agent releases are typically simulated with 

the use of various transport and dispersion models. 

One such multisensor fusion application was demon-

strated by a Lincoln Laboratory project that deployed a 

network of particle-density monitors in the Boston subway 

system [4]. Such instruments are not specific to biological 

materials, much less to a particular agent. However, such 

a network might be able to provide cues to anomalous 

different fundamental forms of data representation  

(e.g., discrete, continuous, or qualitative).

Consider, for example, the information fusion algo-

rithm that Lincoln Laboratory is developing for a system 

that may screen military mail for chemical, biological, 

radiological, and explosive (CBRE) threats. While the sys-

tem relies in part on conventional CBRE sensors, it also 

takes input from human observations on the condition 

and attributes of packages and letters. The mail screening 

system incorporates the qualitative package observation 

information and the other quantitative data sources by 

using a fuzzy data fusion scheme.

Fuzzy data representations define the degree to 

which values from an information source belong to a set 

of states. For example, a numeric output from a chemical 

or biological sensor can be attributed as partially belong-

ing to one or more hazardous, uncertain, or innocuous 

states. The functions that map the information values to 

these state memberships can be defined on the basis of the 

statistics from previous observations with that data source 

or they can be set heuristically. Fuzzy characterization of 

information sources allows the representation of inher-

ent state ambiguity as well as probabilistic uncertainty. 

The package observation scores, though qualitative, can 

similarly be mapped to fuzzy state memberships. Thus 

the fusion process can use the qualitative data as well as 

the quantitative CBRE sensor data. The mail screening 
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FIGURE 4. A representative illustration of the sensor deployment in the Boston subway testbed is shown in the top diagram. 
The patterns of activity from train-generated releases at each of the sensing nodes 1, 2, and 3 are expected to differ from the 
measurement patterns caused by terrorist biological releases.

ticulate density that correspond to rush hour periods and 

periods of relatively low train frequency.

The complex subway background presents algo-

rithmic challenges that the use of additional contextual 

information sources mitigates. Train passage, particle 

size, and airflow information are input to the discrimina-

tion algorithm. The subway background transients are 

high enough that algorithms that rely on simple thresh-

olding of particle-density measurements would result in 

an inability to detect all but very large biological releases. 

The ability to detect releases that result in concentrations 

well below that of the spikes that occur when a train rum-

bles by would be unlikely unless the algorithm were aware 

aerosol activity within the subway system. This aware-

ness could trigger additional surveillance, sample collec-

tion for more specific analysis, or other reactions such as 

changes to a ventilation system.

In the subway testbed, we operated three particle 

counters for one year at fixed points within each of two 

adjacent stations (Figure 4). We concurrently collected 

additional information on the passage of trains through 

the sensor network, the train speeds, and three-dimen-

sional winds (from sonic anemometers). The subway par-

ticulate background is unusual in that it is characterized 

by large, rapid transients coinciding with train passage. 

In addition, there are daily variations in the baseline par-
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of the times that trains pass. This information could be 

obtained in many ways; in this project, an optical beam 

break signaled the entrance and exit of trains from the 

stations. Additional information is gained by looking at 

sensor features other than total particulate count. The 

particle counters used in the Boston testbed have six 

particle-size channels, which present six distinct pieces 

of information to help distinguish intentional biological 

releases from the natural background. Finally, the pat-

tern of presentation of releases to the multiple sensors 

can offer additional discrimination power. The airflow in 

subways is inconsistent and depends on external meteo-

rological conditions. Therefore, the pattern with which 

a release cloud may expose a sensor network will be  

inconsistent as well.

The data provided by the multiple sensors were 

used to decide automatically whether short time periods 

of subway multisensor data were anomalous, and thus 

potentially indicative of a biological release. Learning 

machines, in this case artificial neural networks, were 

used because the release and background patterns were 

likely to vary from station to station and between subway 

systems. Artificial neural networks are pattern recognition 

methods that learn from examples, automatically gaining 

the capability to classify patterns presented to them. Two 

neural networks were used to perform the classification, 

one for periods with train activity and one for periods 

without train activity. 

Classification results are often represented by the 

receiver operating curve (ROC), which illustrates the  

tradeoff between the probability that a system 

will detect a real threat and the probability 

that it will issue a false alarm. Figure 5 com-

pares the ROC from a simple algorithm with 

the neural network. The simpler algorithm 

is based on whether any of the single-sensor 

outputs indicated an anomaly, where each 

sensor looks for an anomaly, determined by 

the integrated particle count over each anal-

ysis period. As the graph makes evident, this 

algorithm’s results were barely better than 

random chance for small releases. The neu-

ral network performs significantly better. 

Despite its dramatic advantage over 

the simple algorithm, the neural net-

work algorithm as shown here is still not 

good enough for operational use in the case of small 

releases (red curve): its 90% probability of detection 

comes with a roughly 50% false-alarm rate. For larger 

release sizes the performance of the neural network 

algorithm is much better (green curve). To achieve still 

better performance would require either a more sophis-

ticated algorithm, more discriminating sensors, less  

frequent updates of the algorithm (to allow more infor-

mation to accumulate), or the inclusion of additional  

sensors and other information sources.

Next-Generation Information Fusion: FLASH
An algorithm developer generally aims to use as simple 

a method as is necessary to achieve the desired perfor-

mance. Unfortunately, there is no agreed-upon theory 

that allows the designer to estimate the difficulty of a 

fusion problem ahead of time, and certainly not to esti-

mate the achievable performance from application of a 

particular algorithmic technique. Designing and imple-

menting information fusion algorithms is therefore a trial 

and error process. Often the developer will start by apply-

ing a simple technique; if performance turns out to be 

unacceptable, then that calls for either a wholesale change 

in approach or else application of quick-fix patches to pre-

serve cost and schedule goals. The simple methods and the 

associated performance patches can produce a cobbled-

together algorithm that stops working once the system 

has pushed even slightly beyond the original test condi-

tions. The next-generation fusion approach described in 

this section avoids such compromises.
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FIGURE 5. A neural network outperforms a simple thresholding algorithm 
in detecting a simulated agent release in the Boston subway testbed. 
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The FLASH architecture developed at Lincoln Labo-

ratory represents a hybrid of several different methods 

[5]. This hybrid architecture, in which each individual 

technique compensates for shortcomings in other meth-

ods, should not only improve performance for difficult 

fusion problems but also provide a more general-purpose 

fusion engine. FLASH is designed as a hybrid of multiple 

heterogeneous machine-learning and approximate-rea-

soning methods. The first implementation, FLASH-1, 

was tested on the fusion of biological trigger devices and 

other contextual information for bio-attack detection  

in a building. 

Figure 6 shows basically how FLASH-1 works. 

Information inputs are subjected to initial extraction of 

features—for example, the mean and variance of a time-

series input signal for a particular time window. Extrac-

tion and selection of appropriate information features are 

critical elements to the success of any decision process. 

To make sure that it includes all high-information-con-

tent features, FLASH-1 extracts a large range of diverse 

features. Use of all features would make automated clas-

sification more difficult, however, because some features 

contain extraneous information. The most useful features 

are chosen in FLASH by a feature selection process. Tech-

niques rooted in information theory are exploited to rank 

features according to the level of their usefulness for the 

discrimination process.

FLASH’s instance recognition module con-

tains a set of machine-learning algorithms that clas-

sify the input pattern. Instance recognition involves 

short-term windows of input data. This stage employs 

multiple support vector machines (SVM)—machine-

learning constructs that tend to work better than  

classical methods, particularly when the data are sparse 

and imprecise. SVMs also generalize well; that is, 

their performance on data that differ drastically from 

the training data tends to be better than that offered  

by many other methods. 

During training, FLASH attempts to establish whether 

the background training data represent different types 

of background. This task, performed by the background 

clustering module, regulates the number of background 

classes and influences the dynamic number of classifiers 

in the instance recognition module. The instance fusion 

module fuses the outcomes of the instance recognition 

classifiers and uses techniques based on the Dempster- 

Shafer theory of evidence to generate estimates of 

the degree to which the input pattern corroborates a  
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FIGURE 6. FLASH—for Fusion, Learning, Adaptive Super-Hybrid—blends multiple methods of machine 
learning. The implementation shown, FLASH-1, fuses data from biological trigger devices with contextual 
information to determine whether a building has been subjected to a biological attack.
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hypothesis (e.g., a bio-attack). 

The temporal recognition mod-

ule considers the decisions made 

at the instance level. The meth-

ods used at that stage include 

Hidden Markov Model classifi-

ers. Hidden Markov Models are 

capable of learning a pattern’s 

sequential aspects, a property 

that makes them particularly 

suitable for classification of time 

series. The hypothesis selection 

module chooses the hypothesis 

corresponding to the most plau-

sible evidence from the temporal recognition module. 

The reasoning module has two portions. The first uses 

fuzzy inference to adjust the hypothesis evidence that is 

based on the qualitative information representing the 

current perceived threat level. The second uses a Bayes-

ian network to provide response guidance that is based on 

the hypothesis evidence outputs from the temporal rec-

ognition module, other contextual information sources 

such as the threat risk level, and action utility estimates. 

As Figure 7 illustrates, each processing module adds  

discrimination value. 

Response Guidance
While information fusion can bring a degree of situational 

awareness to CB defense, decision makers need more than 

that—they must understand how to interpret the infor-

mation and decide what courses of action they should 

take. Some actions have small costs if taken on the basis 

of faulty information and can generally be scripted—pos-

sibly without any human oversight. Examples of such 

responses include adjustments to a building’s ventila-

tion system and initiation of additional surveillance or 

measurements. Most other response scripts, however, are 

usually inflexible to the contextual situation within which 

alerts will occur. Worse, these scripts are often based on 

an inadequate understanding of the risks of taking vari-

ous actions and of the comparative value and reliability of 

different information sources.

Some response choices, moreover, cannot easily be 

pre-scripted, because the operational situations within 

which the decision must be made are too dynamic. Battle-

field commanders’ decisions fall into this category. For 

example, imagine a mobile force that is aware of chemi-

cal surface contamination at an upcoming bridge. Pos-

sible response options include going around, suiting up 

the troops in protective gear, and going forward without 

protective gear. The appropriate choice will depend on 

the degree of hazard of the chemical; that is one of the 

jobs of the information fusion process. Even with accu-

rate information on the hazard, however, the appropri-

ate action cannot be defined prior to the battle. The best 

choice depends on a balance between the delay from going 

around or donning protective gear; on the potential casu-

alties from the chemical or extended use of the protective 

gear; and on the situation the other parts of the fighting 

force are in and what the enemy is currently doing.

CB defense thus needs a computational task to pro-

vide response guidance. When used in a planning phase, 

a response guidance algorithm can help design response 

scripts that appropriately balance the risks of action and 

inaction. Such scripts will be most useful when the num-

ber of possible operational contexts is bounded. Many 

existing response plans are too static and don’t fully 

consider all of the possible situations that could occur. 

For example, some biological detection systems that are 

intended to provide information to support deployment of 

treatment generally have response scripts that are invari-

ant to the nuances in the detection information and to the 

operational context. Instead, the appropriate responses, 

and the times that those responses are initiated, should be 

chosen by the type of agent detected (e.g., contagious ver-

sus non-contagious, treatable versus untreatable, degree 

of virulence), the spatial area over which the agent was 

detected, the amount of material detected, the weather 

FIGURE 7. Each additional algorithmic stage adds to the FLASH-1 performance. 
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conditions, and the nature of the population in the area 

of the detection (indoor, outdoor, public gathering, VIP 

event), among other considerations.

Response guidance analysis can be used to help cre-

ate the plans so that the response actions will be adaptive 

to particular threats, the incoming information content, 

logistical or operational constraints, and particular vul-

nerabilities. When used in a tactical response phase, the 

response guidance algorithm could adjust recommended 

actions appropriate for the given situation, exploiting 

fused information from sensors, intelligence, operations 

workload, and tactical constraints. 

Response guidance includes response utility esti-

mation and response selection. The utility estimation 

assesses the cost and benefit of various responses that 

have presumably been chosen ahead of time; making this 

estimate will inevitably involve some method for com-

bining costs and benefits that have inherently different 

units (e.g., dollars, lives, mission effectiveness, social and 

psychological impact). It must evaluate the costs and 

benefits in a probabilistic sense, given uncertain situa-

tion assessments. The impact estimates can by themselves 

be difficult to compute. For example, the Department of 

Defense Joint Operational Effects Federation program 

[6] is developing simulation capabilities to estimate 

the impact of CB attacks on military missions for plan-

ning situations, and larger war-gaming simulations are 

being used to evaluate mission performance in situations 

during which the enemy responds. The response selec-

tion process determines the best combination of cost 

and benefit to meet the system objectives. The logic of 

this process will vary, depending on which system per-

formance criterion is being optimized. Responses can 

be selected to maximize the expected benefit, to mini-

mize the expected cost, to minimize the likelihood of a 

worst-case outcome, or to provide maximal utility, given  

resource constraints.

The CBRE screening of military mail, for example, 

represents a fairly simple response guidance problem. 

There are few possible courses of action (send package, 

examine further, destroy, forward with warning, quar-

antine, or communicate with addressee) and few infor-

mation sources (CBRE sensors, human package-threat 

estimates, and intelligence). However, a mail screening 

system that used fixed rules for making the response deci-

sions may not be robust. Confidence in the input infor-

mation, such as sensor quality, may change with time. 

Tolerance for risk may dynamically change, particularly 

in response to new intelligence data. The costs of various 

actions may change with time as, for example, the costs 

and availability of human resources vary.

Figure 8 shows the mail screening algorithm. The 

response utility table, initially set to predetermined fixed 

values, defines the cost of various response actions. Com-

bining the response utilities with state information about 

the packages allows the algorithm to compute the expected 

utility of each action. The best response can be selected on 

the basis of a number of possible criteria, such as maxi-

mum expected utility, minimum likelihood of worst case, 

and maximum probability of detecting a threat. FLASH-

1 also contains a response guidance algorithm. It uses a 

Bayesian belief network, an inference process that results 

in the ranking of the possible courses of action, and the 

selection of the most desirable of those alternatives.

Extrapolation of the mail screening and FLASH 

response guidance algorithms to dramatically more diffi-

cult problems, such as those which arise on the battlefield, 

has yet to be done. Also in need of significant develop-

ment are simulation-driven estimates of the utility of 

various courses of action. It is nevertheless clear that 

response guidance is aided considerably by information 

fusion methods. 

Making Fusion Richer
Although progress lags behind more mature fields, deci-

sion support for chemical and biological defense applica-

tions is beginning to gain the attention that it deserves. 

Investment must be made in four important areas: infor-

mation sources, algorithms and models, test and evalua-

tion methods, and training.

There is the tendency for CB defense researchers as 

well as government managers to think of information 

fusion for CB defense as being based entirely on CB-sen-

sor information, meteorological data, and agent disper-

sion models. But in fact, it is likely that there are valuable 

information sources that have not yet been tapped or 

even strongly considered for inclusion in CB fusion sys-

tems. In civilian applications, eyewitness or surveillance 

camera observation of unusual behavior or sensitive-area 

intrusion detection should be captured quickly and fed 

into information fusion systems. Battlefield situations, 

too, offer a potentially rich set of information sources 
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that could be exploited. For example, knowledge of 

enemy force locations, in combination with wind pat-

terns, can permit decision makers to discount reports of  

remote releases. Observations of low-flying enemy air-

craft of various types could change the way some sensor 

alerts are interpreted. Artillery observations, particular 

by those with radar, acoustic, seismic, or optical signa-

tures representative of chemical or biological munitions, 

could substantially change the manner in which the 

CB sensor data are exploited and interpreted. Surveil-

lance information related to tanker trucks or pesticide 

sprayers or of toxic industrial chemical sites upwind of  

friendly forces should be included as well. Speech recog-

nition systems that automatically transcribe and auto-

matically feed radio traffic related to CB events could 

be used to make the information rapidly available to 

information fusion systems. Robust information fusion 

demands incorporation of this rich array of disparate  

information sources.

At the same time, algorithms must continue to be 

developed that capitalize on the unique aspects of the 

information sources relevant to CB defense. This work 

should focus both on near-term fixes and on general-pur-

pose information fusion architectures that would prove 

valuable in the future. Information fusion and response 

guidance algorithms—the latter of which has been 

largely ignored until now—should be considered equal 

in importance to information integration and presenta-

tion. There is a need for adequate long-term, multiple 

information-source data sets for testing and developing  

fusion algorithms. Furthermore, the performance char-

acteristics of the information sources should be better 

characterized with performance indicators such as the 

receiver operating curves. Such characterization will 

facilitate the development of better fusion algorithms and 

also improve the ability to test the algorithms realistically. 

Finally, testing of response guidance algorithms should 

be done with robust response utility models. Human-

in-the-loop testing of response tactics under a variety 

of situations will be necessary to ensure that response 

utility estimates properly consider all of the essential  

costs and benefits.

Although this article has emphasized automated post-

attack decision support, we recognize that well-trained 

decision makers will make more effective decisions, with 

or without automation. A dramatic shift in our training 

methods for such decision makers is needed so that they 

can be effective in situations with sparse and uncertain 

information and can cope with rare and catastrophic sit-

uations. Simulation-based training, as an example, may 

offer some promise.

Ultimately, the various technologies for detection, 

protection, decontamination, and medical treatment will 

provide their full benefits only if decision makers can 

properly understand how to interpret the information and 

can decide consistently how to best apply the technologies 

in response. When implemented in operational systems, 

techniques such as those we have described could signifi-

cantly improve the effectiveness of chemical and biologi-

cal defense systems.
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hypothesized states (output from Figure 3)

Ranked
response
actions

Calculate expected utility
of each action for the

estimated state
probabilities

Actions

Send
Hold

Retest

Normal

100
50

45

Hazard
BIO
0

100

60

Hazard
rad
5

95

75

. . .
True state if mail item

Utility table

Optimize to
specified
criterion
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illustrates an application of information fusion and response guidance.
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