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Parallel computing is becoming increas-

ingly prevalent in both commercial and 

military applications. The current computer 

industry trend is toward creating processor 

chips that contain multiple computation cores—from the 

recent desktop Intel processors containing four processing 

cores [1] to the IBM/Sony/Toshiba Cell processor, which 

has eight high-performance computation cores and one 

general-purpose processor [2]. These multicore architec-

tures are becoming dominant in all areas of computing, 

from personal computers to real-time signal processing. 

In the past, programming to exploit the architectural 

properties of a parallel machine was limited to a narrow 

field of experts. Because of the hardware industry’s shift 

towards parallel computing, however, a wider field of pro-

grammers and algorithm developers must take advantage 

of these computer architectures.

Two key factors have contributed to this paradigm 

shift: the slowdown of Moore’s Law and the need to 

process increasingly large data sets. Over the past 40 

years, the number of transistors on a microchip doubled 

every 18 to 24 months [3]. Increasing the number of 

transistors in a constant area generally yields propor-

tional increase in a single processor’s clock speed and, 

therefore, its computation speed. But as the industry  

approaches the physical limits of transistor dimensions, 

the demand for continued improvements in computa-

tion speed is driving hardware manufacturers to produce 

multicore processors, with multiple processing units  

on a single chip.

Addressing the 
Multicore Trend 
with Automatic 
Parallelization
Nadya Bliss

The	slowdown	of	Moore’s	Law	and	the	need	to	
process	increasingly	large	data	sets	are	driving	
the	computer	hardware	community	to	develop	
multicore	chips	in	addition	to	the	already	
prevalent	commodity	cluster	systems	and	
multiprocessor	embedded	systems.	As	parallel	
processors	become	ubiquitous,	reducing	the	
complexity	of	parallel	programming	becomes	
increasingly	important.	Lincoln	Laboratory	
has	developed	an	automatic	parallelization	
framework,	called	pMapper,	which	is	general	
with	regard	to	programming	languages	and	
computer	architectures	and	which	focuses	on	
distributing	operations	common	in		
signal	processing.
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post-processing, such as tracking and target recognition, 

to the sensor front end necessitates increasingly power-

ful processing architectures. Indeed, the need to process 

large quantities of data at high speeds is making paral-

lel programming important at all levels of programming 

expertise. This need to parallelize programs often reduces 

productivity and prolongs algorithm development.

While the architecture community has been address-

ing the need for more computing power, techniques for 

parallel programming have been advancing relatively 

The need for parallel processing is evident in both 

scientific and real-time computing. Scientific comput-

ing in high-level languages such as MATLAB requires 

high-fidelity simulations and computations that can be 

achieved by increasing the number of parameters and the 

size of the datasets. Similarly, in the field of embedded 

real-time computing the replacement of analog receiver 

technology (in sensor arrays) by digital technology 

requires faster digital processing capabilities at the sensor 

front end. Additionally, the migration of more and more 

A	common	misconception	
in	parallel	programming	is	
that	the	more	processors	
are	used,	the	faster	the	pro-
gram	will	run.	In	reality,	there	
is	a	maximum	speedup	that	
a	program	can	achieve,	as	
stated	by	Amdahl’s	law	[a].	
In	its	most	general	form,	
Amdahl’s	law	provides	the	
means	to	compute	the	maxi-
mum	expected	improvement	
in	running	time,	given	that	
only	part	of	the	program	can	
be	improved.	Consider	a	
program	that	can	be	broken	up	into	
k	parts	and	each	part	can	be	sped	
up	by	a	factor	of	Sk.	The	maximum	
achievable	speedup	for	the	entire	
program, Smax,	is
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where	
•	Pk	=	percentage	of	the	program	
•	Sk =	speedup	(1	equals	no	
speedup)

•	k	=	label	for	each	corresponding	
percentage	and	speedup
•	n =	number	of	parts	the	program	is	
broken	up	into.

To	compute	the	maximum	
speedup	of	parallel	programs,	
Amdahl’s	law	reduces	to
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where	P	is	the	percentage	of	the	
program	that	can	be	parallelized	
and	S	is	the	speedup	achievable	

for	the	parallelizable	part	
of	the	program.	In	the	opti-
mal	case,	S	equals	the	num-
ber	of	processors;	usually,	
however,	S	will	be	lower	
than	that.	Figure	A	shows	
the	relationship	between	
speedup	and	processor	
count.	If	75%	of	the	pro-
gram	is	parallelizable	(blue	
curve)	and	S	=	number	of	
processors,	then	the	maxi-
mum	speedup	achievable,	
as	S	approaches	infinity,	is	

	
1

1– .75
= 4 .

0 	
	
Thus	no	matter	how	many	proces-
sors	are	used,	this	program	can	
never	run	more	than	four	times	
faster.	

reference
a.	 G.M.	Amdahl,	“Validity	of	the	Single	

Processor	Approach	to	Achieving	
Large	Scale	Computing	Capabili-
ties,”	in	AFIPS Conf. Proc., 1967,	pp.	
483–485.
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grams with various fractional parallel parts.
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tation are distributed or mapped; this dependence makes 

it more difficult to estimate and optimize performance. 

The situation is further complicated because the algo-

rithmic details might change as the algorithm is moved 

from a single processor to a multiprocessor machine. 

Often the most efficient serial algorithm is not the most  

efficient parallel algorithm. 

Signal and image processing have always been key 

mission areas at Lincoln Laboratory. The algorithms 

developed for these applications are computationally 

intensive, thus pushing the Laboratory to the forefront of 

developing parallel algorithms and libraries. Achieving 

high-performance, functionally correct parallel program-

ming is particularly important and has led to the develop-

ment of an automatic mapping framework, pMapper. 

automatic Parallelization versus 
instruction level Parallelism
Parallel computers, as well as research on parallel lan-

guages, compilers, and distribution techniques, first 

emerged in the late 1960s. One of the most successful 

research areas has been instruction-level parallelism [11], 

which refers to identifying instructions in the program 

that can be executed in parallel or out of order and sched-

uling them to reduce the computation time.

Figure 1 illustrates a simple program and an associ-

ated signal flow graph, or parse tree. Note that there are 

no dependencies between the computation of C and F. As 

a matter of fact, the two sub-trees are completely disjoint: 

slowly. Programming paradigms that emerged in the 

1980s and 1990s, such as message passing, are still pop-

ular. Although significant advances have been made in 

raising the level of abstraction in parallel programming 

[4–7], parallel compilers [8], and program optimization 

tools [9], parallel programming has remained the prov-

ince of a small number of specialists. Determining how to 

program a parallel processor efficiently is a difficult task 

that requires the programmer to understand many details 

about the computer architecture and parallel algorithms. 

Computer scientists have been developing various tech-

niques for both detecting and utilizing parallelism, and 

have made significant progress in the area of instruction-

level parallelism—that is, the ability to execute multiple 

low-level instructions at the same time. General program 

parallelism, however, is still an active area of research 

with many unanswered questions. 

Why is parallel programming so difficult? There are a 

number of reasons. First, decomposing, or mapping, data 

structures and tasks in a serial program into parallel parts 

is a challenge. Second, writing parallel code that runs cor-

rectly requires synchronization and coordination among 

processors. Finally, the most difficult task is writing effi-

cient parallel programs, a task that requires careful bal-

ancing of a program’s communication and computation 

parts. When dealing with a single-processor architecture, 

the programmers try to minimize the number of opera-

tions the processor must perform. Counting the number 

of operations in a serial application is generally straight-

forward, and well-understood performance bounds exist 

for many algorithms. 

When the program is moved to a parallel machine, 

minimizing the number of computations does not guar-

antee optimal performance. The same is true of serial 

algorithms on today’s complex processors because of 

multi-level memory hierarchies. The problem is com-

pounded when moving to a parallel system. First, the 

theoretical speedup of the entire program is limited by 

the longest serial path, as quantified by Amdahl’s law (see 

the sidebar “Amdahl’s Law”) [10]. Second, the speedup of 

the parallelizable part of the program is highly dependent 

on interprocessor communication. Efficiently mapping 

the application, or distributing parts of the application 

between multiple processing elements, becomes increas-

ingly important. The performance bounds of parallel 

algorithms depend strongly on how the data and compu-
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Figure 1. A simple program (top) is represented by a parse 
tree, or signal flow graph. Note that there are no dependen-
cies between computation of C and F: nodes 1, 2, 3, 7, and 9 
are not connected to nodes 4, 5, 6, 8, and 10. Thus the com-
piler can execute the two addition operations in parallel or 
out of order.
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nodes 1, 2, 3, 7, and 9 are not connected to nodes 4, 5, 6, 

8, and 10. This lack of dependencies indicates to the com-

piler that the two addition operations can be executed in 

parallel or out of order (for example, if changing the order 

speeds up a subsequent computation). If the architecture 

allows for multiple instructions to be executed at once, 

this approach can greatly speed up program execution. 

Such instruction-level optimization has been incorpo-

rated into a number of mainstream compilers. 

At a higher level, specifically at the kernel and func-

tion levels, this technique is referred to as concurrency 

analysis: analyzing parse trees of programs and deter-

mining which functions and operations can be per-

formed in parallel. This area has also been researched 

extensively and incorporated into parallel languages  

and compilers [12]. 

Unfortunately, instruction-level parallelism and con-

currency-analysis techniques do not solve the automatic 

parallelization problem, or the problem of taking a serial 

code and determining the best way to break it up among 

multiple processors. It is not sufficient to build a signal flow 

graph or parse tree of a program, determine what nodes 

can be executed in parallel, and then break up the pro-

gram accordingly.

To explain why that is the case, let us consider 

another simple example. A common implementation of 

a parallel fast Fourier transform (FFT) on a large vec-

tor is performed via two one-dimensional FFTs with a 

multiplication by twiddle factors. For the purpose of this 

discussion, let us ignore the multiplication step and sim-

ply consider the two FFTs. First, the vector is reshaped 

into a matrix. Then one FFT is performed along rows 

and the second along columns, as illustrated by Figure 2. 

The FFT of each row or column of length N is computed 

according to

	
X x( )= ( ) ( -1)( -1)

=1
k j j k

j
N

N
ω∑ ,

 

where x is the input vector (row or column), X is the out-

put vector, N is the vector length, and

 ω π
N

Ne i= −( )2 .

Figure 3. The top row illustrates mapping the FFT computation onto two processors. The bottom row is the same 
computation distributed onto four processors. Different colors indicate different processors.
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Figure 2. A common algorithm for implementing a parallel fast Fourier transform (FFT) is via two one-dimensional FFTs. 
The first FFT is performed along the rows; then, after the data are re-organized with a corner turn, the second FFT is per-
formed along the columns.
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on a faster network the addi-

tion of more processors would 

provide greater speedup.

It is important to address 

the issue of computation/

communication balance in a 

global manner. Techniques 

already exist for optimizing 

performance of single func-

tions. FFTW (Fastest Fourier 

Transform in the West) [13] 

optimizes the performance 

of FFT routines, for example; 

ATLAS (Automatically Tuned 

Linear Algebra Software) [14] 

does the same for linear alge-

bra routines. But determin-

ing what is the best mapping, or distribution, for groups 

of operations makes the problem more difficult—what 

might be an optimal processor breakdown or map for a 

single function might not be optimal for a chain of com-

putations. Our research tackles the two issues described 

above: balancing communication and computation in an 

application, and doing so in a global manner, not just on 

a per function basis.

taxonomy
It is helpful to classify existing approaches along with 

pMapper by using a common set of characteristics. The 

first characteristic is concurrency—that is, whether the 

approach is meant to optimize a program for a serial 

architecture or parallel architecture. If the concurrency 

is serial, then the approach entails finding an efficient 

mapping into the memory hierarchy of a single-proces-

sor machine, such as determining the optimal strategy 

for cache utilization. Commonly used compilers optimize 

performance at serial concurrency. If the concurrency is 

parallel, the approach needs to optimize the code for a 

parallel or distributed memory hierarchy. pMapper is a 

parallel-concurrency optimization framework.

The second characteristic is support layer—that is, 

in which layer of software the automatic distribution and 

optimization is implemented. Optimization approaches 

tend to be implemented in either the compiler or middle-

ware layer. If the parallelization approach is implemented 

in the compiler, it does not have access to runtime infor-

First, consider the details of the 

serial implementation. The time com-

plexity of the operation is simply the 

computational complexity of the two 

FFTs, which is 5N log2(N)* multiplied by 

the number of rows (columns), where N 

is the number of elements in each row 

(column). The computational complex-

ity of an operation is a count of arith-

metic operations that take place during 

the computation, while the total time 

complexity could also include the time 

needed for communication in a parallel 

implementation. The complexity of the 

computation or communication opera-

tion is dependent on N, the number of 

elements involved in the operation.

Second, let us consider the details of the parallel 

implementation mapped onto two processors, as illus-

trated in Figure 3. Here, the time complexity is equivalent 

to computational complexity divided by two (the number 

of processors) plus the additional time needed to redis-

tribute the data from rows to columns. Third, consider 

the same operation but using four processors. Although 

the computation time is reduced by a factor of four, 

there is now additional communication cost because the 

four processors need to exchange information with one 

another. Thus, as the number of processors increases, the 

work each processor must perform decreases, leading to 

speedup. At the same time, the need for interprocessor 

communication increases. Figure 4 illustrates the rela-

tionship between number of processors and speedup for 

varying communication costs.

This delicate balance of computation and commu-

nication is not captured through concurrency analysis. 

In particular, the signal flow graph of a serial program 

provides insufficient information to determine the opti-

mal processor breakdown because the computation is no 

longer the only component and the network architecture 

and topology influence the execution time significantly. 

For example, on a slow network it might be beneficial to 

split the computation up between only a few nodes, while 

Number of processors
Sp

ee
du

p

Negligible
Reasonable
Prohibitive

Communication cost

Figure 4. The speed benefit of paralliza-
tion depends on the cost of communicating 
among processors. The blue curve is char-
acteristic of most algorithms and is where 
finding communication/computation bal-
ance is most important.

* The complexity given is for an FFT of a complex vector of 
length N, where N is a power of 2.
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mation—information that could signifi-

cantly influence the chosen mapping. On 

the other hand, if the approach is imple-

mented in middleware and is invoked at 

runtime, it could incur a significant over-

head because of the extra effort required to 

collect the runtime information. pMapper 

is implemented in middleware.

The third characteristic is code anal-

ysis—that is, how the approach finds 

instances of parallelism. Code analysis can 

be static or dynamic. Static code analysis 

involves looking at the code as text and 

trying to extract inherent parallelism on 

the basis of how the program is written. 

Dynamic code analysis involves analyzing 

the behavior of the code as it is running, 

thus allowing access to runtime information. pMapper 

uses dynamic code analysis.

The fourth characteristic of the parallelization tax-

onomy is the optimization window, or at what scope 

the approach applies optimizations. Approaches could 

be local (peephole) or global (program flow). Local  

optimization approaches, which find optimal distri-

butions for individual functions, have had the most 

success and are used by many parallel programmers. 

Consider the FFT example from Figures 2 and 3. A 

local optimization approach would consider a single 

FFT computation at a time and would use all of the  

available resources. Locally, this is the optimal solu-

tion. However, it is often true that the best way to 

distribute individual functions is not the best way to 

distribute the entire program or even a portion of the 

program. Global optimization addresses this issue by  

analyzing either the whole program or a sub-program. 

For the FFT example, a global optimization approach 

would consider the cost of redis-

tribution between row and 

column operations and would 

produce different results, depend-

ing on the underlying architec-

ture. pMapper performs global  

optimization.

pMapper tackles a challenging 

problem space as specified by this 

taxonomy and is unique in that it 

performs both dynamic code analysis and global optimi-

zation. Table 1 summarizes the taxonomy and pMapper’s  

defining characteristics.

lincoln laboratory Parallel software
The pMapper framework globally optimizes perfor-

mance of parallel programs at runtime. To do this, 

pMapper requires a presence of an underlying parallel 

library. The Embedded Digital Systems Group at Lin-

coln Laboratory has been developing parallel libraries for 

more than 10 years. The libraries developed here include 

STAPL (Space-Time Adaptive Processing Library) [15], 

PVL (Parallel Vector Library) [16], and pMatlab [17]. 

All of these libraries have increased the level of abstrac-

tion by implementing a map layer that insulates the 

algorithm developer from writing complicated message-

passing code. These libraries introduce the concept of 

map independence—that is, the task of mapping the 

program onto a processing architecture is independent 

Figure 5. Sample pMatlab code for the parallel FFT. Mapping the code 
is independent from algorithm development. mapA and mapB could change 
arbitrarily, without changing the code’s functionality or correctness.

table 1: taxonomy of automatic Program optimization
(pMapper characteristics in bold) 

	 Concurrency	 Serial	 Parallel

	 Support	layer	 Compiler	 Middleware

	 Code	analysis	 Static	 dynamic

	 Optimization	window	 Local	(peephole)	 global (program flow)

%Define maps
mapA = map([4 1],{},[0:3]); %distribute rows
mapB = map([1 4],{},[0:3]); %distribute cols
%Create arrays
A = array(N,M,mapA);
B = array(N,M,mapB);
C = array(N,M,mapB);
%Perform FFT along the 2nd dimension (row)
A(:,:) = fft(A,[],2);
%Corner-turn the data
B(:,:) = A;
%Perform FFT along the 1st dimension (col)
C(:,:) = FFT (B,[],1);
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from the task of algorithm development. Once the algo-

rithm has been specified, the user can simply define maps 

for the program without having to change the high-level 

algorithm, as illustrated in the pMatlab example in Fig-

ure 5. Note that the maps can be changed without hav-

ing to change any of the program details. The key idea 

behind map independence is that a parallel programming 

expert can define the maps, while a domain expert can  

specify the algorithm.

Let us quickly review the concept of a map. For the 

purposes of this article, a map is an assignment of blocks 

of data to processing elements. A map can be defined 

with three pieces of information: (1) grid specifica-

tion, (2) distribution description, and (3) processor list.  

Figure 6 illustrates how a map distributes an array across 

processing elements. (For a detailed discussion of maps, 

see Reference 18.) Since the task of mapping the program 

is separated from the task of developing the algorithm, 

the entity that determines the maps for the program could 

be another layer of software. That is exactly the approach 

that our research explores.

automatic Parallelization 
with pMapper
pMapper is an automatic mapping engine originally 

designed to distribute MATLAB programs onto paral-

lel computers, specifically clusters such as the 1500-

processor Lincoln Laboratory Grid (LLGrid), shown in  

Figure 7) [19]. Although the examples discussed here are 

written in MATLAB, the concepts are general with respect 

to programming languages and environments.

Consider the MATLAB code example in Figure 5. 

Although introducing the mapping layer significantly 

simplifies parallel programming, specifying the details 

of a map object is nontrivial. As discussed previously, 

choosing the wrong number of processors can slow down 

the program. Additionally, choosing an inefficient set of 

map components, such as grid, processor list, or distri-

bution, could yield poor performance. A program coded 

to be optimized by pMapper has maps replaced with 

tags that indicate to the system that the arrays should 

be considered for distribution (as illustrated in Figure 

8). The automatic mapping system finds efficient maps 

for all tagged arrays. As the tag indicates that the arrays 

should be considered for distribution and not necessar-

ily distributed, some of the maps may contain only one 

processor.

Two-Phase Architecture

To provide accurate mappings, we need to collect bench-

mark performance data of the parallel library on the tar-

get parallel architecture. Specifically, pMapper needs 

Figure 6. A map consists of the grid specification, distri-
bution description, and processor list. Shown here is a 4 × 6 
array mapped onto a 2 × 2 grid using processors 0, 1, 2, and 3.

A = array (4, 6, mapA) ;

A
=

Distribution specification
describe how the data are
distributed

Grid specification together
with processor list describe
where the data are distributed

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

0
0
0
0

0
0
0
0

P0
P1

P2
P3

mapA: grid:  2 × 2
dist:  block
procs:  0 : 3

Figure 7. pMapper was originally developed and tested on 
Lincoln Laboratory’s 1500-processor LLGrid system.
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to have access to timings of vari-

ous <map, function> pairs on the 

architecture. For the FFT function, 

for example, pMapper will collect 

information on the amount of time 

required to execute the FFT with 

maps with varying numbers of  

processors and different distri-

butions on various grids. pMap-

per requires the presence of an 

underlying parallel library, such 

as pMatlab. This library provides 

parallel versions of the functions. The performance of 

these functions with various maps needs to be assessed 

prior to making mapping decisions. 

The task of benchmarking the library is computa-

tionally intensive, making it infeasible to collect sufficient 

timing data during program execution. Once the bench-

marking data have been collected, pMapper uses them to 

generate maps in an efficient manner. This process natu-

rally yields a two-phase mapping architecture. 

The initialization phase occurs once, when pMapper 

is installed on the target architecture—or, if the architec-

ture is simulated, when the architecture parameters are 

first specified. The idea of collecting performance data 

to later aid in optimization can also be found in profile-

guided optimization approaches. A key difference in the 

pMapper initialization step 

is that the performance data 

are collected on individual 

functions and not on the full 

program. The initialization 

process is therefore indepen-

dent from the program, and 

dependent only on the under-

lying parallel library and  

parallel architecture.

Once the timing data 

are collected and stored as a 

performance model, they are used to generate maps for 

the tagged numerical arrays. The mapping and execu-

tion phase illustrated in Figure 9 is performed once for 

each program at runtime. pMapper uses lazy evalua-

tion—that is, it delays execution until necessary. This 

approach allows pMapper to have the greatest possible 

amount of information about the program to be mapped 

at mapping time. pMapper thus has an advantage over 

compiler approaches, which analyze the code before 

runtime and might not have access to as much infor-

mation. Once execution is required, pMapper consid-

ers all of the functions up to the point of execution. In 

the example in Figure 8, pMapper would have access to 

both FFTs at the time of mapping and could therefore  

perform global optimization.

 

Results

To validate pMapper performance, we used 

the pMapper framework to determine effi-

cient mappings of the High Performance 

Embedded Computing (HPEC) Challenge 

benchmarks [20]. This benchmark suite 

[21] was developed to provide quantita-

tive evaluation of multiprocessor systems. 

It consists of signal-processing kernels, 

knowledge-processing kernels, and a com-

pact application based on an implementa-

tion of synthetic aperture radar (SAR). 

Table 2 summarizes the results. The 

kernel benchmarks can be divided into two 

categories:

1. Ones requiring no interprocessor 

communication (known as embarrass-

ingly parallel): finite impulse response 

Figure 9. Block diagram shows pMapper mapping and execution. 
The performance model is created during initialization. The signal flow 
graph is extracted from the program, observing the lazy evaluation pol-
icy (i.e., delaying the computation until the result of the computation is 
needed). The signal flow graph is then mapped to produce an atlas—a 
collection of maps for the program. Finally, the program is executed (or 
simulated) on the underlying architecture.

Performance
model ATLAS

Signal
flow

graph

Expert
mapping
system

Executor/
simulator

Signal
flow

extractor

Figure 8. This pMapper code is functionally 
equivalent to the pMatlab code in Figure 5. The 
automatic mapping/parallelization system finds 
efficient maps for the tagged arrays.

%Initialize arrays
A = array(N,M,ptag);
B = array(N,M,ptag);
C = array(N,M,ptag);
%Perform computation
B(:,:) = fft(A,2);
C(:,:) = fft(B,1);
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(FIR), constant false-alarm rate 

(CFAR), and pattern match; 

2. Ones that do require 

interprocessor communication: 

singular value decomposition 

(SVD), QR matrix factorization, 

genetic algorithm, and database 

operations.

All of the kernel benchmarks 

were mapped onto a simulated 

IBM Cell processor. The SAR 

compact application bench-

mark, for which the results are 

also shown, was mapped and 

executed on the LLGrid cluster.

Consider the CFAR bench-

mark. pMapper distributed the 

computation row-wise among 

eight processors. This bench-

mark, along with the FIR filter 

and the pattern match bench-

mark, is embarrassingly parallel 

and benefits from the use of the maximum number of pro-

cessors. While these are straightforward to parallelize, they 

provide initial evidence that the pMapper approach finds  

efficient mappings.

On the other hand, QR factorization benchmark 

achieves speedup of only 2.6 and uses only six out of eight 

available processors. The parallel QR algorithm is com-

munication intensive; even on a low-latency machine the 

communication takes a significant amount of time as com-

pared with the computation. The traversal of the mapping 

space for various matrix sizes (Figure 10) for QR illustrates 

pMapper’s capability to effectively navigate the search 

space and balance communication and computation. 

Comparison of pMapper maps to those which an expert 

would choose indicates that pMap-

per is able to generate efficient maps  

for this benchmark. 

The results are similar for the 

genetic  algorithm benchmark. 

This benchmark consists of a num-

ber of operations, some computing 

local results and others requiring  

communication among processors. 

pMapper performs global analysis  

and thus chooses to use only three 

out of the available eight proces-

sors. A mapping using more than 

three processors for this benchmark 

would more than offset the gain in 

computation time by additional  

communication time. 

taBle 2. The first seven High Performance Embedded Computing (HPEC) Challenge 
benchmarks are mapped onto a simulated IBM Cell processor with the maximum of eight 
processing elements. The last benchmark was mapped and executed on the LLGrid. 
Speedup is defined as serial execution time divided by parallel execution time.
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Figure 10. pMapper searches for the best mapping for various matrix sizes. 
The red line indicates the mappings chosen for a particular matrix size.

table 2: results of the hPec challenge

 BENCHMArk SPEEDuP  NuMBEr oF
    ProCESSorS

FIR	(finite	impulse	response)	 8		 8

CFAR	(constant	false-alarm	rate)	 8	 8

SVD	(singular-value	decomposition)	 6.7	 8

QR	factorization	 2.6	 8

Pattern	match	 8	 8

Genetic	algorithm	 2.8	 8

Database	operations	 3.8	 8

Application	(synthetic	aperture	radar)	 17	 23
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The SAR benchmark, unlike the others, was not 

simulated to run on the IBM Cell architecture; instead, 

it was mapped and executed on LLGrid, where with 23 

processors it achieved a speedup of 17. This benchmark 

demonstrates pMapper’s ability to handle large-scale 

applications. Reference 22 validates the pMapper result: 

the hand-coded implementation achieves similar speedup 

to the automatic parallelization.

Future directions
Since the early 1980s, industry and academia have been 

developing techniques to ease the programming of paral-

lel computing systems and allow a wide range of users 

to benefit from the power these systems provide. None-

theless, parallel computing has remained the domain 

of specialized experts. That can no longer be the case. 

From the LLGrid cluster, which has more that 200 users 

at Lincoln Laboratory, to the IBM Cell processor, which 

promises 256 gigaflops of computing power with eight 

specialized cores, to Intel’s desktop quad core processor, 

parallel computers are here. Lincoln Laboratory has made 

substantial contributions to research on parallel libraries 

and standards. Automatic program parallelization and 

optimization are the next steps. pMapper is an important 

In	addition	to	mapping	computa-
tions	onto	architectures,	the	pMap-
per	technology	provides	another	
valuable	capability:	processor	sizing	
and	architecture	analysis.	pMapper	
uses	a	machine	model	abstraction	

of	the	system	to	determine	the	map-
pings.	The	machine	model	can	be	of	
an	existing	architecture	or	of	a	new	
architecture	design.	The	mappings	
and	predicted	performance	of	vari-
ous	kernels	and	applications	onto	

the	machine	can	determine	optimal	
sets	of	architecture	parameters.	
Parameters	that	can	be	analyzed	
by	the	framework	include	latency,	
bandwidth,	number	of	intercon-
nects,	and	CPU	speed.	

Figure	A	illustrates	the	
architecture	analysis	capa-
bility.	The	machine	abstrac-
tion	and	the	application	
specification	are	inputs	into	
the	pMapper	framework.	As	
output,	pMapper	generates	
maps	for	the	application.	
Additionally,	pMapper	gener-
ates	performance	estimates	
of	the	application	running	on	
the	architecture.	This	pro-
cess	is	repeated	for	ranges	
of	computer	architecture	
parameters,	allowing	optimal	
parameters	and	suitability	
of	processing	architecture	
to	be	determined.	One	cur-
rent	research	direction	is	to	
improve	pMapper’s	ability		
to	model	and	optimize		
architectures.

Figure a. pMapper’s performance feedback allows for update of architecture 
parameters to better meet application space needs. Here, pMapper considers the 
effect of network and memory bandwidth on the fast Fourier transform (FFT) perfor-
mance of a synthetic aperture radar (SAr) image processing application.
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research development in both automatic program paral-

lelization and analysis of parallel systems (see the sidebar 

“Architecture Modeling with pMapper”). 

Additional research directions include extending 

pMapper to architectures based on field-programmable 

gate arrays (FPGAs) and to knowledge-based computa-

tions. FPGAs can provide significant performance increase 

over general-purpose processors, yet they are expensive to 

program. FPGAs require finer-grained analysis of appli-

cations; specifically, algorithm kernels have to be bro-

ken down into individual operations (such as adds and 

multiplies), whereas general-purpose processors can use 

coarser-grained, kernel level analysis. Prototype pMap-

per capability has been developed to perform fine-grained 

program analysis; however, the current implementation 

is computationally intensive. If the computation-to-FPGA 

mappings will be reused many times, the high cost of find-

ing the mapping is acceptable. On the other hand, if map-

pings need to be dynamic, the computational complexity 

of the approach must be reduced. One way to address this 

problem is to recognize similar parts of the computation 

during program analysis and reuse previously found map-

pings. We are exploring this approach.

Additionally, to accurately produce mappings for 

an FPGA architecture, we need a more detailed model 

of the underlying architecture. A pMapper prototype has 

been developed to not only allow detailed architecture 

analysis, but also to allow for automatic mapping onto 

heterogeneous architectures. Because FPGAs are often 

used as part of a larger system (as accelerator processors), 

an automatic mapping capability for heterogeneous sys-

tems is very valuable. 

Another direction being pursued is program analysis 

and mapping of back-end, knowledge-based algorithms. 

Currently, signal processing is done at the front end of 

the sensor system. The processed data are then passed 

on to the back-end processor to perform further analy-

sis, such as anomaly detection, target identification, and 

social network analysis. As the raw data set sizes become 

exceedingly large, however, real-time knowledge process-

ing will become essential. Many of these algorithms are 

based on graph algorithms, which in turn can be cast as 

sparse matrix operations. Sparse algorithms often perform 

poorly on parallel machines because of many irregular 

data accesses. Automatic optimization of these algorithms 

would greatly improve performance. Additionally, it is 

worthwhile to explore architecture properties that allow 

for more efficient sparse computations. The pMapper 

automatic parallelization framework will assist in both of 

those research initiatives.
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