
	 VOLUME 17, NUMBER 1, 2007 n LINCOLN LABORATORY JOURNAL	 187

Parallel computing is becoming increas-

ingly prevalent in both commercial and

military applications. The current computer

industry trend is toward creating processor

chips that contain multiple computation cores—from the

recent desktop Intel processors containing four processing

cores [1] to the IBM/Sony/Toshiba Cell processor, which

has eight high-performance computation cores and one

general-purpose processor [2]. These multicore architec-

tures are becoming dominant in all areas of computing,

from personal computers to real-time signal processing.

In the past, programming to exploit the architectural

properties of a parallel machine was limited to a narrow

field of experts. Because of the hardware industry’s shift

towards parallel computing, however, a wider field of pro-

grammers and algorithm developers must take advantage

of these computer architectures.

Two key factors have contributed to this paradigm

shift: the slowdown of Moore’s Law and the need to

process increasingly large data sets. Over the past 40

years, the number of transistors on a microchip doubled

every 18 to 24 months [3]. Increasing the number of

transistors in a constant area generally yields propor-

tional increase in a single processor’s clock speed and,

therefore, its computation speed. But as the industry

approaches the physical limits of transistor dimensions,

the demand for continued improvements in computa-

tion speed is driving hardware manufacturers to produce

multicore processors, with multiple processing units

on a single chip.

Addressing the
Multicore Trend
with Automatic
Parallelization
Nadya Bliss

The slowdown of Moore’s Law and the need to
process increasingly large data sets are driving
the computer hardware community to develop
multicore chips in addition to the already
prevalent commodity cluster systems and
multiprocessor embedded systems. As parallel
processors become ubiquitous, reducing the
complexity of parallel programming becomes
increasingly important. Lincoln Laboratory
has developed an automatic parallelization
framework, called pMapper, which is general
with regard to programming languages and
computer architectures and which focuses on
distributing operations common in 	
signal processing.

»

addressing the Multicore Trend with Automatic Parallelization

188	 LINCOLN LABORATORY JOURNAL n VOLUME 17, NUMBER 1, 2007

post-processing, such as tracking and target recognition,

to the sensor front end necessitates increasingly power-

ful processing architectures. Indeed, the need to process

large quantities of data at high speeds is making paral-

lel programming important at all levels of programming

expertise. This need to parallelize programs often reduces

productivity and prolongs algorithm development.

While the architecture community has been address-

ing the need for more computing power, techniques for

parallel programming have been advancing relatively

The need for parallel processing is evident in both

scientific and real-time computing. Scientific comput-

ing in high-level languages such as MATLAB requires

high-fidelity simulations and computations that can be

achieved by increasing the number of parameters and the

size of the datasets. Similarly, in the field of embedded

real-time computing the replacement of analog receiver

technology (in sensor arrays) by digital technology

requires faster digital processing capabilities at the sensor

front end. Additionally, the migration of more and more

A common misconception
in parallel programming is
that the more processors
are used, the faster the pro-
gram will run. In reality, there
is a maximum speedup that
a program can achieve, as
stated by Amdahl’s law [a].
In its most general form,
Amdahl’s law provides the
means to compute the maxi-
mum expected improvement
in running time, given that
only part of the program can
be improved. Consider a
program that can be broken up into
k parts and each part can be sped
up by a factor of Sk. The maximum
achievable speedup for the entire
program, Smax, is

	

S
P
Sk

n
k

k

max =

=
∑

1

0

,

where
• Pk = percentage of the program
• Sk = speedup (1 equals no
speedup)

• k = label for each corresponding
percentage and speedup
• n = number of parts the program is
broken up into.

To compute the maximum
speedup of parallel programs,
Amdahl’s law reduces to

	
Smax

1

1–
=

()P + P
S

,

where P is the percentage of the
program that can be parallelized
and S is the speedup achievable

for the parallelizable part
of the program. In the opti-
mal case, S equals the num-
ber of processors; usually,
however, S will be lower
than that. Figure A shows
the relationship between
speedup and processor
count. If 75% of the pro-
gram is parallelizable (blue
curve) and S = number of
processors, then the maxi-
mum speedup achievable,
as S approaches infinity, is	

	
1

1– .75
= 4 .

0 	
	
Thus no matter how many proces-
sors are used, this program can
never run more than four times
faster.

Reference
a.	 G.M. Amdahl, “Validity of the Single

Processor Approach to Achieving
Large Scale Computing Capabili-
ties,” in AFIPS Conf. Proc., 1967, pp.
483–485.

Amdahl’s Law

1 10 100 1000
1

10

100

1000

Number of processors

M
ax

im
um

 sp
ee

du
p

P is the fraction of
a program that can
be parallelized

P = 0.25
P = 0.50
P = 0.75
P = 1.00

FIGURE A. Maximum speedups achievable for pro-
grams with various fractional parallel parts.

Nadya Bliss

	 VOLUME 17, NUMBER 1, 2007 n LINCOLN LABORATORY JOURNAL	 189

tation are distributed or mapped; this dependence makes

it more difficult to estimate and optimize performance.

The situation is further complicated because the algo-

rithmic details might change as the algorithm is moved

from a single processor to a multiprocessor machine.

Often the most efficient serial algorithm is not the most

efficient parallel algorithm.

Signal and image processing have always been key

mission areas at Lincoln Laboratory. The algorithms

developed for these applications are computationally

intensive, thus pushing the Laboratory to the forefront of

developing parallel algorithms and libraries. Achieving

high-performance, functionally correct parallel program-

ming is particularly important and has led to the develop-

ment of an automatic mapping framework, pMapper.

Automatic Parallelization versus
Instruction Level Parallelism
Parallel computers, as well as research on parallel lan-

guages, compilers, and distribution techniques, first

emerged in the late 1960s. One of the most successful

research areas has been instruction-level parallelism [11],

which refers to identifying instructions in the program

that can be executed in parallel or out of order and sched-

uling them to reduce the computation time.

Figure 1 illustrates a simple program and an associ-

ated signal flow graph, or parse tree. Note that there are

no dependencies between the computation of C and F. As

a matter of fact, the two sub-trees are completely disjoint:

slowly. Programming paradigms that emerged in the

1980s and 1990s, such as message passing, are still pop-

ular. Although significant advances have been made in

raising the level of abstraction in parallel programming

[4–7], parallel compilers [8], and program optimization

tools [9], parallel programming has remained the prov-

ince of a small number of specialists. Determining how to

program a parallel processor efficiently is a difficult task

that requires the programmer to understand many details

about the computer architecture and parallel algorithms.

Computer scientists have been developing various tech-

niques for both detecting and utilizing parallelism, and

have made significant progress in the area of instruction-

level parallelism—that is, the ability to execute multiple

low-level instructions at the same time. General program

parallelism, however, is still an active area of research

with many unanswered questions.

Why is parallel programming so difficult? There are a

number of reasons. First, decomposing, or mapping, data

structures and tasks in a serial program into parallel parts

is a challenge. Second, writing parallel code that runs cor-

rectly requires synchronization and coordination among

processors. Finally, the most difficult task is writing effi-

cient parallel programs, a task that requires careful bal-

ancing of a program’s communication and computation

parts. When dealing with a single-processor architecture,

the programmers try to minimize the number of opera-

tions the processor must perform. Counting the number

of operations in a serial application is generally straight-

forward, and well-understood performance bounds exist

for many algorithms.

When the program is moved to a parallel machine,

minimizing the number of computations does not guar-

antee optimal performance. The same is true of serial

algorithms on today’s complex processors because of

multi-level memory hierarchies. The problem is com-

pounded when moving to a parallel system. First, the

theoretical speedup of the entire program is limited by

the longest serial path, as quantified by Amdahl’s law (see

the sidebar “Amdahl’s Law”) [10]. Second, the speedup of

the parallelizable part of the program is highly dependent

on interprocessor communication. Efficiently mapping

the application, or distributing parts of the application

between multiple processing elements, becomes increas-

ingly important. The performance bounds of parallel

algorithms depend strongly on how the data and compu-

=

+

CBA

C = A + B
F = D + E

=

+

F ED
1 2 3 4 5 6

9

7 8

10

FIGURE 1. A simple program (top) is represented by a parse
tree, or signal flow graph. Note that there are no dependen-
cies between computation of C and F: nodes 1, 2, 3, 7, and 9
are not connected to nodes 4, 5, 6, 8, and 10. Thus the com-
piler can execute the two addition operations in parallel or
out of order.

addressing the Multicore Trend with Automatic Parallelization

190	 LINCOLN LABORATORY JOURNAL n VOLUME 17, NUMBER 1, 2007

nodes 1, 2, 3, 7, and 9 are not connected to nodes 4, 5, 6,

8, and 10. This lack of dependencies indicates to the com-

piler that the two addition operations can be executed in

parallel or out of order (for example, if changing the order

speeds up a subsequent computation). If the architecture

allows for multiple instructions to be executed at once,

this approach can greatly speed up program execution.

Such instruction-level optimization has been incorpo-

rated into a number of mainstream compilers.

At a higher level, specifically at the kernel and func-

tion levels, this technique is referred to as concurrency

analysis: analyzing parse trees of programs and deter-

mining which functions and operations can be per-

formed in parallel. This area has also been researched

extensively and incorporated into parallel languages

and compilers [12].

Unfortunately, instruction-level parallelism and con-

currency-analysis techniques do not solve the automatic

parallelization problem, or the problem of taking a serial

code and determining the best way to break it up among

multiple processors. It is not sufficient to build a signal flow

graph or parse tree of a program, determine what nodes

can be executed in parallel, and then break up the pro-

gram accordingly.

To explain why that is the case, let us consider

another simple example. A common implementation of

a parallel fast Fourier transform (FFT) on a large vec-

tor is performed via two one-dimensional FFTs with a

multiplication by twiddle factors. For the purpose of this

discussion, let us ignore the multiplication step and sim-

ply consider the two FFTs. First, the vector is reshaped

into a matrix. Then one FFT is performed along rows

and the second along columns, as illustrated by Figure 2.

The FFT of each row or column of length N is computed

according to

	
X x()= () (-1)(-1)

=1
k j j k

j
N

N
ω∑ ,

	

where x is the input vector (row or column), X is the out-

put vector, N is the vector length, and

	 ω π
N

Ne i= −()2 .

FIGURE 3. The top row illustrates mapping the FFT computation onto two processors. The bottom row is the same
computation distributed onto four processors. Different colors indicate different processors.

FFT
rows

Corner
turn

FFT
cols

Processor 0
Processor 1
Processor 2
Processor 3

FFT
rows

Corner
turn

FFT
cols

FFT
rows

Corner
turn

FFT
cols

FIGURE 2. A common algorithm for implementing a parallel fast Fourier transform (FFT) is via two one-dimensional FFTs.
The first FFT is performed along the rows; then, after the data are re-organized with a corner turn, the second FFT is per-
formed along the columns.

Nadya Bliss

	 VOLUME 17, NUMBER 1, 2007 n LINCOLN LABORATORY JOURNAL	 191

on a faster network the addi-

tion of more processors would

provide greater speedup.

It is important to address

the issue of computation/

communication balance in a

global manner. Techniques

already exist for optimizing

performance of single func-

tions. FFTW (Fastest Fourier

Transform in the West) [13]

optimizes the performance

of FFT routines, for example;

ATLAS (Automatically Tuned

Linear Algebra Software) [14]

does the same for linear alge-

bra routines. But determin-

ing what is the best mapping, or distribution, for groups

of operations makes the problem more difficult—what

might be an optimal processor breakdown or map for a

single function might not be optimal for a chain of com-

putations. Our research tackles the two issues described

above: balancing communication and computation in an

application, and doing so in a global manner, not just on

a per function basis.

Taxonomy
It is helpful to classify existing approaches along with

pMapper by using a common set of characteristics. The

first characteristic is concurrency—that is, whether the

approach is meant to optimize a program for a serial

architecture or parallel architecture. If the concurrency

is serial, then the approach entails finding an efficient

mapping into the memory hierarchy of a single-proces-

sor machine, such as determining the optimal strategy

for cache utilization. Commonly used compilers optimize

performance at serial concurrency. If the concurrency is

parallel, the approach needs to optimize the code for a

parallel or distributed memory hierarchy. pMapper is a

parallel-concurrency optimization framework.

The second characteristic is support layer—that is,

in which layer of software the automatic distribution and

optimization is implemented. Optimization approaches

tend to be implemented in either the compiler or middle-

ware layer. If the parallelization approach is implemented

in the compiler, it does not have access to runtime infor-

First, consider the details of the

serial implementation. The time com-

plexity of the operation is simply the

computational complexity of the two

FFTs, which is 5N log2(N)* multiplied by

the number of rows (columns), where N

is the number of elements in each row

(column). The computational complex-

ity of an operation is a count of arith-

metic operations that take place during

the computation, while the total time

complexity could also include the time

needed for communication in a parallel

implementation. The complexity of the

computation or communication opera-

tion is dependent on N, the number of

elements involved in the operation.

Second, let us consider the details of the parallel

implementation mapped onto two processors, as illus-

trated in Figure 3. Here, the time complexity is equivalent

to computational complexity divided by two (the number

of processors) plus the additional time needed to redis-

tribute the data from rows to columns. Third, consider

the same operation but using four processors. Although

the computation time is reduced by a factor of four,

there is now additional communication cost because the

four processors need to exchange information with one

another. Thus, as the number of processors increases, the

work each processor must perform decreases, leading to

speedup. At the same time, the need for interprocessor

communication increases. Figure 4 illustrates the rela-

tionship between number of processors and speedup for

varying communication costs.

This delicate balance of computation and commu-

nication is not captured through concurrency analysis.

In particular, the signal flow graph of a serial program

provides insufficient information to determine the opti-

mal processor breakdown because the computation is no

longer the only component and the network architecture

and topology influence the execution time significantly.

For example, on a slow network it might be beneficial to

split the computation up between only a few nodes, while

Number of processors
Sp

ee
du

p

Negligible
Reasonable
Prohibitive

Communication cost

FIGURE 4. The speed benefit of paralliza-
tion depends on the cost of communicating
among processors. The blue curve is char-
acteristic of most algorithms and is where
finding communication/computation bal-
ance is most important.

*	 The complexity given is for an FFT of a complex vector of
length N, where N is a power of 2.

addressing the Multicore Trend with Automatic Parallelization

192	 LINCOLN LABORATORY JOURNAL n VOLUME 17, NUMBER 1, 2007

mation—information that could signifi-

cantly influence the chosen mapping. On

the other hand, if the approach is imple-

mented in middleware and is invoked at

runtime, it could incur a significant over-

head because of the extra effort required to

collect the runtime information. pMapper

is implemented in middleware.

The third characteristic is code anal-

ysis—that is, how the approach finds

instances of parallelism. Code analysis can

be static or dynamic. Static code analysis

involves looking at the code as text and

trying to extract inherent parallelism on

the basis of how the program is written.

Dynamic code analysis involves analyzing

the behavior of the code as it is running,

thus allowing access to runtime information. pMapper

uses dynamic code analysis.

The fourth characteristic of the parallelization tax-

onomy is the optimization window, or at what scope

the approach applies optimizations. Approaches could

be local (peephole) or global (program flow). Local

optimization approaches, which find optimal distri-

butions for individual functions, have had the most

success and are used by many parallel programmers.

Consider the FFT example from Figures 2 and 3. A

local optimization approach would consider a single

FFT computation at a time and would use all of the

available resources. Locally, this is the optimal solu-

tion. However, it is often true that the best way to

distribute individual functions is not the best way to

distribute the entire program or even a portion of the

program. Global optimization addresses this issue by

analyzing either the whole program or a sub-program.

For the FFT example, a global optimization approach

would consider the cost of redis-

tribution between row and

column operations and would

produce different results, depend-

ing on the underlying architec-

ture. pMapper performs global

optimization.

pMapper tackles a challenging

problem space as specified by this

taxonomy and is unique in that it

performs both dynamic code analysis and global optimi-

zation. Table 1 summarizes the taxonomy and pMapper’s

defining characteristics.

Lincoln Laboratory Parallel Software
The pMapper framework globally optimizes perfor-

mance of parallel programs at runtime. To do this,

pMapper requires a presence of an underlying parallel

library. The Embedded Digital Systems Group at Lin-

coln Laboratory has been developing parallel libraries for

more than 10 years. The libraries developed here include

STAPL (Space-Time Adaptive Processing Library) [15],

PVL (Parallel Vector Library) [16], and pMatlab [17].

All of these libraries have increased the level of abstrac-

tion by implementing a map layer that insulates the

algorithm developer from writing complicated message-

passing code. These libraries introduce the concept of

map independence—that is, the task of mapping the

program onto a processing architecture is independent

FIGURE 5. Sample pMatlab code for the parallel FFT. Mapping the code
is independent from algorithm development. mapA and mapB could change
arbitrarily, without changing the code’s functionality or correctness.

Table 1: Taxonomy of Automatic Program Optimization
(pMapper characteristics in bold)

	 Concurrency	 Serial	 Parallel

	 Support layer	 Compiler	 Middleware

	 Code analysis	 Static	 Dynamic

	 Optimization window	 Local (peephole)	 Global (program flow)

%Define maps
mapA = map([4 1],{},[0:3]); %distribute rows
mapB = map([1 4],{},[0:3]); %distribute cols
%Create arrays
A = array(N,M,mapA);
B = array(N,M,mapB);
C = array(N,M,mapB);
%Perform FFT along the 2nd dimension (row)
A(:,:) = fft(A,[],2);
%Corner-turn the data
B(:,:) = A;
%Perform FFT along the 1st dimension (col)
C(:,:) = FFT (B,[],1);

Nadya Bliss

	 VOLUME 17, NUMBER 1, 2007 n LINCOLN LABORATORY JOURNAL	 193

from the task of algorithm development. Once the algo-

rithm has been specified, the user can simply define maps

for the program without having to change the high-level

algorithm, as illustrated in the pMatlab example in Fig-

ure 5. Note that the maps can be changed without hav-

ing to change any of the program details. The key idea

behind map independence is that a parallel programming

expert can define the maps, while a domain expert can

specify the algorithm.

Let us quickly review the concept of a map. For the

purposes of this article, a map is an assignment of blocks

of data to processing elements. A map can be defined

with three pieces of information: (1) grid specifica-

tion, (2) distribution description, and (3) processor list.

Figure 6 illustrates how a map distributes an array across

processing elements. (For a detailed discussion of maps,

see Reference 18.) Since the task of mapping the program

is separated from the task of developing the algorithm,

the entity that determines the maps for the program could

be another layer of software. That is exactly the approach

that our research explores.

Automatic Parallelization
with pMapper
pMapper is an automatic mapping engine originally

designed to distribute MATLAB programs onto paral-

lel computers, specifically clusters such as the 1500-

processor Lincoln Laboratory Grid (LLGrid), shown in

Figure 7) [19]. Although the examples discussed here are

written in MATLAB, the concepts are general with respect

to programming languages and environments.

Consider the MATLAB code example in Figure 5.

Although introducing the mapping layer significantly

simplifies parallel programming, specifying the details

of a map object is nontrivial. As discussed previously,

choosing the wrong number of processors can slow down

the program. Additionally, choosing an inefficient set of

map components, such as grid, processor list, or distri-

bution, could yield poor performance. A program coded

to be optimized by pMapper has maps replaced with

tags that indicate to the system that the arrays should

be considered for distribution (as illustrated in Figure

8). The automatic mapping system finds efficient maps

for all tagged arrays. As the tag indicates that the arrays

should be considered for distribution and not necessar-

ily distributed, some of the maps may contain only one

processor.

Two-Phase Architecture

To provide accurate mappings, we need to collect bench-

mark performance data of the parallel library on the tar-

get parallel architecture. Specifically, pMapper needs

FIGURE 6. A map consists of the grid specification, distri-
bution description, and processor list. Shown here is a 4 × 6
array mapped onto a 2 × 2 grid using processors 0, 1, 2, and 3.

A = array (4, 6, mapA) ;

A
=

Distribution specification
describe how the data are
distributed

Grid specification together
with processor list describe
where the data are distributed

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

0
0
0
0

0
0
0
0

P0
P1

P2
P3

mapA: grid: 2 × 2
dist: block
procs: 0 : 3

FIGURE 7. pMapper was originally developed and tested on
Lincoln Laboratory’s 1500-processor LLGrid system.

addressing the Multicore Trend with Automatic Parallelization

194	 LINCOLN LABORATORY JOURNAL n VOLUME 17, NUMBER 1, 2007

to have access to timings of vari-

ous <map, function> pairs on the

architecture. For the FFT function,

for example, pMapper will collect

information on the amount of time

required to execute the FFT with

maps with varying numbers of

processors and different distri-

butions on various grids. pMap-

per requires the presence of an

underlying parallel library, such

as pMatlab. This library provides

parallel versions of the functions. The performance of

these functions with various maps needs to be assessed

prior to making mapping decisions.

The task of benchmarking the library is computa-

tionally intensive, making it infeasible to collect sufficient

timing data during program execution. Once the bench-

marking data have been collected, pMapper uses them to

generate maps in an efficient manner. This process natu-

rally yields a two-phase mapping architecture.

The initialization phase occurs once, when pMapper

is installed on the target architecture—or, if the architec-

ture is simulated, when the architecture parameters are

first specified. The idea of collecting performance data

to later aid in optimization can also be found in profile-

guided optimization approaches. A key difference in the

pMapper initialization step

is that the performance data

are collected on individual

functions and not on the full

program. The initialization

process is therefore indepen-

dent from the program, and

dependent only on the under-

lying parallel library and

parallel architecture.

Once the timing data

are collected and stored as a

performance model, they are used to generate maps for

the tagged numerical arrays. The mapping and execu-

tion phase illustrated in Figure 9 is performed once for

each program at runtime. pMapper uses lazy evalua-

tion—that is, it delays execution until necessary. This

approach allows pMapper to have the greatest possible

amount of information about the program to be mapped

at mapping time. pMapper thus has an advantage over

compiler approaches, which analyze the code before

runtime and might not have access to as much infor-

mation. Once execution is required, pMapper consid-

ers all of the functions up to the point of execution. In

the example in Figure 8, pMapper would have access to

both FFTs at the time of mapping and could therefore

perform global optimization.

Results

To validate pMapper performance, we used

the pMapper framework to determine effi-

cient mappings of the High Performance

Embedded Computing (HPEC) Challenge

benchmarks [20]. This benchmark suite

[21] was developed to provide quantita-

tive evaluation of multiprocessor systems.

It consists of signal-processing kernels,

knowledge-processing kernels, and a com-

pact application based on an implementa-

tion of synthetic aperture radar (SAR).

Table 2 summarizes the results. The

kernel benchmarks can be divided into two

categories:

1. Ones requiring no interprocessor

communication (known as embarrass-

ingly parallel): finite impulse response

FIGURE 9. Block diagram shows pMapper mapping and execution.
The performance model is created during initialization. The signal flow
graph is extracted from the program, observing the lazy evaluation pol-
icy (i.e., delaying the computation until the result of the computation is
needed). The signal flow graph is then mapped to produce an atlas—a
collection of maps for the program. Finally, the program is executed (or
simulated) on the underlying architecture.

Performance
model ATLAS

Signal
flow

graph

Expert
mapping
system

Executor/
simulator

Signal
flow

extractor

FIGURE 8. This pMapper code is functionally
equivalent to the pMatlab code in Figure 5. The
automatic mapping/parallelization system finds
efficient maps for the tagged arrays.

%Initialize arrays
A = array(N,M,ptag);
B = array(N,M,ptag);
C = array(N,M,ptag);
%Perform computation
B(:,:) = fft(A,2);
C(:,:) = fft(B,1);

Nadya Bliss

	 VOLUME 17, NUMBER 1, 2007 n LINCOLN LABORATORY JOURNAL	 195

(FIR), constant false-alarm rate

(CFAR), and pattern match;

2. Ones that do require

interprocessor communication:

singular value decomposition

(SVD), QR matrix factorization,

genetic algorithm, and database

operations.

All of the kernel benchmarks

were mapped onto a simulated

IBM Cell processor. The SAR

compact application bench-

mark, for which the results are

also shown, was mapped and

executed on the LLGrid cluster.

Consider the CFAR bench-

mark. pMapper distributed the

computation row-wise among

eight processors. This bench-

mark, along with the FIR filter

and the pattern match bench-

mark, is embarrassingly parallel

and benefits from the use of the maximum number of pro-

cessors. While these are straightforward to parallelize, they

provide initial evidence that the pMapper approach finds

efficient mappings.

On the other hand, QR factorization benchmark

achieves speedup of only 2.6 and uses only six out of eight

available processors. The parallel QR algorithm is com-

munication intensive; even on a low-latency machine the

communication takes a significant amount of time as com-

pared with the computation. The traversal of the mapping

space for various matrix sizes (Figure 10) for QR illustrates

pMapper’s capability to effectively navigate the search

space and balance communication and computation.

Comparison of pMapper maps to those which an expert

would choose indicates that pMap-

per is able to generate efficient maps

for this benchmark.

The results are similar for the

genetic algorithm benchmark.

This benchmark consists of a num-

ber of operations, some computing

local results and others requiring

communication among processors.

pMapper performs global analysis

and thus chooses to use only three

out of the available eight proces-

sors. A mapping using more than

three processors for this benchmark

would more than offset the gain in

computation time by additional

communication time.

TABLE 2. The first seven High Performance Embedded Computing (HPEC) Challenge
benchmarks are mapped onto a simulated IBM Cell processor with the maximum of eight
processing elements. The last benchmark was mapped and executed on the LLGrid.
Speedup is defined as serial execution time divided by parallel execution time.

Number of processors

Ex
ec

uti
on

 tim
e

Matrix size

FIGURE 10. pMapper searches for the best mapping for various matrix sizes.
The red line indicates the mappings chosen for a particular matrix size.

Table 2: Results of the HPEC Challenge

	 Benchmark	 Speedup	 Number of
	 		p rocessors

FIR (finite impulse response)	 8�	 8

CFAR (constant false-alarm rate)	 8	 8

SVD (singular-value decomposition)	 6.7	 8

QR factorization	 2.6	 8

Pattern match	 8	 8

Genetic algorithm	 2.8	 8

Database operations	 3.8	 8

Application (synthetic aperture radar)	 17	 23

addressing the Multicore Trend with Automatic Parallelization

196	 LINCOLN LABORATORY JOURNAL n VOLUME 17, NUMBER 1, 2007

The SAR benchmark, unlike the others, was not

simulated to run on the IBM Cell architecture; instead,

it was mapped and executed on LLGrid, where with 23

processors it achieved a speedup of 17. This benchmark

demonstrates pMapper’s ability to handle large-scale

applications. Reference 22 validates the pMapper result:

the hand-coded implementation achieves similar speedup

to the automatic parallelization.

Future Directions
Since the early 1980s, industry and academia have been

developing techniques to ease the programming of paral-

lel computing systems and allow a wide range of users

to benefit from the power these systems provide. None-

theless, parallel computing has remained the domain

of specialized experts. That can no longer be the case.

From the LLGrid cluster, which has more that 200 users

at Lincoln Laboratory, to the IBM Cell processor, which

promises 256 gigaflops of computing power with eight

specialized cores, to Intel’s desktop quad core processor,

parallel computers are here. Lincoln Laboratory has made

substantial contributions to research on parallel libraries

and standards. Automatic program parallelization and

optimization are the next steps. pMapper is an important

In addition to mapping computa-
tions onto architectures, the pMap-
per technology provides another
valuable capability: processor sizing
and architecture analysis. pMapper
uses a machine model abstraction

of the system to determine the map-
pings. The machine model can be of
an existing architecture or of a new
architecture design. The mappings
and predicted performance of vari-
ous kernels and applications onto

the machine can determine optimal
sets of architecture parameters.
Parameters that can be analyzed
by the framework include latency,
bandwidth, number of intercon-
nects, and CPU speed.

Figure A illustrates the
architecture analysis capa-
bility. The machine abstrac-
tion and the application
specification are inputs into
the pMapper framework. As
output, pMapper generates
maps for the application.
Additionally, pMapper gener-
ates performance estimates
of the application running on
the architecture. This pro-
cess is repeated for ranges
of computer architecture
parameters, allowing optimal
parameters and suitability
of processing architecture
to be determined. One cur-
rent research direction is to
improve pMapper’s ability 	
to model and optimize 	
architectures.

FIGURE A. pMapper’s performance feedback allows for update of architecture
parameters to better meet application space needs. Here, pMapper considers the
effect of network and memory bandwidth on the fast Fourier transform (FFT) perfor-
mance of a synthetic aperture radar (SAR) image processing application.

Architecture Modeling with pMapper

Memory bandwidth
Network bandwidth

Processing
architecture 1

A

B
FFT

C

D

E

FFT

×

. . .

FFT

×

. . .

A

B

C

 D

 E

FFT

SAR application

Machine abstraction

pMapper

Pe
rfo

rm
an

ce

Serial
processing
chain

Parallel
 processing

chain

Processing
architecture 2

Nadya Bliss

	 VOLUME 17, NUMBER 1, 2007 n LINCOLN LABORATORY JOURNAL	 197

research development in both automatic program paral-

lelization and analysis of parallel systems (see the sidebar

“Architecture Modeling with pMapper”).

Additional research directions include extending

pMapper to architectures based on field-programmable

gate arrays (FPGAs) and to knowledge-based computa-

tions. FPGAs can provide significant performance increase

over general-purpose processors, yet they are expensive to

program. FPGAs require finer-grained analysis of appli-

cations; specifically, algorithm kernels have to be bro-

ken down into individual operations (such as adds and

multiplies), whereas general-purpose processors can use

coarser-grained, kernel level analysis. Prototype pMap-

per capability has been developed to perform fine-grained

program analysis; however, the current implementation

is computationally intensive. If the computation-to-FPGA

mappings will be reused many times, the high cost of find-

ing the mapping is acceptable. On the other hand, if map-

pings need to be dynamic, the computational complexity

of the approach must be reduced. One way to address this

problem is to recognize similar parts of the computation

during program analysis and reuse previously found map-

pings. We are exploring this approach.

Additionally, to accurately produce mappings for

an FPGA architecture, we need a more detailed model

of the underlying architecture. A pMapper prototype has

been developed to not only allow detailed architecture

analysis, but also to allow for automatic mapping onto

heterogeneous architectures. Because FPGAs are often

used as part of a larger system (as accelerator processors),

an automatic mapping capability for heterogeneous sys-

tems is very valuable.

Another direction being pursued is program analysis

and mapping of back-end, knowledge-based algorithms.

Currently, signal processing is done at the front end of

the sensor system. The processed data are then passed

on to the back-end processor to perform further analy-

sis, such as anomaly detection, target identification, and

social network analysis. As the raw data set sizes become

exceedingly large, however, real-time knowledge process-

ing will become essential. Many of these algorithms are

based on graph algorithms, which in turn can be cast as

sparse matrix operations. Sparse algorithms often perform

poorly on parallel machines because of many irregular

data accesses. Automatic optimization of these algorithms

would greatly improve performance. Additionally, it is

worthwhile to explore architecture properties that allow

for more efficient sparse computations. The pMapper

automatic parallelization framework will assist in both of

those research initiatives.

Acknowledgements
A number of individuals have contributed to this work.

I particularly want to thank Hank Hoffmann, who was

the initial collaborator on the pMapper project, and

Sanjeev Mohindra, who contributed immensely to this

work. Jeremy Kepner and Robert Bond provided valuable

insight, guidance, and support. I also thank Ken Senne

and Zach Lemnios for funding this work, and everyone on

the LLGrid team for providing a tremendous resource for

both algorithm development and pMapper testing. n

References

1.	 Intel CoreTM Microarchitecture, www.intel.com/technology/
architecture-silicon/core.

2	 The Cell project at IBM Research, www.research.ibm.com/
cell.

3.	 G.E. Moore, “Cramming More Components onto Integrated
Circuits,” Electronics, vol. 38, no. 8, 1965.

4	 N. Travinin Bliss and J. Kepner, “pMatlab Parallel Matlab
Library,” Int. J. High Perform. Comput. Appl., vol. 21, no. 3,
2007 (special issue on high productivity programming lan-
guages and models), pp. 336–359, hpc.sagepub.com/cgi/
reprint/21/3/336.

5.	 J. Lebak, J. Kepner, H. Hoffmann, and E. Rutledge, “Parallel
VSIPL++: An Open Standard Software Library for High-Per-
formance Parallel Signal Processing,” Proc. IEEE, vol. 93, no.
2, 2005, pp. 313–335.

6.	 UPC Community Forum. www.upc.gwu.edu.
7.	 K. Yelick, P. Hilfinger, S. Graham, et al., “Parallel Languages

and Compilers: Perspective from the Titanium Experience,”
Int. J. High Perform. Comput. Appl., vol. 21, no. 3, 2007
(special issue on high productivity programming languages
and models), pp. 266–290, hpc.sagepub.com/cgi/content/
abstract/21/3/266.

8.	 M. Wolfe, High Performance Compilers for Parallel Comput-
ing (Benjamin/Cummings, Redwood City, Calif., 1996).

9.	 R. Gupta, E. Mehofer, and Y. Zhang, “Profile Guided Com-
piler Optimization,” chap. 4 in The Compiler Design Hand-
book: Optimization and Machine Code Generation, Y.N.
Srikant and P. Shankar, eds. (CRC Press, Boca Raton, Fl.,
2002).

10.	 G.M. Amdahl, “Validity of the Single Processor Approach to
Achieving Large Scale Computing Capabilities,” in AFIPS
Conf. Proc., 1967, pp. 483–485.

11.	 J.L. Hennessy and D.A. Patterson, Computer Architecture: A
Quantitative Approach, 4th ed. (Morgan Kaufman Publish-
ers, San Francisco, 2006).

www.intel.com/technology/architecture-silicon/core
www.research.ibm.com/cell
hpc.sagepub.com/cgi/reprint/21/3/336
www.upc.gwu.edu
hpc.sagepub.com/cgi/content/abstract/21/3/266

addressing the Multicore Trend with Automatic Parallelization

198	 LINCOLN LABORATORY JOURNAL n VOLUME 17, NUMBER 1, 2007

12.	 Yelick, “Parallel Languages and Compilers.”
13.	 M. Frigo and S.G. Johnson, “FFTW,” www.fftw.org.
14.	 A. Petitet, R.C. Whaley, and J.J. Dongarra, “Automated

Empirical Optimizations of Software and the ATLAS Proj-
ect,” Proc. High Performance Embedded Computing Work-
shop (HPEC 2000), Lexington, Mass., Sept. 20–22, 2000.

15.	 C.M. DeLuca, C.W. Heisey, R.A. Bond, and J.M. Daly, “A Por-
table Object-Based Parallel Library and Layered Framework
for Real-Time Radar Signal Processing,” Proc. 1st Conf. Inter-
national Scientific Computing in Object-Oriented Parallel
Environments (ISCOPE ’97), 1997, pp. 241–248.

16.	 Lebak, “Parallel VSIPL++.”
17.	 J. Kepner and N. Travinin, “Parallel Matlab: The Next Gener-

ation,” Proc. High Performance Embedded Computing Work-
shop (HPEC 2003), Lexington, Mass., Sept. 23–25, 2003.

18.	 N.T. Bliss, R. Bond, J. Kepner, H. Kim, and A. Reuther,
“Interactive Grid Computing at Lincoln Laboratory,” Linc.
Lab. J., vol. 16, no. 1, 2006, pp. 165–216.

19.	 Ibid.
20.	N.T. Bliss, J. Dahlstrom, D. Jennings, and S. Mohindra,

“Automatic Mapping of the HPEC Challenge Benchmarks,”
Proc. High Performance Embedded Computing Workshop
(HPEC 2006), Lexington, Mass., Sept. 19–21, 2006.

21.	 R. Haney, T. Meuse, J. Kepner, and J. Lebak, “The HPEC
Challenge Benchmark Suite,” Proc. High Performance
Embedded Computing Workshop (HPEC 2005), Lexington,
Mass., Sept. 20–22, 2005.

22.	J. Mullen, T. Meuse, and J. Kepner, “HPEC Challenge SAR
Benchmark pMatlab Implementation and Performance,”
Proc. High Performance Embedded Computing Workshop
(HPEC 2006), Lexington, Mass., Sept. 23–25, 2006.

about the author

Nadya Bliss is a staff member in the
Embedded Digital Systems group. Since
joining the Laboratory in 2002, she has
been a principal developer of pMapper,
the automated parallelization system, and
pMatlab, the parallel MATLAB toolbox. Her
research interests are in parallel and dis-
tributed computing and intelligent/cognitive
algorithms. She has a master’s degree in
computer science from Cornell University.

www.fftw.org
http://lldocs/stellent/groups/llj-public/documents/ll/ll-085858.pdf
http://lldocs/stellent/groups/llj-public/documents/ll/ll-085858.pdf

