Tower Flight Data Manager
Prototype System

19 October 2011

Vineet Mehta, Steven Campbell, James Kuchar, William Moser, Hayley Reynolds, Tom Reynolds, and Robert Seater

This work was sponsored by the Federal Aviation Administration under Air Force Contract No. FA8721-05-C-0002. Opinions, interpretations, conclusions, and recommendations are those of the authors and are not necessarily endorsed by the United States Government.
Outline

• Motivation
• System overview
• Information management framework
• Decision support tools
• Computer human Interfaces
• Field evaluation
• Summary
Evolving From Current Tower Operations

Challenges:
- Multiple stove-piped systems
- Coordination within tower
- Coordination with other facilities
- Adequate situational awareness
- Operational efficiency

Approaches:
- Net-centric architecture
- Integrated computer-human interfaces
- Data sharing
- Fusion and correlation
- Decision support
Tower Flight Data Manager (TFDM) System Components

Data Sources:
- Flight Plan
- Weather Obs.
- Surveillance
- Traffic Constraints
- Forecasts
- Flight Plan
- Weather
- Surveillance

External Stakeholders:
- Airline Operation Centers
- Other ATC Facilities
- Airport Authority

Common Services:
- Message broker
- Archive

Decision Support Algorithms
- Surveillance
- Fusion
- Decision Support
- Weather

Controller Interfaces
- Archive
- Surveillance
- Flight Plan
- Weather

Information Bus
Information Management Framework

- **Extensible system**
 - Supports multiple tower positions
 - Adaptable to sites and different class airports
 - Flexible information architecture
 - Enables integration with current and planned NAS systems
 - Evolvable system – replaceable components

- **Based on SWIM guidelines**
 - Enables data sharing with other facilities
 - Concept validation platform
 - Enabler for validating ongoing FAA data modeling e.g. Flight Object…)

Net-Centric architecture is key to providing integrated system
Data Fusion

- **Surveillance Processor**
 - Combine ASDE-X dropped or split track data into single consistent track using multiple sensor reports
 - Smooth aircraft position and heading using Kalman Filter models
 - Handle high rate of ASDE-X reports
 - Extend tracks to 60nm

- **Surface Monitor**
 - Locate targets relative to surface features (runway, taxiway...)
 - Determine if aircraft is airborne or on ground
 - Model vehicle motion and predict position in near-future
 - Control runway entrance/threshold hold bars
 - Generate safety alerts

- **Target Broker**
 - Match data within and between different external data sources (ASDE-X, FDIO, TFMS...)
 - Provide unique and consistent identifier for flights within TFDM system

Operational algorithms for identifying, tracking, and locating targets
Decision Support Functions

Time

Strategic

- Setup efficient airport configuration
 - Consider surface winds
 - Consider traffic demand

- Preempt delays & gridlock
 - Reroute flights
 - Coordinate departure time

- Balance runway use
 - Assign taxi routes
 - Manage push-backs

- Assist in meeting departure time
 - Establish efficient take-off sequence
 - Account for traffic constraints

- Ensure aircraft depart safely
 - Adhere to surface separation and enroute traffic constraints

Traffic Management Function

Decision Support Module

- AP Config Analysis
- Dep Routing
- Mastering
- Taxi Routing
- RW Assign
- Seq & Sched
- Conformance
Efficient Departure Routing

Route Availability Planning Tool

Flight plan data
Accurate take-off time predictions
Taxi Routing
Seq & Sched

Decision support modules facilitate collaborative rerouting

Dep Routing

Demand on Easterly blocked routes
South-East routes available

Supervisor

NextGen Tower-8
VM 10/22/2011
Metering Concept

Adding aircraft:
- Increases delay
- Increases fuel burn

\(Q^* = \text{Saturation point} \)

- \(Q \): Number In Queue
- \(Q^* \): Saturation point

Q-control:
Control strategy to maintain queue at saturation

- Future scheduled departures
- \(T \): minutes prediction of aircraft queue
- Number of departures
- Number on surface
- Aircraft push-back control

\[Q^* \]
Example for Metering Decision Support
(24 February 2011)

Surveillance Display

Electronic Flight Strip Display

Ground Control

Predict queue build up

Throttle push-backs

Weather triggered airport operation well above saturation point

Opportunity to provide metering decision support
Accurate Taxi Time Models

Accurate taxi-time estimates required near push-back

Inputs:
- Taxi distance
- Airline
- Origin
- Arrivals
- Departures

Supervised Learning

Trained Model

\[T = \sum_{n=1}^{N} w_n \phi_n(f) \]

Average Taxi-Time Error Near Push-Back

- Linear Regression
- Supervised Learning

Supervised learning model: Accurate & robust for real-time data
Human Factors Role
In Design & Development

- Tower Visits
- User Groups
- Simulation
- Operational Tests

1. Operational concept and high level requirements
2. Requirements and detailed design
3. Functional and benefits assessment
4. Operational assessment

Feedback: Operational utility, efficiency, workload, alerting/cueing, functionality, & robustness
Key Features: Surveillance Display

- Surveillance out to 60 NM
- Aircraft icons based on type, weight category
- Surveillance data smoothing
- Runway and taxiway closure indications
- Context-specific data block information
- Zoomable, rotatable display with multiple flexible subwindows
- Alarms and alerts
- Ribbon display
- Runway hold bars
Key Features: Flight Data Manager Display

- **Flight Data Manager Display**
 - Color coding consistent with Surveillance display
 - Coordinated selection with surveillance targets
 - Drag-and-drop touch screen interface
 - Multiple sorting options
 - Alarms, alerts, and prompts
 - Strip content tailored to controller position
 - User- and position-configurable layout
 - Quick-entry hot buttons
 - Editing, multisect, create, delete, undo options
 - Attention highlighting
 - Highlighting, acknowledgment, notes, flip capability
 - Search capability
 - Metering advisories

NextGen Tower-14
VM 10/22/2011
Key Features: Supervisor Display

- Airport configuration manager
- Runway-to-fix map tool
- Flight-specific impact of weather
- Runway time & sequence prediction
- Integration of traffic management initiatives
- Coupled to other tower positions and displays
- Active flight list
- NOTAMs, RVR, checklists
TFDM Field Demonstrations

Dallas/Fort Worth Airport:
- Size: 29.8 square miles
- Operations: 1,800 per day
- Passengers: 156,000 per day
- Runways: 7
- Towers: 2 primary, 1 backup

Testing:
- Duration: 6 days, 8 hours per day
- Operations: 2700 flights
- Controllers: 18

Test 1 – August 2010
- Flight data and surveillance

Test 2 – April 2011
- Decision support and video surveillance

Follow-On Demonstrations
- FY12, DFW or alternate site
User Rating Of TFDM Displays

TIDS will be beneficial to tower controllers.

- 10 (77%)
- 1 (8%)
- 1 (8%)

The FDM will be beneficial to tower controllers.

- 7 (58%)
- 2 (17%)
- 3 (25%)

Supervisor Display Utility

<table>
<thead>
<tr>
<th>Category</th>
<th>Frequency</th>
<th>Frequency</th>
<th>Frequency</th>
<th>Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>Active Flights</td>
<td>4.0</td>
<td>4.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NOTAMs</td>
<td>2.6</td>
<td>3.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dep Routing</td>
<td>2.8</td>
<td>3.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RAPT S&S</td>
<td>1.9</td>
<td>2.9</td>
<td>3.8</td>
<td>3.8</td>
</tr>
<tr>
<td>Wheels on time</td>
<td>4.7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wheels off time</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rwy to Fix Map</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Arr Rate</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MIT/MINIT</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CFR</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RVR</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sup Chklist</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Airport Config Change</td>
<td></td>
<td></td>
<td>3.8</td>
<td>4.1</td>
</tr>
<tr>
<td>Dep Fix</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rwy Open/Close</td>
<td></td>
<td></td>
<td>3.0</td>
<td>4.0</td>
</tr>
</tbody>
</table>
Successful System Evaluation

Example Positive Feedback:
- “Tower ready”
- “Very easy to use”

Example Suggested Improvements:
- Add Automated Radar Terminal System information
- Improve timing on change of aircraft state to airborne

Surveillance Display

Example Positive Feedback:
- Coupling with surveillance and Supervisor Display
- Attention cues and prompts

Example Suggested Improvements:
- Propagate runway-to-fix pairing from Supervisor
- Add Beacon Code to electronic flight strip

Electronic Flight Strips

Example Positive Feedback:
- Ability to propagate information to tactical controllers
- Departure routing and metering decision support

Example Suggested Improvements:
- Ability to combine fixes and reroutes
- Greater ability to modify traffic management initiatives

Decision Support
Summary

• First highly integrated and operationally tested system for the tower environment

• Success enabled through early and frequent participation of experienced controllers in designing for user acceptance

• Work continuing to refine user interfaces and decision support tools