Design and Implementation of the TFDM Information Management Architecture

William Moser

MIT Lincoln Laboratory

This work was sponsored by the Federal Aviation Administration under Air Force Contract No. FA8721-05-C-0002. Opinions, interpretations, conclusions and recommendations are those of the authors and are not necessarily endorsed by the United States Government.
Outline

• Brief Introduction to TFDM
• Information Architecture Objectives
• Survey of Architectural Components
• The TFDM Simulation Environment
• Summary
External Sources
- Terminal and Surface Surveillance
- Flight Plan Data
- Traffic Flow Constraints
- Flight Operations Data
- Weather / Hazards

Tower Flight Data Manager (TFDM) System Overview

Enablers
- Consolidated tower systems
- Enhanced cross-domain information exchange
- Decision support tools

Benefits
- Robust operations
- Reduced delay, fuel, environmental impact
- Enhanced safety
- Ability to support remote operations: Staffed NextGen Tower (SNT)

Operational Users
- Tower controllers
- Flight data, Clearance, Ground, Local, Supervisor
- Terminal Control
- Flight Operations Centers
- Ramp Tower
- Airport Authority

Tower Flight Data Manager
- Arrival / Departure Management Tool (ADMT)
- Remote / enhanced visual awareness

Surveillance display
Flight data manager
Net-centric infrastructure
Primary Computer Human Interfaces (CHI)

Tower Information Display System (TIDS)

Flight Data Manager (FDM) Display

Supervisor / Traffic Management Display

* Integrated display concept being developed *
Title: Tower Flight Data Manager (TFDM) System

Diagram:
- **Surveillance**
- **Flight Plans**
- **Traffic Flow Management Data**
- **Flight Operations Centers**
- **Airport Operations**
- **Weather**

External Data

Tower Flight Data Manager (TFDM)

- **Interface Adapter**

TFDM Information Bus

- **Departure Route Assurance**
- **Runway Assignment**
- **Sequencing and Scheduling**
- **Taxi Routing and Conformance**
- **Airport Configuration**

Decision Support Algorithms

- **Tower Information Display System (TIDS)**
- **Flight Data Manager (FDM) Display**
- **Decision Support Tool (DST) Displays**

Computer-Human Interfaces

- **SNT / Visual surveillance**

Oracle Database

- **Operational systems**
- **Simulated systems**

Legend:
- □ = Lincoln responsibility for prototype system

Author: W.R. Moser

Date: 5/17/2010

Institution: MIT Lincoln Laboratory
Outline

• Brief Introduction to TFDM

• Information Architecture Objectives

• Survey of Architectural Components

• The TFDM Simulation Environment

• Summary
Information Architecture Objectives

• Integrate multiple heterogeneous information sources
 – Flight plans, weather, en route traffic information, surveillance, etc.

• Accommodate system evolution as information and decision support capabilities are deployed, decommissioned, or updated

• Export terminal-area information to stakeholders
 – Other NextGen facilities and systems, airlines, data archives, etc.

• Comply with relevant requirements, standards and guidelines
 – FAA NextGen/SWIM
 – LL Mission Assurance Office
 – LL Net-Centric Toolkit
Consumers receive filtered XML-formatted data via persistent query subscription mechanism.

Data automatically aged out of real-time database, into data warehouse.

Publishers insert data incrementally as XML documents. Insertions are validated against schema definitions.

TFDM SOA implemented as Open Geospatial Consortium’s (OGC) Web Feature Service (WFS).

TFDM provides a single, flexible service (OGC’s WFS*) to other entities in the System-Wide Information Management (SWIM) SOA.
Conventional SOA design is **not scalable**!
- N-squared problem as more users and service providers connect
- Semantic divergence as service providers provide variations on the same theme (e.g. pub/sub)

Flight Info. Service
- `getDepartureTime(AA123)`
- `getArrivalTime(AA123)`
- `getFlightPlan(AA123)`

Surface Mgt. Service
- `getSurfaceCongestion(LGA)`
- `getQueueLength(LGA)`
- `getRunwayConfig(LGA)`

Other Services
- `getA()`
- `getB()`
- `getc()`

TFDM Information Management Architecture (TIMA) **scales well** as users and services are added
- Filtered data access interface makes it easy for users to ask for the data they need
- Producers logically decoupled from consumers

Filtered Data Access Service
- `getInfo(Info Type, <filter>):`
- `getInfo(Flights, "flt=AA123 and info=departureTime")`
- `getInfo(SurfaceMgt, "airport=LGA and info=congestion")`

Many distinct services vs. single flexible service
Progress Software’s FUSE product selected as the SWIM container in August 2008

<table>
<thead>
<tr>
<th>Function</th>
<th>Technology</th>
<th>TFDM Role</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enterprise Service Bus (ESB)</td>
<td>ServiceMix</td>
<td>Hosts ADMT modules, provides standard interfaces to external components</td>
</tr>
<tr>
<td>Message Broker</td>
<td>ActiveMQ</td>
<td>Pub/sub infrastructure for inter-process communication</td>
</tr>
<tr>
<td>Mediation Router</td>
<td>Camel</td>
<td>With ActiveMQ, forms backbone of TFDM information routing architecture</td>
</tr>
<tr>
<td>Services Framework</td>
<td>CXF</td>
<td>Implements information sharing via Web Feature Service (WFS)</td>
</tr>
</tbody>
</table>
Outline

- Brief Introduction to TFDM
- Information Architecture Objectives
- Survey of Architectural Components
- The TFDM Simulation Environment
- Summary
The TFDM Information Management Architecture (TIMA)

• TIMA is comprised of components which address
 – Data archiving and retrieval
 – Information exchange among processing components
 – Organization of information

• Web Feature Service (WFS)
 – Web Service standard developed by the OpenGeospatial Consortium
 – TFDM’s “public” access point as a SWIM service

• TFDM Information Bus (TIB)
 – Apache Camel, JMS-based approach to data transport

• TFDM Information Architecture
 – “Information Channel” overlay on the TIB
TIMA Design Overview

- Open standard for component-based deployment
- Information endpoints are Camel Components
- Information Architecture: organization of data packets into predefined channels
- TIB: information routing topology configured using standard EIP* components
- Support facilities deployed as OSGi bundles, Camel components
- TFDM Information Management Architecture developed in accordance with SWIM guidelines

*Hohpe and Woolfe, Enterprise Integration Patterns, Addison-Wesley 2004
The Web Feature Service (WFS)

- Open Geospatial Consortium (OGC) standard for storage and retrieval of XML data
- Data must conform to the OGC’s Geographic Markup Language (GML) standard
- WFS operations include INSERT, UPDATE, DELETE, QUERY, and DISCOVERY
- WFS specification includes WSDL for service interoperability
 - http://schemas.opengis.net/wfs/1.1.0/wsd1
- G43 NNEW team extending to include a publish/subscribe operation

WFS serves as the internal database for TFDM, as well as the external service interface in the SWIM SOA
External clients access WFS via web service.

Stock Camel Component: HTTP Server

External Client

Camel Route (Non-TIB) connects WFS with Web

LL-designed Camel Component for WFS interaction

TFDM Information Bus (TIB)

OSGi Container

HTTP Server

WFS Interface

Oracle Database

WFS Reference Implementation (WFSRI), developed by NNEW and TFDM programs

Internal modules Access WFS service via TIB

W.R. Moser
5/17/2010
The TFDM Information Bus (TIB)

- "No-code" data transport: information bus configured from existing SWIM container components -- **No additional software development required**
- Transport-independent applications: applications configured to route data appropriately -- **applications require no knowledge of information bus, or transport protocols**
- Information-oriented: Applications need only know what information they require, not who provides it
The TFDM Information Architecture

Representation:
Information structure

- Standardized approach to XML schema development
- Basis for information transmission, archiving, and retrieval
- Data types ("message payloads") are realized as TFDM Features
 - GML Features with a common "header"
- Related Features may be grouped into FeatureCollections for transmission

Transmission:
Information channelization

- FeatureCollections defined for major information categories
 - Flight Object, Decision & Control, etc
- Data for each category transmitted on dedicated "channel"
 - Channels implemented as JMS topics

Uniform standards for both representation and transmission are the foundation for robust information exchange in an evolving system
Outline

- Brief Introduction to TFDM
- Information Architecture Objectives
- Survey of Architectural Components
- The TFDM Simulation Environment
- Summary
Role of Simulation in TFDM

• Provide high-fidelity software test environment for developers

• Provide realistic environment for human-in-the-loop testing

• Qualify and integrate new features prior to field deployment

• Enable exploration of ATM concepts

• Provide a platform for benefits analysis

Ultimate purpose is risk mitigation for TFDM procurement
Simulation Requirements

- Simulation requirements are minimal, enough to enable TFDM modules to interact in simulations
- We need to develop a simulation framework to run simulations
- The simulation framework is not itself part of TFDM – we have not developed a separate requirements document for this
Simulation Architecture Goals

• Scalable to multiple nodes
 – Primarily LAN-based, with limited WAN possibilities

• Robust, transparent time synchronization among system components

• TFDM applications unaware of simulation environment

• Lightweight, adaptable control mechanism

• Easily integrated with external simulation systems
 – Systems must have compatible time synchronization and accessible I/O mechanisms
Basic Control Framework

Application nodes’ control clients transform commands from the TIB’s simulation control channel into clock actions.

Each application node is served by a dedicated clock.

Operator issues control commands.

External Simulator (Adacel MaxSim, TGF, etc)

Synchronization scalability maintained by using systems’ hardware clocks and NTP*

*Network Time Protocol: protocol for synchronizing computer system clocks across networks
Co-simulation Integration Architecture

Data and protocol normalization is tailored to the specific co-simulation system
Simulation Engines and Modules

• NAS Subsystem Emulation components
 – Emulators for TFMS, ERAM, ASDE-X (Lo-Fi)
 – Integrated into TFDM as “native” components

• Controller Simulation Environment
 – Adacel MaxSim system with software interface enhancements
 – High-fidelity terminal-area traffic simulator with detailed out-the-window views
 – FAA deploying to multiple locations around the country for controller training
End-state design modularizes functionality and enables integration with other simulation engines.
Outline

- Brief Introduction to TFDM
- Information Architecture Objectives
- Survey of Architectural Components
- The TFDM Simulation Environment
- Summary
TFDM Information Management Architecture Summary

- Event-driven
 - Receipt of information, timer expiration, external system change
- Information oriented
 - Flexible communication mechanism and service interface
- Distributed
 - Deployment topology is transparent to applications
- Built on open-source tooling and open standards
 - SWIM-compliant
- Designed to integrate with simulation systems

The TFDM Information Management Architecture is intended to scale:
- **Internally**, using an implicit invocation paradigm to accommodate evolving configurations of decision support tools
- **Externally**, accommodating changes in information content provided without the need for interface retooling on either the client or server side