Airport Operations
Benefits Research

Tom G. Reynolds

December 12, 2012

Lincoln Laboratory
Massachusetts Institute of Technology

Distribution Statement A. Approved for public release; distribution is unlimited.

This work is sponsored by the Federal Aviation Administration under Air Force Contract #FA8721-05-C-0002. Opinions, interpretations, recommendations and conclusions are those of the author and are not necessarily endorsed by the United States Government.
Outline

• MIT/LL capability development areas and role of benefits assessment

• Traditional benefits assessment case study
 – Departure metering

• Environmental impacts in benefits assessment
MIT/LL Capability Development Areas

- MIT/LL developing new capabilities to support FAA efficiency and performance objectives across all flight phases
 - Improved Decision Support Tools (DSTs) & operations
- Surface
 - Congestion management
 - Sequencing/scheduling
 - Airport configuration
- Departure
 - Route availability
- Cruise
 - Altitude & speed optimization
- Approach
 - Delayed deceleration approaches

Lincoln Laboratory Air Traffic Control Workshop 2012
Airport Operations Benefits- 3
TGR 12/12/12
Benefits Assessment Role in Capability Development

- Benefits assessment process helps identify inefficiencies =>
 - DST & operational needs
 - Iterative development
 - Adaptation challenges

- Helps identify requirements to address key inefficiencies
- Provides business case for development and deployment
Outline

• MIT/LL capability development areas and role of benefits assessment

 • Traditional benefits assessment case study
 – Departure metering

• Environmental impacts in benefits assessment
Terminal Flight Data Manager (TFDM) Benefits Assessment Example

External Sources
- Terminal and Surface Surveillance
- Flight Plan Data
- Traffic Flow Constraints
- Flight Operations Data
- Weather / Hazards

Terminal Flight Data Manager

Terminal Flight Data Manager (TFDM)

Operational Users
- Tower controllers
- Terminal ATC (TRACON)
- En Route ATC
- Flight Operations Centers
- Ramp Tower
- Airport Authority

Anticipated Benefits
- Operational & Environmental Performance Improvement
 - Reduced delay
 - Reduced fuel burn
- Workload Reduction
- Safety Improvements
- Cost Avoidance

Net-centric infrastructure

Enhanced surveillance display

Electronic flight data manager

Decision Support Tools (DSTs)

- Departure metering
- Sequencing & scheduling
- Runway assignment
- Airport configuration manager
- Departure route assurance
TFDM Benefits Assessment Modeling

• Needed to identify potential benefits across key NAS-wide airports out 20 years

• Initially identified surface inefficiencies

• Computer modeling of DST capabilities which address key surface inefficiencies
 - Departure metering
 - Airport configuration optimization DST
 - Sequence optimization DST

• Results summarized in TFDM benefits assessment report
 - MIT/LL Project Report ATC-394
Departure Metering Concept

- Holding aircraft at gate or ramp (with engines off) to reduce surface congestion & fuel burn while not adversely affecting throughput

JFK: Pre-metering
15 a/c in queue

JFK: Post-metering
8 a/c in queue, 8 being held
Departure Metering Benefits Assessment Methodology

• CHALLENGE: appropriate modeling fidelity given wide airport and temporal scope (OEP35 airports, out 20 years)

• Multi-scope/Multi-fidelity modeling approach adopted

Increasing airport scope

HIGH FIDELITY
2 AIRPORTS
• Field trial results
• Current ops only
• Actual taxi times
• VMC/IMC
• Configuration-specific

MEDIUM FIDELITY
8 AIRPORTS
• Simulated results
• Current & future ops
• Simulated taxi times
• VMC only
• Aggregate configurations

LOW FIDELITY
35 AIRPORTS
• Extrapolated results
• Future ops
• Functional relationships with other airports & forecast data

Increasing model fidelity

Validate Calibrate

Validate Calibrate
High Fidelity Benefits Assessment
JFK Implementation: 2010-2011

• PASSUR live trials at JFK throughout 2010/11, MIT analysis

• Over 2010, estimated 5.0 million gallons/$12.2 million fuel saving
 – Published as AIAA ATIO2011 conference paper*

Medium Fidelity Assessment:
8 Study Airports Benefits Modeling

- Throughput saturation curves at core of methodology

Airport X, Configuration Y, Condition Z

Saturation throughput, T^*

Saturation point, N^*

Traffic Metric, e.g. No. of aircraft on surface, Dep queue length, etc.

Control point, N_{ctrl}

Impacts of future capacity increases

Benefits of holding all flights above control point

$\text{Taxi time benefits } = N_{\text{Congestion}}(\tau_{\text{Congestion}} - \tau_{\text{Ctrl}})$

- Current year: curves can be established from operational data

- Future years: curves estimated from demand/capacity forecasts
Medium Fidelity Assessment: 8 Study Airports Benefits Modeling

Simulation

Current Year Analysis
- Operational Data

Future Year Analysis
- Future Schedules
- Future Year Saturation Curve Prediction
- Future Year Traffic Simulations

Throughput Saturation Curves

Results Generation & Validation

Field Trials

Current year saturation curves

Future Year saturation curves

Gate-constrained Benefits

Unconstrained Benefits

Gate Constraints
Medium Fidelity Assessment: 8 Study Airports Fuel Savings Estimates

- Gate-constrained fuel saving estimate at 8 study airports over 20 yrs: 950 million gallons/$2.4 billion (@ $2.43/gallon)
 - Approx. 18% taxi-out and 1% block fuel burn
 - Results published as AIAA ATIO2012 conference paper*

Low Fidelity Assessment: OEP35 Fuel Savings Estimates

- Multiple approaches employed to extrapolate medium fidelity results to OEP35 airports to bound benefit estimates
 - Scaling factors to apply to medium fidelity studies

- Taxi delay scaling factor
 - Scale medium fidelity benefits to OEP35 benefits in proportion to amount of total taxi delay in each set

- Linear regression
 - Relationship between medium fidelity benefits and key indicator variables which can be forecast for all OEP35 airports

- Clustering
 - Assign OEP35 airports to clusters based on operating characteristics
 - Benefit level set by medium-fidelity study airports in each cluster
• Gate-constrained fuel saving estimate at OEP35 airports over 20 yrs: 1.8-2.7 billion gallons, $4.4-6.6 billion (@$2.43/gallon)

• Also equates to 18-26 million metric tons CO₂ emissions saved
Outline

• MIT/LL capability development areas and role of benefits assessment

• Traditional benefits assessment case study
 – Departure metering

• Environmental impacts in benefits assessment
Environmental Impacts in Benefits Assessment

- Ability to characterize environmental impacts/benefits now possible using FAA Aviation Environmental Tool Suite

- Allows assessment of physical and monetizable impacts

- Climate
 - Greenhouse gas concentrations
 - Temperature changes
 - GDP impacts

- Air quality
 - Pollutant concentrations
 - Health impacts

- Noise
 - Noise contours
 - Property value & health impacts

Aviation Operations Scenarios
 - Full flight emissions: CO₂, NOₓ, etc.

Climate Impacts
 - Changes in atmospheric concentrations
 - Changes in global radiative forcing
 - Changes in global temperature

Climate Impacts Valuation
 - Changes in %Gross Domestic Product
 - Discounting

Policy Assessment
 - Climate costs/year

Simplified climate models, Climate sensitivity parameters

Damage functions, Discount rates
Environmental Impacts in Benefits Assessment

<table>
<thead>
<tr>
<th></th>
<th>Departure Metering</th>
<th>Sequencing and Scheduling</th>
<th>Airport Configuration Management</th>
</tr>
</thead>
<tbody>
<tr>
<td>Primary Effects</td>
<td>Reduced engine-on time</td>
<td>Increased throughput</td>
<td>Change in flight patterns</td>
</tr>
<tr>
<td>Noise Impacts</td>
<td>Reduced noise</td>
<td>Reduced noise</td>
<td>Modified noise locations</td>
</tr>
<tr>
<td></td>
<td>Property value and health benefits</td>
<td>Property value and health benefits</td>
<td>Property value and health impacts</td>
</tr>
<tr>
<td>Air Quality Impacts</td>
<td>Reduced emissions</td>
<td>Reduced taxi time</td>
<td>Reduced taxi time</td>
</tr>
<tr>
<td></td>
<td>Health benefits</td>
<td>Reduced emissions</td>
<td>Reduced emissions</td>
</tr>
<tr>
<td></td>
<td>First order estimate:</td>
<td>Health benefits</td>
<td>Health benefits</td>
</tr>
<tr>
<td></td>
<td>$0.2-8.8 billion @ $29-1226/tonne fuel*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Climate Impacts</td>
<td>Reduced emissions</td>
<td>Reduced taxi time</td>
<td>Reduced taxi time</td>
</tr>
<tr>
<td></td>
<td>Climate benefits</td>
<td>Reduced emissions</td>
<td>Reduced emissions</td>
</tr>
<tr>
<td></td>
<td>First order estimate:</td>
<td>Health benefits</td>
<td>Health benefits</td>
</tr>
<tr>
<td></td>
<td>$0.1-1.4 billion @ $5-65/tonne CO₂*</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*Combines benefits from noise and health impacts；Reduced emissions includes air quality benefits．The climate benefits are given as a first order estimate, and the cost is calculated at $29-1226/tonne fuel, and $5-65/tonne CO₂ for aviation fuel and emissions reductions."

Notes:
Summary

• Benefits assessment activities assist with research/prototyping priorities and investment analysis processes

• MIT/LL involved in multiple aviation decision support tool and operations research areas
 – Presented traditional benefits assessment of departure metering capability

• Approaches are now available to include environmental impacts in benefits assessment
 – First order estimates suggest climate and air quality monetized benefits are of similar order of magnitude to fuel cost savings