
• VASILE AND MARINO
Pose-Independent Automatic Target Detection and Recognition Using 3D Laser Radar Imagery

VOLUME 15, NUMBER 1, 2005 LINCOLN LABORATORY JOURNAL 61

Pose-Independent Automatic 
Target Detection and Recognition 
Using 3D Laser Radar Imagery
Alexandru N. Vasile and Richard M. Marino

■ Although a number of object-recognition techniques have been developed to 
process terrain scenes scanned by laser radar (ladar), these techniques have had 
limited success in target discrimination, in part due to low-resolution data and 
limits in available computation power. We present a pose-independent automatic 
target detection and recognition system that uses data from an airborne three-
dimensional imaging ladar sensor. The automatic target recognition system uses 
geometric shape and size signatures from target models to detect and recognize 
targets under heavy canopy and camouflage cover in extended terrain scenes. 
The system performance was demonstrated on five measured scenes with targets 
both out in the open and under heavy canopy cover, where the target occupied 
between 1% to 10% of the scene by volume. The automatic target recognition 
section of the system was successfully demonstrated for twelve measured data 
scenes with targets both out in the open and under heavy canopy and camouflage 
cover. Correct target identification was also demonstrated for targets with 
multiple movable parts in arbitrary orientations. The system achieved a high 
recognition rate along with a low false-alarm rate. Immediate benefits of the 
presented work are in the area of automatic target recognition of military ground 
vehicles, in which the vehicles of interest may include articulated components 
with variable position relative to the body, and may come in many possible 
configurations. Other application areas include human detection and recognition 
for homeland security, and registration of large or extended terrain scenes.

T- (3D) laser radar (ladar) sen-
sors produce range images that provide explicit 
3D information about a scene. Lincoln Labora-

tory has actively developed the laser and detector tech-
nologies that make it possible to build a high-resolution 
three-dimensional imaging ladar sensor with photon 
counting sensitivity [1]. In support of the Jigsaw pro-
gram sponsored by the Defense Advanced Research 
Projects Agency (DARPA), the Laboratory has built a 
functional 3D ladar sensor system with a 32 × 32 array 
of avalanche photodiode (APD) detectors operating in 
Geiger mode. Recent field tests using this Jigsaw ladar 

sensor produced high-quality 3D imagery of targets be-
hind obscurants for extremely low signal levels [1].

The primary purpose of a ladar sensor is to record 
the 3D spatial signature of a target so that the particular 
target can be identified. As an extension of the Jigsaw 
program, Lincoln Laboratory has developed a complete 
end-to-end automatic target detection and recognition 
(ATD/R) system. The implemented target detection 
and recognition algorithms use field data collected by 
the high-range-resolution Jigsaw ladar sensor, as well as 
some data sets taken with the previous GEN-III ladar 
sensor [2].
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The primary goal of the ATD/R system is to accu-
rately detect and recognize targets present in large ter-
rain scenes, where the target may occupy less than 1% 
of the scene and have more than two hundred points 
on target. A secondary system goal was to demonstrate 
correct target identification with foliage occlusion great-
er than 70%. Another goal was to demonstrate correct 
identification of articulated targets, with multiple mov-
able parts that are in arbitrary orientations. The above 
goals have to be met while achieving a high recognition 
rate (over 99%) along with a low false-alarm rate (less 
than 0.01%). 

Background on Target Detection

The problem of automatic target recognition in ladar 
range imagery has been an active topic of research for 
a number of years [3, 4]. Automatic target recognition 
(ATR) involves two main tasks: target detection and 
target recognition [5]. The purpose of target detection 
is to find regions of interest (ROI) where a target may 
be located. By locating ROIs, we can filter out a large 
amount of background clutter from the terrain scene, 
making object recognition feasible for large data sets. 
The ROIs are then passed to a recognition algorithm 
that identifies the target [5].

Target detection methods attempt to determine the 
presence of a target in a large data set by quickly filter-
ing large portions of the scene prior to submitting the 
data to the recognition algorithm. In the ATR field, 
detection methods that can search a large data set and 
reduce it to a few ROIs are known as cueing algorithms 
[6]. The application of a cueing algorithm as a data-pre-
processing step vastly reduces the time needed for target 
recognition. 

Target detection approaches can be classified as im-
age based and model based [7]. The traditional image-
based approach uses template matching; the target is 
separated from its surrounding area by extracting a sil-
houette based on a target image template [8]. However, 
silhouette extraction algorithms do not reliably recover 
the true silhouette from real imagery, thus seriously de-
grading the robustness of target detection [8]. In gen-
eral, the template approach suffers from the complex-
ity in finding the silhouette in the image, as well as the 
complexity of creating the template database [7]. 

With significant improvements in ladar sensor reso-

lution and increased computational power, detailed 3D 
structural information may be obtained from the data 
and used by model-based approaches. Traditional mod-
el-based approaches rely on boundary segmentation and 
planar surface extraction to describe the scene. Target 
detection is then performed through the use of trained 
neural networks or genetic algorithms [8–12]. One re-
cent cueing algorithm that is applicable to large ladar 
data sets is the spin-image–based 3D cueing algorithm 
developed by O. Carmichael and M. Hebert [6].

Given an ROI, the recognition algorithm attempts to 
classify the particular target in a library of target mod-
els. The target models are used to represent a unique 
signature that is present in the target data set. There are 
numerous ways to encode the target models. For ladar 
data, where the scene data consists of an unstructured 
point cloud, object representation schemes can be di-
vided into two categories: surface-based 3D model rep-
resentations and shape-based two-dimensional (2D) 
model representations. 

Surface-based 3D model representation schemes per-
form geometrical surface matching between a library 
of 3D surface models and a data scene. Traditional 3D 
geometrical feature-matching algorithms segment the 
target into simple geometric primitives, such as planes 
and cylinders, and record the relative spatial relation-
ship of each geometric primitive in the target model 
[13–15]. The scene is then segmented in the same man-
ner, and the library is searched for a group of primitive 
objects that have a spatial structure similar to the tar-
get model’s [16, 17]. Recent methods have shown that 
planar patch segmentation is robust to noisy range data 
[18]. In addition, current 3D feature-grouping schemes 
have been proven to work even when the target is par-
tially occluded [19]. 

An alternate approach to 3D geometric feature 
matching is to reduce the 3D recognition problem to a 
set of 2D recognition problems, in which the target sig-
nature is encoded by a shape-based 2D representation. 
The primary advantage of the shape-based recognition 
approach over 3D geometrical matching is that it can 
scale well to large data sets with high levels of clutter [3, 
20]. In addition, the recognition algorithms can benefit 
from the tremendous amount of work done in the rela-
tively mature field of 2D image analysis. Some recent 
algorithms that use shape-based representations are the 
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contour-based algorithm of V. Shantaram et al. [21], the 
shape spectra algorithm of C. Dorai et al. [22], the sur-
face signatures of S. Yamany et al. [23] and A. Johnson’s 
spin-image algorithm [24]. 

After performing a literature review of the current 
techniques in target detection and recognition using 
ladar imagery, we found the spin-image–based detec-
tion and recognition algorithms to be most promising 
for processing our 3D ladar terrain data [25]. The re-
mainder of this article is a discussion of the two main 
component areas—automatic target recognition and 
automatic target detection—of these spin-image–based 
algorithms.

Automatic Target Recognition

Given an ROI within a large-scale scene, the ATR al-
gorithm attempts to identify a potential target from 
among the targets in a model library, or else it will re-
port a none-of-the-above outcome. The recognition al-
gorithm as well as the detection algorithm are based on 
Johnson’s spin-image surface matching. We give here 
an overview of spin-image surface matching to provide 
a context for understanding the development of algo-
rithms to follow.

Spin-Image Surface Matching

In the spin-image–based representation, surface shape 
is described by a collection of oriented 3D points with 
associated surface normals. Each 3D oriented point has 
an associated image that captures the global properties 
of the surface in an object-centered local coordinate sys-
tem [24]. By matching images, we can determine cor-
respondences between surface points, which results in 
surface matching. Figure 1 illustrates the spin-image 
surface-matching concept.

The image associated with each 3D oriented point is 
known as a spin image. A spin image is created by con-
structing a local coordinate system at an oriented point. 
By using this local coordinate system, we can encode 
the position of all the other points on the surface with 
two parameters: the signed distance in the direction of 
the surface normal and the radial distance from the sur-
face normal. By mapping many of the surface points to 
this 2D parameter space, we can create a spin image at 
each oriented point. Since a spin image encodes the co-
ordinates of the surface points with respect to a local co-
ordinate system, it is invariant to rigid 3D transforma-
tions. Given that a 3D point can now be described by a 

Scene Similar
spin images

Yes

Model

FIGURE 1. Spin-image surface-matching concept. Given a target scene (with height color coded in green, red, and 
yellow), we can create a spin image for each scene point. Similarly, we can also create a spin image for each point in 
the model data set (with height color coded in shades of gray). For each scene spin image, we search through all the 
model spin images and find the best match. In this way, correspondences are found between the scene points and the 
model points. These correspondences can then be used to compute a three-dimensional (3D) transformation that 
aligns the scene and the model data sets.
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corresponding image, we can apply robust 2D template 
matching and pattern classification to solve the problem 
of surface matching and 3D object recognition [24].

The fundamental component for creating a spin im-
age is the associated 3D oriented point. As shown in 
Figure 2, an oriented point defines a five-degree-of-free-
dom basis, using the tangent plane P though point p, 
oriented perpendicular to the unit normal n.

Two coordinates can be calculated, given an oriented 
point: α is the perpendicular distance to the unit sur-
face normal n, and β is the signed perpendicular dis-
tance to the plane P [24]. Given an oriented point basis 
O, we can define a mapping function SO that projects 

3D points x to the 2D coordinates of a particular basis 
(p,n) as follows:
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Applying the function SO(x) to all the oriented points 
in the 3D point cloud will result in a set of 2D points 
in α − β space. To reduce the effect of local variations 
in 3D point positions, we attach the set of 2D points 
to a 2D array representation grid. Figure 3 illustrates 
the procedure to create a 2D array representation of a 
spin image. To account for noise in the data, we linearly 
interpolate the contribution of a point to the four sur-
rounding bins in the 2D array. By spreading the contri-
bution of a point in the 2D array, bilinear interpolation 
helps to further reduce the effect of variations in 3D 
point position on the 2D array. This 2D array is consid-
ered to be the fully processed spin image. 

The implemented surface-matching algorithm fol-
lows closely the procedure described in chapter 3 of 
Johnson’s Ph.D. thesis [24]. The algorithm takes a 
scene data set along with a spin-image model library. 
The spin-image model library contains the ideal 3D 
ladar signatures of each target, derived from computer-
aided design (CAD) models. Each 3D ladar model data 
set also has an associated spin-image database, with a 
corresponding spin image for each model 3D point. 

P
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n

x
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α

FIGURE 2. Constructing an oriented point basis for a 3D 
point p. Given an oriented point p in a tangent plane P with 
unit normal n, a two-dimensional (2D) parameter space can 
be created that is invariant to pose. A point x, belonging to 
the same data set as point p, can be projected to this 2D pa-
rameter space. The quantity α is the distance from x to p 
perpendicular to the normal n, and β is the signed distance 
from x to the plane P.

FIGURE 3. A 2D array representation of a spin image using bilinear interpolation. (a) Measurements of an M60 tank, 
in metric units. The red dot indicates the location of the 3D point used to create the example spin image. (b) Resulting 
mapping of the scene points in the α – β spin-map of the chosen 3D point, in metric units. (c) Spin image showing the 
non-zero bins after applying bilinear interpolation. (d) Spin image showing the bin values on a gray color scale. The 
darker bins indicate that a larger number of points were accumulated in those particular bins. 
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The spin-image model library is computed a priori to 
save online recognition time. The spin-image algorithm 
takes the scene data set and creates a spin-image data-
base based on a subsampling of the points. The sam-
pling ranges from 20% to 50% of all scene data points. 
The scene data points are not judiciously picked: the 
points are uniformly distributed across the given scene. 
Therefore, no feature extraction is performed to pick 
spin-image points. 

The scene spin-image database is correlated to each 
model spin-image database within the model library. 
For a scene-to-model comparison, each scene spin im-
age is correlated to all the model spin images, result-
ing in a distribution of similarity measure values. The 
correspondences obtained for each scene spin image to 
model spin-image database comparison are filtered by 
using a statistical data-based similarity-measure thresh-
old. The above process is repeated for the rest of the 
scene spin images, resulting in a wide distribution of 
similarity measures.

Given the new distribution of similarity measures, 
a second similarity threshold is applied to remove un-

likely correspondences. The remaining correspondences 
are further filtered and then grouped by geometric con-
sistency in order to compute plausible transformations 
that align the scene to the model data set. The initial 
scene-to-model alignment is refined by using a modified 
version of the iterative closest point (ICP) algorithm to 
obtain a more definite match. Figure 4 shows a detailed 
block diagram of the surface-matching process. 

This particular surface-matching process is versatile, 
since no assumptions are made about the shape of the 
objects represented. Thus arbitrarily shaped surfaces 
can be matched without the need for initial transforma-
tions. This matching is particularly critical for our tar-
get recognition problem in which the target’s position 
and pose within the scene are unknown. Furthermore, 
by matching multiple points between scene and model 
surfaces, the algorithm can eliminate incorrect matches 
due to clutter and occlusion. 

The end result of spin-image–based surface match-
ing is an optimal scene-to-model transformation, along 
with a recognition goodness of fit (RGOF) value between 
the scene and the model. The RGOF of a comparison of 

Model data
Create model
spin images 

Select point and
create scene
spin image

Match model
spin images

to scene
spin image

Filter and group
correspondences

Compute plausible
transformations

Use ICP to  
verify and refine  
transformations

Correspondences 

Best model-to-scene pose
and corresponding

goodness-of-fit value 

Transforms

Model spin-image stack 

Scene spin image 
Scene data

FIGURE 4. Surface-matching diagram. The matching process starts with a scene data set and a model data set. A spin-im-
age stack is created for the model data set. For the scene data set, several points are randomly selected, and corresponding 
spin images are computed. For each scene spin image, we search through all the model spin images and find the best match. 
In this manner, correspondences are found between the scene and model points. After some filtering steps, the correspon-
dences can then be used to compute an iterative closest point (ICP) 3D transformation that aligns the scene data set and the 
model data set. On the basis of this model-to-scene alignment, the process determines a goodness-of-fit value to score the 
scene-to-model match.
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scene s to model m is defined as 
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where θ is the fraction of overlap between the scene and 
the model as determined by the ICP algorithm, Npt is 
the number of plausible pose transformations found 
by the spin-image correlation process, and MSE is the 
mean-squared error as determined by the ICP algo-
rithm. A higher RGOF value indicates a higher level of 
confidence that the model matches the scene. 

To quantify the recognition performance of a scene-
to-model library comparison, we normalize the RGOF to 
the sum of all the found RGOF values. The normalized 
RGOF that the scene s correctly matches model i in a 
model library mlib is defined as
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where N is the number of models in the model library 
mlib.

For each scene-to-model library comparison, the 
RGOF  is split among the models and ranges from zero 
to one. For a given scene, the sum of the RGOF  values 
over all the models in the model library adds up to one, 
unless a “none-of-the-above” outcome is reached. In 
the case of a “none-of-the-above” conclusion, the sum 
of the RGOF  values equals zero, and each RGOF  equals 
zero by definition.

The higher the value of RGOF  for a scene-to-model 
comparison, the more likely it is that the model correct-
ly matches the given scene. Thus the RGOF  value that 
falls on each model represents a confidence measure 
that the model matches the scene. 

Results and Discussion

The ATR results presented here are divided into two 
sections. The main section is devoted to the non-
articulated ATR results obtained from the comparison 
of twelve measured data scenes to a target model library 
consisting of ten target vehicles. A second, smaller sec-
tion focuses on the results of a limited study of articu-
lated ATR.

Non-Articulated ATR Study

For the study of non-articulated ATR, we used the tar-
get model library that was developed under the Jigsaw 
program. The Jigsaw model library has approximately 
ten targets of interest, ranging from trucks and armored 
personnel carriers (APC) to tanks and missile launch-
ers. Figure 5 shows the CAD models of the specific 
targets. The model library contains two large target 
classes, namely, APCs and tanks. The APC target class 
is composed of the BMP-1, BMP-2, BTR-70, and M2 
vehicles. The tank class includes the M1A1, M60, and 
T72 tanks.

With the above CAD models, we constructed a tar-
get model library to simulate an ideal 3D ladar signature 
of each target. The simulated targets were then repre-
sented in the spin-image representation as 3D oriented 
points with associated spin images. We used the result-

FIGURE 5. Examples of computer-aided design (CAD) target models, color coded by height, in the model library developed 
for the Jigsaw program. These models include trucks, armored personnel carriers, tanks, and missile launchers.

BMP-1 BMP-2 BTR-70

M2

M1A1

M60 T72

HMMV

M35 SCUD-B
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ing model spin-image library to compare the models to 
measured scenes in order to recognize and identify the 
scene target. Table 1 summarizes the resulting model 
data sets obtained from the 3D simulation for two voxel 
subsamplings. 

Multiple scenes were analyzed to determine the rec-
ognition performance. A recognition confusion matrix 
was calculated as a measure of the recognition perfor-
mance, showing the confidence measurement RGOF  on 

the main diagonal and errors on the off diagonals [26]. 
Twelve scenes, each containing a target instance, were 
used to create the confusion matrix. Target truth was 
known prior to data collection. Measured data for the 
following targets were used: BMP-1, BTR-70, HMMV, 
M1A1, M2, M35, M60 and the T72. Figure 6 shows 
an orthographic projection of each of the twelve mea-
sured scene data sets. 

Table 2 shows the recognition confusion matrix we 

Table 1. Resulting 3D Oriented Point Data Sets for the Given Target Models  
for Two Subsampling Voxel Sizes

 Number of Points in the Model Data Set

 0.1 0.125 10,366 9692 11,444 5035 16,394 14,669 10,146 18,778 23,916 13,454

 0.2 0.25 2239 2056 2453 1255 3761 3223 2368 4035 5213 2842
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FIGURE 6. Orthographic view of the twelve measured scene data sets, color coded by height. These scenes served as target 
truth for comparisons with the model library.
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Table 2. Recognition Confusion Matrix* 

 Models

 Field Data

 BMP-1 C5-F10-P03 10° 16 0.61 0.38 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.01

 BTR-70 C5-F10-P04 10° 23 0.0 0.0 0.81 0.0 0.19 0.0 0.0 0.0 0.0 0.0

 HMMV RMF May 2002 15° 4 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0

 HMMV C8-F01-P10  30° 10 0.0 0.01 0.0 0.92 0.0 0.0 0.0 0.0 0.0 0.07

 M1A1 Eglin Dec 01 0° 1 0.0 0.0 0.0 0.0 0.92 0.01 0.0 0.0 0.0 0.07

 M2 C5-F13-P07 20° 16 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0

 M35 C5-F10-P05 15° 12 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0

 M60-A3 w/plow Huntsville May 2002 0° 1 0.0 0.0 0.09 0.0 0.0 0.0 0.0 0.91 0.0 0.0

 M60-A3 Huntsville May 2002 0° 1 0.0 0.03 0.0 0.0 0.0 0.01 0.0 0.96 0.0 0.0

 M60-A3 C05-F16-P10 10° 12 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.97 0.01 0.02

 T72 C05-F00-P03 15° 105 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.00

 T72 C20-F01-P03 15° 29 0.0 0.0 0.0 0.0 0.13 0.0 0.0 0.0 0.0 0.87

   * Each row of the confusion matrix represents a scene-to-target model library comparison. Each cell in a row 
shows the resulting normalized RGOF that the target (with the identifying label shown in the top row) matches the 
scene (described at the beginning of the row). For each scene, the angular diversity and angular view are also 
shown in the first two columns to give a notional idea of the target coverage or obscuration.
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obtained from the comparison of the model library to 
each of the twelve scenes. Each row of the confusion 
matrix represents a scene-to-model library comparison. 
For instance, the first row contains the comparison 
between a BMP-1 scene measurement and the model 
library. We see that the recognition confusion matrix 
resembles an identity matrix, which would be the ideal 
result. For all scene comparisons, the highest RGOF  
value always falls on the target that matches the scene 
target truth. Furthermore, RGOF  has a value of zero for 
most of the remaining targets because the recognition 
algorithm found no match between the respective tar-
get models and the scene. The rejection of a large por-
tion of the candidate models in conjunction with most 
of the RGOF  falling on the correct target indicates that 
the recognition algorithm can readily discriminate the 
correct target from among the targets in the model li-
brary while achieving low false-alarm rates.

In nine out of the twelve scenes, the RGOF  fell almost 
entirely on the correct target at RGOF  levels exceeding 
90%. For the remaining three data scenes, the correct 
target was still assigned the highest RGOF  value, but 
a significant portion of the RGOF  fell on targets other 
than the target truth. A closer examination of these four 
scenes reveals that while the RGOF  did not entirely fall 
on the correct target, the distribution of RGOF  values 
fell almost entirely on a single class of targets that in-
cluded the target truth.

An example of such a case is the BMP-1 scene that 
matched the BMP-1 model with an RGOF  of 0.61 and 
the BMP-2 model with an RGOF  of 0.38. Since the 
BMP-1 and BMP-2 targets have almost identical di-
mensions and spatial structure, the recognition algo-
rithm was unable to discern the two models from each 
other. Nonetheless, the scene was recognized to contain 
a BMP-class vehicle with an RGOF  of 0.99. Thus we 
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can conclude that the recognition algorithm was able 
to correctly classify the scene as a BMP with RGOF  of 
0.99 and identify the target as a BMP-1 with a RGOF  
of 0.61.

Another scene that demonstrates correct target clas-
sification is the Huntsville T72 scene, where the RGOF  
of the T72 tank model is 0.87 while the RGOF  of the 
M1A1 tank model is 0.13. Again, the recognition algo-
rithm correctly classified the scene as a tank with RGOF  
of 1.0 and identified the tank as a T72 with a RGOF  of 
0.87.

Overall, the confusion matrix shows that the recog-
nition algorithm always identified the correct target by 
assigning the largest RGOF  value for all twelve recogni-
tion tests. To assess recognition performance more clear-
ly, we summarize the data in the confusion matrix into 
a distribution of false alarms and true positives over the 
RGOF  value space, as shown in Figure 7. Given our lim-
ited statistics, we have a range of RGOF  thresholds that 
allow 100% recognition rate for a 0% false-alarm rate. 
This range of possible RGOF  thresholds is determined 
by the highest RGOF  false alarm, at 0.38, and lowest 
RGOF  true positive, at 0.61. Thus the range of RGOF  
values amounts to a separation of 0.23 in RGOF  units. 
This large separation between true positives and false 
alarms is a good indication of the potential to achieve 
similar high recognition rates and low false-alarm rates 
for a larger comparison of scenes. 

Table 3 summarizes the average online recognition 

timing performance for the twelve scenes. The ATR 
algorithm was run on a Pentium-4 Xeon 2-GHz ma-
chine. In Table 3, the ‘average spin-image create time’ 
is the time taken to create the spin images for the auto-
matically selected scene points, the ‘average match time’ 
is the average time used to match the scene spin images 
to each model and generate pose transformations, and 
the ‘average verify time’ is the average time taken by the 
ICP algorithm to verify and refine each scene-to-model 
comparison. The sum of the stack create time, the aver-
age match time, and the average verify time are shown 
in the column labeled ‘total recognition time per mod-
el.’ The average total time for the twelve scene-to-model 
library comparisons was approximately two and a half 
minutes per scene per model.

Articulated ATR Study

The recognition tests so far have dealt with targets that 
are represented by solid objects with no articulated 
components. We now want to extend the ATR algo-
rithm to recognize articulated targets, with multiple 
movable parts in arbitrary orientations. The main ben-
efit of articulated ATR is that we should have the abil-
ity to match an object regardless of the relative position 
of each of its movable parts (for example, a tank with 
its turret rotated, or a Scud launcher with its missile at 
different angular pitches). Furthermore, recognition 
by parts allows the possibility of recognizing vehicles 

FIGURE 7. Distribution of false alarms and true positives 
over the normalized recognition goodness-of-fit (RGOF) val-
ue space. 

Table 3. ATR Time Performance

Average number of scene points 8570.00

Percentage of scene points selected 50%

Scene resolution (m) 0.16

Spin-image cylindrical volume  
(radius, height) 3,3

Spin-image resolution (pixels × pixels) 10 × 10

Average spin-image create time (sec) 14.3

Average match time per model (sec) 137.50

Average verify time per model (sec) 3.08

Total recognition time per model (sec) 142.0
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that come in many possible configurations, such as the 
multipurpose HMMV platform and the myriad of one-
of-a-kind technical vehicles encountered in our current 
military campaigns. Another inherent benefit of articu-
lated ATR is that we can also develop a higher level of 
tactical awareness by determining the current aim di-
rection of a target’s weapon. 

We ran a feasibility test to demonstrate articulated 
ATR on measured Jigsaw data. We created a model li-
brary containing two M60 parts—an M60 tank body 
and an M60 tank turret. Figure 8 shows the two parts in 
the M60 model library. Figure 9 illustrates the concept 
of articulated ATR on a scene containing a single-view 
measurement of an M60 tank with its turret turned by 
180°. Figure 10 illustrates a qualitative summary of the 
results, showing that the correct pose transformation 
was found for each target part.

To recognize each part in the scene, we consider the 
measured data present on the other target parts as clut-
ter. For instance, in Figure 10(c) and 10(d), when we 
are attempting to recognize the M60 turret in the scene, 

the measurements on the M60 body act as clutter. Even 
though the clutter from the M60 body is spatially ad-
jacent to the M60 turret, the recognition algorithm is 
able to correctly identify the turret and compute a cor-
rect pose transformation. The recognition of the body 
in Figure 10(a) and 10(b) provides another example 
in which the turret can be considered as close spatial 
clutter next to the tank body measurement we are at-
tempting to recognize. This successful recognition by 
parts shows the robustness of the spin-image algorithm 
to scene clutter, and its potential performance in the de-
velopment of a fully articulated ATR system.

In the next section we combine our ATR algorithm 
with an automatic target detection algorithm and show 
the end-to-end performance of a fully automatic target 
detection and recognition system.

Automatic Target Detection in  
Cluttered Noisy Scenes

Automatic target detection (ATD) was performed by 
using the general approach of 3D cueing, which deter-

FIGURE 8. M60 tank parts, color coded by height. (a) The M60 body model; (b) the M60 turret model.

FIGURE 9. Single view, color coded by height, of an M60 tank with its turret rotated by 180°. (a) Ortho-
graphic view of the scene;( b) sensor perspective view of the scene.

(a) (b)

(a) (b)
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mines and ranks ROIs within a large-scale scene on the 
basis of the likelihood that these ROIs contain the re-
spective target. Spin-image matching is used to provide 
a statistical measure of the likelihood that a particular 
region within the scene contains the target. The detec-
tion algorithm is based on the previous work of Carmi-
chael and Hebert et al. [6].

Detection Algorithm

The 3D cueing algorithm is tailored for target detection 
in large-scale terrain scenes. The implemented algo-
rithm can detect and recognize multiple known targets 
in the scene. 

Figure 11 shows a detailed diagram of the automatic 
target detection and recognition (ATD/R) system for a 
scene-to-target-model comparison. Following the pro-
cedure developed by Carmichael and Hebert et al. [6], 
we determine ROIs within the scene. The ROI-finding 
procedure assumes that we test at least one measure-
ment point on the target, although testing as many tar-

get measurements as possible would be optimal. How-
ever, in choosing what percentage of points to test from 
the data set, there is a trade-off between determining 
the probability to find the target versus the algorithm 
run-time. On the basis of Carmichael’s results and our 
data, which contains from hundreds to the low thou-
sands of measurements on target, we decided to test 
between 5% to 10% of the data, with the sampling 
applied uniformly across the data scene. The ROIs ob-
tained by using the above algorithm can vary drastically 
in the number of correspondences, correspondence val-
ues, and surface area coverage. To discriminate between 
the various ROIs, we use geometric consistency to re-
move unlikely correspondences [24]. Each ROI that 
passes the geometric consistency filter is rated with a 
detection goodness-of-fit value that corresponds to its 
likelihood of matching the target of interest. The auto-
matic target detection goodness of fit (ATDGOF) value 
found for ROI r for the comparison of scene s to model 
m is defined as

(a) (b)

(c) (d)

FIGURE 10. M60 recognition by parts. (a) Orthographic view of M60 body recognition. The scene points 
are color coded by height with a green-red-yellow color map, while the M60 model body is color coded 
by height with a black-to-white color map. (b) Another perspective of the M60 body recognition shows 
that the correct pose was found in all six degrees of freedom. (c) Orthographic view of the M60 tur-
ret recognition. The scene points are again color coded by height with a green-red-yellow color map, 
while the M60 turret model is color coded by height with a blue-purple color map. (d) Another perspec-
tive of the M60 turret recognition shows that the correct pose was found in all six degrees of freedom.



• VASILE AND MARINO
Pose-Independent Automatic Target Detection and Recognition Using 3D Laser Radar Imagery

72 LINCOLN LABORATORY JOURNAL VOLUME 15, NUMBER 1, 2005

 

ATDGOF( , , ) ,s m r
P
Q

Cr

r
i

i

Qr

=
=
∑

1  

where Pr is the number of correspondences in ROI r af-
ter the geometric consistency filter, Qr is the number of 
correspondences in ROI r before the geometric consis-
tency filter, and Ci is the normalized correlation coef-
ficient value as defined by Johnson et al. [24].

To quantify the detection performance of a scene-to-
model library comparison, we normalize the ATDGOF 
to the maximum ATDGOF value found. The normal-
ized ATDGOF that ROI r in scene s correctly matches 

model i in the model library mlib is defined as
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where M is the number of models in mlib, and Nj is the 
number of ROIs found for the comparison of scene s to 
model mlibj. The ROIs are then sorted and queued on 
the basis of their ATDGOF  value. The recognition al-
gorithm first analyzes the ROI with the best ATDGOF  

FIGURE 11. Process diagram for the automatic target detection (ATD) and automatic target recognition (ATR) system for 
a scene-to-target-model comparison. The extended scene data are sampled to test at least one measurement on the target 
(approximately 5% to 10% of points sampled). After matching one or more points on the target with the model, the system ex-
plores neighboring points in the scene data and grows a region of interest (ROI). The ROIs are sorted on the basis of their ini-
tial likelihood of containing a target, and assigned an ATD goodness-of-fit (ATDGOF) value. Each ROI is then sent to the ATR 
algorithm (previously illustrated in Figure 4), where it is assigned a corresponding ATR goodness-of-fit (ATRGOF) value.
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value before proceeding to the second best ROI, and so 
on. For each ROI, the recognition algorithm attempts 
to recognize the model, and then determines a model-
to-scene pose and a corresponding RGOF value (as de-
fined in Equation 1). 

To quantify recognition performance of a scene-to-
model library comparison, we normalize the RGOF value 
to the maximum RGOF value found. The normalized-
to-maximum RGOF value that ROI r in scene s correctly 
matches model i in the model library mlib is defined as

    

ATRGOF
GOF

GOF

( , , )
( , )

( ,

s mlib r
R r mlib

R k mlib
i

i
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))

.
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The end result of the scene-to-model library compari-
son is a set of ROIs, each matching a target model in a 

certain pose, along with an ATRGOF  that specifies the 
level of confidence that the match is correct.

Results

Five extended terrain scenes recorded with the GEN-III 
and Jigsaw sensors were used to test the ATD/R system. 
Each data set contained one or more known targets and 
covered an area between 25 × 25 meters to 100 × 100 
meters. Target truth in the form of Global Positioning 
System (GPS) location and target identification was 
known prior to data collection. Targets in the data set 
were both out in the open and also underneath heavy 
canopy cover. Figure 12 shows an orthographic view of 
the original data sets used for target detection.

Each scene was subsampled by using 20-cm vox-
els to reduce the computational complexity, and then 
compared to the target model library. For each ROI 

(e)

(a) (c)(b)

(d)

FIGURE 12. Orthographic perspective of five large-scale scenes used to test automatic target detection. For some of the data 
sets, the trees were cropped out to show the obscured target. In each image, the white oval shows the location of the target of 
interest. (a) GEN-III 25 × 25-m measured scene of an HMMV under canopy cover. (b) Jigsaw 100 × 100-m measured scene of a 
T72 in a tank yard from a sensor altitude of 450 m. (c) Jigsaw 25 × 25-m measured scene of a T72 in a tank yard from a sensor 
altitude of 150 m. (d) GEN-III 25 × 25-m measured scene of two M60 tanks. (e) Jigsaw 100 × 100-m measured scene of a T72 un-
derneath heavy canopy cover, from a sensor altitude of 450 m. 
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found in a scene, we used Equation 2 to compute a 
value of ATDGOF . Figure 13 shows the distribution of 
ATDGOF  values from all five tested scenes. The dis-
tribution is divided between the ROIs that were con-
sidered false alarms and the ROIs that were considered 
true positives. A false alarm is defined as an ROI that 

matches a target to background clutter or an ROI that 
incorrectly matches a known scene target to the wrong 
target model. A true positive is defined as an ROI 
found for a particular target model that encompasses 
the measurements of a scene target, and whose target 
truth matches the respective target model. 
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FIGURE 13. Distribution of normalized ATDGOF values for the five measured scenes shown in Figure 12. 
The true positives are shown with magenta color bars, while the false alarms are shown with blue color 
bars. The ROIs are binned by using a bin size of 0.05 normalized ATDGOF units. For each scene, at least 
one target instance was detected and mapped to the highest normalized ATDGOF value of 1. In the two-
M60 scene in Figure 12(d), the second target instance (which was farther back in the sensor’s range) 
was detected with an ATDGOF of 0.185, which is shown in the 0.15-to-0.20 bin.

FIGURE 14. Distribution of normalized ATRGOF values for the five measured scenes shown in Figure 12. 
The true positives are shown with magenta color bars, while the false alarms are shown with blue color 
bars. The ROIs are binned by using a bin size of 0.05 normalized ATRGOF units. For each scene, at least 
one target instance was detected and mapped to the highest normalized ATRGOF value of 1. In the two-
M60 scene in Figure 12(d), the second target instance (which was farther back in the sensor’s range) 
was recognized with an ATRGOF of 0.24, which is shown in the 0.20-to-0.25 bin.
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For all five scenes in Figure 12, a true positive ROI 
had the largest ATDGOF  value, leading to a good-
ness-of-fit value of one. Thus for all five scenes we were 
able to correctly detect and identify at least one target 
instance with a high confidence measure. The M60 
scene in Figure 12(d) presented an interesting case, in 
which two identical M60-type targets existed within 
the scene. For this single-view scene, the ROI with the 
highest ATDGOF  of 1.0 fell on the M60 target in the 
sensor’s foreground; the second M60 was also detected, 
but with a much lower ATDGOF  value of 0.185 (which 
corresponds in Figure 13 to the true positive under the 
0.15–0.20 ATDGOF  bin).

The large difference in ATDGOF  values for the two 
tanks in the scene is not surprising. The M60 tank in 
the sensor foreground had about 5318 measurements, 
while the M60 tank farther down in range from the 
sensor had about 3676 measurements on its surface. 
The difference in the number of points is principally 
due to the difference in angle, resulting in a narrower 
projected width of the farther M60. Furthermore, the 
ATDGOF  value is a function of the sum of point-corre-
spondence values and is directly affected by the number 
of measurements on target. The two-M60 scene pres-
ents the following challenge in the detection of multiple 
instances of a target object within a scene. One of the 
detected object instances is bound to have a higher sig-
nal level than the other objects, which lowers the con-
fidence that the rest of the objects are valid detections 
of the same target object. In our case, we suspect that 
the relatively fewer number of data points on the down-
range M60 contributes to a normalized ATDGOF  con-
fidence value that is smaller than the ATDGOF  value of 
the foreground M60.

If we ignore the low-ATDGOF  true-positive result 
from the M60 scene, Figure 13 shows a good separation 
between the distributions of false alarms and true posi-
tives. The two distributions have a separation of about 
0.33 in the ATDGOF  value space. This difference indi-
cates that we can always detect and identify the correct 
target from the library of known targets. With a separa-
tion of 0.33 in the ATDGOF  value space, a detection 
threshold can readily be set between the highest false 
alarm (at 0.671) and the lowest of the remaining true 
positives (at 1.0). Thus, even as a stand-alone algorithm, 
the ATD system works exceptionally well. 

Combining ATD and ATR

We now show the results of ATD coupled with ATR. 
Figure 14 shows the distribution of ATRGOF  values 
obtained after we ran the ATR algorithm on the de-
tected ROIs. From the distributions, we can discern 
that most of the true positives are mapped to the high-
est ATRGOF  value of one. Again, the multiple M60 
targets presented a challenge with the background 
M60 tank mapping to a normalized ATRGOF  of 0.24, 
slightly higher than the 0.185 ATDGOF  value for the 
background tank. There is also a significant improve-
ment in the distribution of false alarms and true posi-
tives in the ATRGOF  value space as compared to the 
ATDGOF  value space. Most of the ATD false alarms 
have been remapped from an ATDGOF  range of 0 to 
0.67 to an ATRGOF  range of 0 to 0.24. The remap-
ping of false alarms from higher ATDGOF  values to 
lower ATRGOF  values further increases the separa-
tion between the distribution of false alarms and true 
positives. The larger separation between the majority of 
false alarms and true positives represents an improve-
ment in our ability to discern the correct target from 
background clutter and other known targets. There-
fore, the ATRGOF  value space is an improvement over 
the ATDGOF  value space.

Table 4 shows the time performance of the entire 
ATD and ATR system. The ATD/R system was run on 
an Intel Pentium-4 Xeon at 2 GHz. In the table, ‘stack 
create time’ is the time taken to create the spin-image 
stack of the scene. The ‘average ATD+ATR time per 
model’ is the time used to detect ROIs for a model, and 
recognize whether the ROI is a valid target model in-
stance. The ‘average ATD+ATR time per model’ also 
includes the contribution of the time taken to create the 
scene spin-image stack, weighted down by the number 
of models in the library, since the scene stack is comput-
ed only once and used for all the following target model 
comparisons. Overall, we achieved a recognition time 
of approximately one and a half minutes per model. 

In summary, our new ATD/R algorithm has dem-
onstrated very good detection and identification accu-
racy, as well as time performance. Given its timing and 
accuracy performance, this ATD/R system may have 
significant practical value to a human operator for aided 
target recognition under battlefield conditions.
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Conclusions

In this research, we developed and implemented a fully 
automated target detection and recognition system that 
uses geometric shape and size signatures from target 
models to detect and recognize targets under heavy can-
opy and camouflage cover in extended terrain scenes.

The ATD/R system performance was demonstrated 
on five measured scenes with targets both out in the 
open and under heavy canopy cover, where the target 
occupied between 1% to 10% of the scene by volume. 
The ATR section of the system was successfully dem-
onstrated for twelve measured data scenes with targets 

both out in the open and under heavy canopy and cam-
ouflage cover. Correct target identification was also 
demonstrated for targets with multiple movable parts 
that are in arbitrary orientations. We achieved a high 
recognition rate (over 99%) along with a low false-
alarm rate (less than 0.01%). 

The major contribution of this research is that we 
proved that spin-image–based detection and recogni-
tion is feasible for terrain data collected in the field with 
a sensor that can be used in a tactical situation. We also 
demonstrated recognition of articulated objects, with 
multiple movable parts. Considering the detection and 
recognition performance, the ATD/R system can have 

Table 4. ATD and ATR System Time Performance

 HMMV scene 
 Huntsville       25 
 June 2003 C8-F1-P10 192,097 26,318 0.76 100% 0.25 (5 × 5) 59.8 120.72

 M60s scene 
 Eglin      100 
 2001 48,997 8995 9.18 100% 0.16 (10 × 10) 15.6 497.86

 Tank yard  
 (450-m altitude) Huntsville       25 
 Dec 2002 C20-F02-P05 575,938 35,157 0.59 100% 0.26 (5 × 5) 40.9 219.26

 T72 under canopy  
 (450-m altitude) Dec 2002      25  
 Huntsville C20-F02-P07 312,189 10,293 2.41 100% 0.18 (5 × 5) 29.9 45.33

 Tank yard  
 (150-m altitude) Huntsville       25 
 Dec 2002 C20-F01-P3 32,750 7286 8.99 100% 0.24 (5 × 5) 7.62 30.69

  * Average ATD+ATR Time for 20 cm subsampled scenes (seconds) = 104.00
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significant practical value to a human operator for aided 
target recognition under battlefield conditions.

Immediate benefits of the presented work will be 
in the area of automatic target recognition of military 
ground vehicles, where the vehicles of interest may in-
clude articulated components with variable position rel-
ative to the body, and come in many possible configura-
tions. Other application areas include human detection 
and recognition for homeland security.
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