Publications

Refine Results

(Filters Applied) Clear All

Language recognition with discriminative keyword selection

Published in:
Proc. IEEE Int. Conf. on Acoustics, Speech and Signal Processing, ICASSP, 31 March - 4 April 2008, pp. 4145-4148.

Summary

One commonly used approach for language recognition is to convert the input speech into a sequence of tokens such as words or phones and then to use these token sequences to determine the target language. The language classification is typically performed by extracting N-gram statistics from the token sequences and then using an N-gram language model or support vector machine (SVM) to perform the classification. One problem with these approaches is that the number of N-grams grows exponentially as the order N is increased. This is especially problematic for an SVM classifier as each utterance is represented as a distinct N-gram vector. In this paper we propose a novel approach for modeling higher order Ngrams using an SVM via an alternating filter-wrapper feature selection method. We demonstrate the effectiveness of this technique on the NIST 2007 language recognition task.
READ LESS

Summary

One commonly used approach for language recognition is to convert the input speech into a sequence of tokens such as words or phones and then to use these token sequences to determine the target language. The language classification is typically performed by extracting N-gram statistics from the token sequences and...

READ MORE

Classification methods for speaker recognition

Published in:
Chapter in Springer Lecture Notes in Artificial Intelligence, 2007.

Summary

Automatic speaker recognition systems have a foundation built on ideas and techniques from the areas of speech science for speaker characterization, pattern recognition and engineering. In this chapter we provide an overview of the features, models, and classifiers derived from these areas that are the basis for modern automatic speaker recognition systems. We describe the components of state-of-the-art automatic speaker recognition systems, discuss application considerations and provide a brief survey of accuracy for different tasks.
READ LESS

Summary

Automatic speaker recognition systems have a foundation built on ideas and techniques from the areas of speech science for speaker characterization, pattern recognition and engineering. In this chapter we provide an overview of the features, models, and classifiers derived from these areas that are the basis for modern automatic speaker...

READ MORE

Speaker verification using support vector machines and high-level features

Published in:
IEEE Trans. on Audio, Speech, and Language Process., Vol. 15, No. 7, September 2007, pp. 2085-2094.

Summary

High-level characteristics such as word usage, pronunciation, phonotactics, prosody, etc., have seen a resurgence for automatic speaker recognition over the last several years. With the availability of many conversation sides per speaker in current corpora, high-level systems now have the amount of data needed to sufficiently characterize a speaker. Although a significant amount of work has been done in finding novel high-level features, less work has been done on modeling these features. We describe a method of speaker modeling based upon support vector machines. Current high-level feature extraction produces sequences or lattices of tokens for a given conversation side. These sequences can be converted to counts and then frequencies of -gram for a given conversation side. We use support vector machine modeling of these n-gram frequencies for speaker verification. We derive a new kernel based upon linearizing a log likelihood ratio scoring system. Generalizations of this method are shown to produce excellent results on a variety of high-level features. We demonstrate that our methods produce results significantly better than standard log-likelihood ratio modeling. We also demonstrate that our system can perform well in conjunction with standard cesptral speaker recognition systems.
READ LESS

Summary

High-level characteristics such as word usage, pronunciation, phonotactics, prosody, etc., have seen a resurgence for automatic speaker recognition over the last several years. With the availability of many conversation sides per speaker in current corpora, high-level systems now have the amount of data needed to sufficiently characterize a speaker. Although...

READ MORE

A new kernel for SVM MLLR based speaker recognition

Published in:
INTERSPEECH, 27-31 August 2007.

Summary

Speaker recognition using support vector machines (SVMs) with features derived from generative models has been shown to perform well. Typically, a universal background model (UBM) is adapted to each utterance yielding a set of features that are used in an SVM. We consider the case where the UBM is a Gaussian mixture model (GMM), and maximum likelihood linear regression (MLLR) adaptation is used to adapt the means of the UBM. We examine two possible SVM feature expansions that arise in this context: the first, a GMM supervector is constructed by stacking the means of the adapted GMM, and the second consists of the elements of the MLLR transform. We examine several kernels associated with these expansions. We show that both expansions are equivalent given an appropriate choice of kernels. Experiments performed on the NIST SRE 2006 corpus clearly highlight that our choice of kernels, which are motivated by distance metrics between GMMs, outperform ad-hoc ones. We also apply SVM nuisance attribute projection (NAP) to the kernels as a form of channel compensation and show that, with a proper choice of kernel, we achieve results comparable to existing SVM based recognizers.
READ LESS

Summary

Speaker recognition using support vector machines (SVMs) with features derived from generative models has been shown to perform well. Typically, a universal background model (UBM) is adapted to each utterance yielding a set of features that are used in an SVM. We consider the case where the UBM is a...

READ MORE

Nuisance attribute projection

Published in:
Chapter in Speech Communication, May 2007.

Summary

Cross-channel degradation is one of the significant challenges facing speaker recognition systems. We study this problem in the support vector machine (SVM) context and nuisance variable compensation in high-dimensional spaces more generally. We present an approach to nuisance variable compensation by removing nuisance attribute-related dimensions in the SVM expansion space via projections. Training to remove these dimensions is accomplished via an eigenvalue problem. The eigenvalue problem attempts to reduce multisession variation for the same speaker, reduce different channel effects, and increase "distance" between different speakers. Experiments show significant improvement in performance for the cross-channel case.
READ LESS

Summary

Cross-channel degradation is one of the significant challenges facing speaker recognition systems. We study this problem in the support vector machine (SVM) context and nuisance variable compensation in high-dimensional spaces more generally. We present an approach to nuisance variable compensation by removing nuisance attribute-related dimensions in the SVM expansion space...

READ MORE

Text-independent speaker recognition

Published in:
Springer Handbook of Speech Processing and Communication, 2007, pp. 763-81.

Summary

In this chapter, we focus on the area of text-independent speaker verification, with an emphasis on unconstrained telephone conversational speech. We begin by providing a general likelihood ratio detection task framework to describe the various components in modern text-independent speaker verification systems. We next describe the general hierarchy of speaker information conveyed in the speech signal and the issues involved in reliably exploiting these levels of information for practical speaker verification systems. We then describe specific implementations of state-of-the-art text-independent speaker verification systems utilizing low-level spectral information and high-level token sequence information with generative and discriminative modeling techniques. Finally, we provide a performance assessment of these systems using the National Institute of Standards and Technology (NIST) speaker recognition evaluation telephone corpora.
READ LESS

Summary

In this chapter, we focus on the area of text-independent speaker verification, with an emphasis on unconstrained telephone conversational speech. We begin by providing a general likelihood ratio detection task framework to describe the various components in modern text-independent speaker verification systems. We next describe the general hierarchy of speaker...

READ MORE

Language recognition with word lattices and support vector machines

Published in:
Proc. IEEE Int. Conf. on Acoustics, Speech, and Signal Processing, ICASSP, 15-20 April 2007, Vol. IV, pp. 989-992.

Summary

Language recognition is typically performed with methods that exploit phonotactics--a phone recognition language modeling (PRLM) system. A PRLM system converts speech to a lattice of phones and then scores a language model. A standard extension to this scheme is to use multiple parallel phone recognizers (PPRLM). In this paper, we modify this approach in two distinct ways. First, we replace the phone tokenizer by a powerful speech-to-text system. Second, we use a discriminative support vector machine for language modeling. Our goals are twofold. First, we explore the ability of a single speech-to-text system to distinguish multiple languages. Second, we fuse the new system with an SVM PRLM system to see if it complements current approaches. Experiments on the 2005 NIST language recognition corpus show the new word system accomplishes these goals and has significant potential for language recognition.
READ LESS

Summary

Language recognition is typically performed with methods that exploit phonotactics--a phone recognition language modeling (PRLM) system. A PRLM system converts speech to a lattice of phones and then scores a language model. A standard extension to this scheme is to use multiple parallel phone recognizers (PPRLM). In this paper, we...

READ MORE

Robust speaker recognition with cross-channel data: MIT-LL results on the 2006 NIST SRE auxiliary microphone task

Published in:
Proc. 32nd IEEE Int. Conf. on Acoustics, Speech, and Signal Processing, ICASSP, April 2007, pp. IV-49 - IV-52.

Summary

One particularly difficult challenge for cross-channel speaker verification is the auxiliary microphone task introduced in the 2005 and 2006 NIST Speaker Recognition Evaluations, where training uses telephone speech and verification uses speech from multiple auxiliary microphones. This paper presents two approaches to compensate for the effects of auxiliary microphones on the speech signal. The first compensation method mitigates session effects through Latent Factor Analysis (LFA) and Nuisance Attribute Projection (NAP). The second approach operates directly on the recorded signal with noise reduction techniques. Results are presented that show a reduction in the performance gap between telephone and auxiliary microphone data.
READ LESS

Summary

One particularly difficult challenge for cross-channel speaker verification is the auxiliary microphone task introduced in the 2005 and 2006 NIST Speaker Recognition Evaluations, where training uses telephone speech and verification uses speech from multiple auxiliary microphones. This paper presents two approaches to compensate for the effects of auxiliary microphones on...

READ MORE

The MIT-LL/IBM 2006 speaker recognition system: high-performance reduced-complexity recognition

Published in:
Proc. 32nd IEEE Int. Conf. on Acoustics, Speech, and Signal Processing, ICASSP, April 2007, pp. IV-217 - IV-220.

Summary

Many powerful methods for speaker recognition have been introduced in recent years--high-level features, novel classifiers, and channel compensation methods. A common arena for evaluating these methods has been the NIST speaker recognition evaluation (SRE). In the NIST SRE from 2002-2005, a popular approach was to fuse multiple systems based upon cepstral features and different linguistic tiers of high-level features. With enough enrollment data, this approach produced dramatic error rate reductions and showed conceptually that better performance was attainable. A drawback in this approach is that many high-level systems were being run independently requiring significant computational complexity and resources. In 2006, MIT Lincoln Laboratory focused on a new system architecture which emphasized reduced complexity. This system was a carefully selected mixture of high-level techniques, new classifier methods, and novel channel compensation techniques. This new system has excellent accuracy and has substantially reduced complexity. The performance and computational aspects of the system are detailed on a NIST 2006 SRE task.
READ LESS

Summary

Many powerful methods for speaker recognition have been introduced in recent years--high-level features, novel classifiers, and channel compensation methods. A common arena for evaluating these methods has been the NIST speaker recognition evaluation (SRE). In the NIST SRE from 2002-2005, a popular approach was to fuse multiple systems based upon...

READ MORE

Automatic language recognition via spectral and token based approaches

Published in:
Chapter 41 in Springer Handbook of Speech Processing and Communication, 2007, pp. 811-24.

Summary

Automatic language recognition from speech consists of algorithms and techniques that model and classify the language being spoken. Current state-of-the-art language recognition systems fall into two broad categories: spectral- and token-sequence-based approaches. In this chapter, we describe algorithms for extracting features and models representing these types of language cues and systems for making recognition decisions using one or more of these language cues. A performance assessment of these systems is also provided, in terms of both accuracy and computation considerations, using the National Institute of Science and Technology (NIST) language recognition evaluation benchmarks.
READ LESS

Summary

Automatic language recognition from speech consists of algorithms and techniques that model and classify the language being spoken. Current state-of-the-art language recognition systems fall into two broad categories: spectral- and token-sequence-based approaches. In this chapter, we describe algorithms for extracting features and models representing these types of language cues and...

READ MORE