Publications

Refine Results

(Filters Applied) Clear All

Low rate coding of the spectral envelope using channel gains

Published in:
Proc. IEEE Int. Conf. on Acoustics, Speech and Signal Processing, ICASSP, Vol. 2, 7-10 May 1996, pp. 769-772.

Summary

A dual rate embedded sinusoidal transform coder is described in which a core 14th order allpole coder operating at 2400 b/s is augmented with a set of channel gain residuals in order to operate at the higher 4800 b/s rate. The channel gains are a set of non-uniformly spaced samples of the spline envelope and constitute a lowpass estimate of the short-time vocal tract magnitude spectrum. The channel gain residuals represent the difference between the spline envelope and the quantized 14th order allpole spectrum at the channel gain frequencies. The channel gain residuals are coded using pitch dependent scalar quantization. Informal listening indicates that the quality of the embedded coder at 4800 b/s is comparable to that of an existing high quality 4800 b/s allpole coder.
READ LESS

Summary

A dual rate embedded sinusoidal transform coder is described in which a core 14th order allpole coder operating at 2400 b/s is augmented with a set of channel gain residuals in order to operate at the higher 4800 b/s rate. The channel gains are a set of non-uniformly spaced samples...

READ MORE

A subband approach to time-scale expansion of complex acoustic signals

Published in:
IEEE Trans. Speech Audio Process., Vol. 3, No. 6, November 1995, pp. 515-519.

Summary

A new approach to time-scale expansion of short-duration complex acoustic signals is introduced. Using a subband signal representation, channel phases are selected to preserve a desired time-scaled temporal envelope. The phase representation is derived from locations of events that occur within filter bank outputs. A frame-based generalization of the method imposes phase consistency across consecutive synthesis frames. The method is applied to synthetic and actual complex acoustic signals consisting of closely spaced rapidly damped sine wave. Time-frequency resolution limitations are discussed.
READ LESS

Summary

A new approach to time-scale expansion of short-duration complex acoustic signals is introduced. Using a subband signal representation, channel phases are selected to preserve a desired time-scaled temporal envelope. The phase representation is derived from locations of events that occur within filter bank outputs. A frame-based generalization of the method...

READ MORE

Sine-wave amplitude coding using a mixed LSF/PARCOR representation

Published in:
Proc. 1995 IEEE Workshop on Speech Coding for Telecommunications, 20-22 Spetember 1995, pp. 77-8.

Summary

An all-pole model of the speech spectral envelope is used to code the sine-wave amplitudes in the Sinusoidal Transform Coder. While line spectral frequencies (LSFs) are currently used to represent this all-pole model, it is shown that a mixture of line spectral frequencies and partial correlation (PARCOR) coefficients can be used to reduce complexity without a loss in quantization efficiency. Objective and subjective measures demonstrate that speech quality is maintained. In addition, the use of split vector quantization is shown to substantially reduce the number of bits needed to code the all-pole model.
READ LESS

Summary

An all-pole model of the speech spectral envelope is used to code the sine-wave amplitudes in the Sinusoidal Transform Coder. While line spectral frequencies (LSFs) are currently used to represent this all-pole model, it is shown that a mixture of line spectral frequencies and partial correlation (PARCOR) coefficients can be...

READ MORE

Detection of transient signals using the energy operator

Published in:
Proc. IEEE Int. Conf. on Acoustics, Speech and Signal Processing, Vol. 3, ICASSP, 27-30 April 1993, pp. 145-148.

Summary

A function of the Teager-Kaiser energy operator is introduced as a method for detecting transient signals in the presence of amplitude-modulated and frequency-modulated tonal interference. This function has excellent time resolution and is robust in the presence of white noise. The output of the detection function is also independent of the interference-to-transient ratio when that ratio is large. It is demonstrated that the detection function can be applied to interference signals with multiple amplitude-modulated and frequency-modulated tonal components.
READ LESS

Summary

A function of the Teager-Kaiser energy operator is introduced as a method for detecting transient signals in the presence of amplitude-modulated and frequency-modulated tonal interference. This function has excellent time resolution and is robust in the presence of white noise. The output of the detection function is also independent of...

READ MORE

Time-scale modification of complex acoustic signals

Published in:
Proc. IEEE Int. Conf. on Acoustics, Speech and Signal Processing, ICASSP, Vol. 1, Plenary, Special, Audio, Underwater Acoustics, VLSI, Neural Networks, 27-30 April 1993, pp. 213-216.

Summary

A new approach is introduced for time-scale modification of short-duration complex acoustic signals to improve their audibility. The technique constrains the modified signal to take on a specified spectral characteristic while imposing a time-scaled version of the original temporal envelope. Both full-band and sub-band representations of the temporal envelope are considered. In the full-band case, the modified signal is obtained by appropriate selection of its Fourier transform phase. In the sub-band case, using locations of maxima in the sub-band temporal envelopes, the phase of each bandpass signal is formed to preserve "events" in the envelope of the composite signal. The approach is applied to synthetic and actual short-duration acoustic signals consisting of closely-spaced and overlapping sequential time components.
READ LESS

Summary

A new approach is introduced for time-scale modification of short-duration complex acoustic signals to improve their audibility. The technique constrains the modified signal to take on a specified spectral characteristic while imposing a time-scaled version of the original temporal envelope. Both full-band and sub-band representations of the temporal envelope are...

READ MORE

Time-scale modification with temporal envelope invariance

Published in:
Proc. IEEE Workshop on Applications of Signal Processing to Audio and Acoustics, 17-20 October 1993, pp. 127-130.

Summary

A new approach is introduced for time-scale modification of short-duration complex acoustic signals to improve their audibility. The method preserves the time-scaled temporal envelope of a signal and for enhancement capitalizes on the perceptual importance of a signal's temporal structure. The basis for the approach is a sub-band representation whose channel phases are controlled to shape the temporal envelope of the time-scaled signal. The phase control is derived from locations of events which occur within filterbank outputs. A frame-based generalization of the method imposes phase consistency across consecutive synthesis frames. The approach is applied to synthetic and actual short-duration acoustic signals consisting of closely-spaced and overlapping sequential time components.
READ LESS

Summary

A new approach is introduced for time-scale modification of short-duration complex acoustic signals to improve their audibility. The method preserves the time-scaled temporal envelope of a signal and for enhancement capitalizes on the perceptual importance of a signal's temporal structure. The basis for the approach is a sub-band representation whose...

READ MORE