Publications

Refine Results

(Filters Applied) Clear All

Automatic language identification

Published in:
Wiley Encyclopedia of Electrical and Electronics Engineering, Vol. 2, pp. 104-9, 2007.

Summary

Automatic language identification is the process by which the language of digitized spoken words is recognized by a computer. It is one of several processes in which information is extracted automatically from a speech signal.
READ LESS

Summary

Automatic language identification is the process by which the language of digitized spoken words is recognized by a computer. It is one of several processes in which information is extracted automatically from a speech signal.

READ MORE

Advanced language recognition using cepstra and phonotactics: MITLL system performance on the NIST 2005 Language Recognition Evaluation

Summary

This paper presents a description of the MIT Lincoln Laboratory submissions to the 2005 NIST Language Recognition Evaluation (LRE05). As was true in 2003, the 2005 submissions were combinations of core cepstral and phonotactic recognizers whose outputs were fused to generate final scores. For the 2005 evaluation, Lincoln Laboratory had five submissions built upon fused combinations of six core systems. Major improvements included the generation of phone streams using lattices, SVM-based language models using lattice-derived phonotactics, and binary tree language models. In addition, a development corpus was assembled that was designed to test robustness to unseen languages and sources. Language recognition trends based on NIST evaluations conducted since 1996 show a steady improvement in language recognition performance.
READ LESS

Summary

This paper presents a description of the MIT Lincoln Laboratory submissions to the 2005 NIST Language Recognition Evaluation (LRE05). As was true in 2003, the 2005 submissions were combinations of core cepstral and phonotactic recognizers whose outputs were fused to generate final scores. For the 2005 evaluation, Lincoln Laboratory had...

READ MORE

Support vector machines for speaker and language recognition

Published in:
Comput. Speech Lang., Vol. 20, No. 2-3, April/July 2006, pp. 210-229.

Summary

Support vector machines (SVMs) have proven to be a powerful technique for pattern classification. SVMs map inputs into a high-dimensional space and then separate classes with a hyperplane. A critical aspect of using SVMs successfully is the design of the inner product, the kernel, induced by the high dimensional mapping. We consider the application of SVMs to speaker and language recognition. A key part of our approach is the use of a kernel that compares sequences of feature vectors and produces a measure of similarity. Our sequence kernel is based upon generalized linear discriminants. We show that this strategy has several important properties. First, the kernel uses an explicit expansion into SVM feature space - this property makes it possible to collapse all support vectors into a single model vector and have low computational complexity. Second, the SVM builds upon a simpler mean-squared error classifier to produce a more accurate system. Finally, the system is competitive and complimentary to other approaches, such as Gaussian mixture models (GMMs). We give results for the 2003 NIST speaker and language evaluations of the system and also show fusion with the traditional GMM approach.
READ LESS

Summary

Support vector machines (SVMs) have proven to be a powerful technique for pattern classification. SVMs map inputs into a high-dimensional space and then separate classes with a hyperplane. A critical aspect of using SVMs successfully is the design of the inner product, the kernel, induced by the high dimensional mapping...

READ MORE

The 2004 MIT Lincoln Laboratory speaker recognition system

Published in:
Proc. IEEE Int. Conf. on Acoustics, Speech and Signal Processing, ICASSP, Vol. 1, 19-23 March 2005, pp. I-177 - I-180.

Summary

The MIT Lincoln Laboratory submission for the 2004 NIST Speaker Recognition Evaluation (SRE) was built upon seven core systems using speaker information from short-term acoustics, pitch and duration prosodic behavior, and phoneme and word usage. These different levels of information were modeled and classified using Gaussian Mixture Models, Support Vector Machines and N-gram language models and were combined using a single layer perception fuser. The 2004 SRE used a new multi-lingual, multi-channel speech corpus that provided a challenging speaker detection task for the above systems. In this paper we describe the core systems used and provide an overview of their performance on the 2004 SRE detection tasks.
READ LESS

Summary

The MIT Lincoln Laboratory submission for the 2004 NIST Speaker Recognition Evaluation (SRE) was built upon seven core systems using speaker information from short-term acoustics, pitch and duration prosodic behavior, and phoneme and word usage. These different levels of information were modeled and classified using Gaussian Mixture Models, Support Vector...

READ MORE

The MIT Lincoln Laboratory RT-04F diarization systems: applications to broadcast audio and telephone conversations

Published in:
NIST Rich Transcription Workshop, 8-11 November 2004.

Summary

Audio diarization is the process of annotating an input audio channel with information that attributes (possibly overlapping) temporal regions of signal energy to their specific sources. These sources can include particular speakers, music, background noise sources, and other signal source/channel characteristics. Diarization has utility in making automatic transcripts more readable and in searching and indexing audio archives. In this paper we describe the systems developed by MITLL and used in DARPA EARS Rich Transcription Fall 2004 (RT-04F) speaker diarization evaluation. The primary system is based on a new proxy speaker model approach and the secondary system follows a more standard BIC based clustering approach. We present experiments analyzing performance of the systems and present a cross-cluster recombination approach that significantly improves performance. In addition, we also present results applying our system to a telephone speech, summed channel speaker detection task.
READ LESS

Summary

Audio diarization is the process of annotating an input audio channel with information that attributes (possibly overlapping) temporal regions of signal energy to their specific sources. These sources can include particular speakers, music, background noise sources, and other signal source/channel characteristics. Diarization has utility in making automatic transcripts more readable...

READ MORE

Dialect identification using Gaussian mixture models

Published in:
ODYSSEY 2004, Speaker and Language Recognition Workshop, 31 May - 3 June 2004.

Summary

Recent results in the area of language identification have shown a significant improvement over previous systems. In this paper, we evaluate the related problem of dialect identification using one of the techniques recently developed for language identification, the Gaussian mixture models with shifted-delta-cepstral features. The system shown is developed using the same methodology followed for the language identification case. Results show that the use of the GMM techniques yields an average of 30% equal error rate for the dialects in the Miami corpus and about 13% equal error rate for the dialects in the CallFriend corpus.
READ LESS

Summary

Recent results in the area of language identification have shown a significant improvement over previous systems. In this paper, we evaluate the related problem of dialect identification using one of the techniques recently developed for language identification, the Gaussian mixture models with shifted-delta-cepstral features. The system shown is developed using...

READ MORE

Language recognition with support vector machines

Published in:
ODYSSEY 2004, Speaker and Language Recognition Workshop, 31 May - 3 June 2004.

Summary

Support vector machines (SVMs) have become a popular tool for discriminative classification. Powerful theoretical and computational tools for support vector machines have enabled significant improvements in pattern classification in several areas. An exciting area of recent application of support vector machines is in speech processing. A key aspect of applying SVMs to speech is to provide a SVM kernel which compares sequences of feature vectors--a sequence kernel. We propose the use of sequence kernels for language recognition. We apply our methods to the NIST 2003 language evaluation task. Results demonstrate the potential of the new SVM methods.
READ LESS

Summary

Support vector machines (SVMs) have become a popular tool for discriminative classification. Powerful theoretical and computational tools for support vector machines have enabled significant improvements in pattern classification in several areas. An exciting area of recent application of support vector machines is in speech processing. A key aspect of applying...

READ MORE

Beyond cepstra: exploiting high-level information in speaker recognition

Summary

Traditionally speaker recognition techniques have focused on using short-term, low-level acoustic information such as cepstra features extracted over 20-30 ms windows of speech. But speech is a complex behavior conveying more information about the speaker than merely the sounds that are characteristic of his vocal apparatus. This higher-level information includes speaker-specific prosodics, pronunciations, word usage and conversational style. In this paper, we review some of the techniques to extract and apply these sources of high-level information with results from the NIST 2003 Extended Data Task.
READ LESS

Summary

Traditionally speaker recognition techniques have focused on using short-term, low-level acoustic information such as cepstra features extracted over 20-30 ms windows of speech. But speech is a complex behavior conveying more information about the speaker than merely the sounds that are characteristic of his vocal apparatus. This higher-level information includes...

READ MORE

Acoustic, phonetic, and discriminative approaches to automatic language identification

Summary

Formal evaluations conducted by NIST in 1996 demonstrated that systems that used parallel banks of tokenizer-dependent language models produced the best language identification performance. Since that time, other approaches to language identification have been developed that match or surpass the performance of phone-based systems. This paper describes and evaluates three techniques that have been applied to the language identification problem: phone recognition, Gaussian mixture modeling, and support vector machine classification. A recognizer that fuses the scores of three systems that employ these techniques produces a 2.7% equal error rate (EER) on the 1996 NIST evaluation set and a 2.8% EER on the NIST 2003 primary condition evaluation set. An approach to dealing with the problem of out-of-set data is also discussed.
READ LESS

Summary

Formal evaluations conducted by NIST in 1996 demonstrated that systems that used parallel banks of tokenizer-dependent language models produced the best language identification performance. Since that time, other approaches to language identification have been developed that match or surpass the performance of phone-based systems. This paper describes and evaluates three...

READ MORE

Approaches to language identification using Gaussian mixture models and shifted delta cepstral features

Published in:
Proc. Int. Conf. on Spoken Language Processing, INTERSPEECH, 16-20 September 2002, pp. 33-36, 82-92.

Summary

Published results indicate that automatic language identification (LID) systems that rely on multiple-language phone recognition and n-gram language modeling produce the best performance in formal LID evaluations. By contrast, Gaussian mixture model (GMM) systems, which measure acoustic characteristics, are far more efficient computationally but have tended to provide inferior levels of performance. This paper describes two GMM-based approaches to language identification that use shifted delta cepstra (SDC) feature vectors to achieve LID performance comparable to that of the best phone-based systems. The approaches include both acoustic scoring and a recently developed GMM tokenization system that is based on a variation of phonetic recognition and language modeling. System performance is evaluated on both the CallFriend and OGI corpora.
READ LESS

Summary

Published results indicate that automatic language identification (LID) systems that rely on multiple-language phone recognition and n-gram language modeling produce the best performance in formal LID evaluations. By contrast, Gaussian mixture model (GMM) systems, which measure acoustic characteristics, are far more efficient computationally but have tended to provide inferior levels...

READ MORE