Publications

Refine Results

(Filters Applied) Clear All

A compact end cryptographic unit for tactical unmanned systems

Summary

Under the Navy's Flexible Cyber-Secure Radio (FlexCSR) program, the Naval Information Warfare Center Pacific and the Massachusetts Institute of Technology's Lincoln Laboratory are jointly developing a unique cybersecurity solution for tactical unmanned systems (UxS): the FlexCSR Security/Cyber Module (SCM) End Cryptographic Unit (ECU). To deal with possible loss of unmanned systems that contain the device, the SCM ECU uses only publicly available Commercial National Security Algorithms and a Tactical Key Management system to generate and distribute onboard mission keys that are destroyed at mission completion or upon compromise. This also significantly reduces the logistic complexity traditionally involved with protection and loading of classified cryptographic keys. The SCM ECU is on track to be certified by the National Security Agency for protecting tactical data-in-transit up to Secret level. The FlexCSR SCM ECU is the first stand-alone cryptographic module that conforms to the United States Department of Defense (DoD) Joint Communications Architecture for Unmanned Systems, an initiative by the Office of the Secretary of Defense supporting the interoperability pillar of the DoD Unmanned Systems Integrated Roadmap. It is a credit card-sized enclosed unit that provides USB interfaces for plaintext and ciphertext, support for radio controls and management, and a software Application Programming Interface that together allow easy integration into tactical UxS communication systems. This paper gives an overview of the architecture, interfaces, usage, and development and approval schedule of the device.
READ LESS

Summary

Under the Navy's Flexible Cyber-Secure Radio (FlexCSR) program, the Naval Information Warfare Center Pacific and the Massachusetts Institute of Technology's Lincoln Laboratory are jointly developing a unique cybersecurity solution for tactical unmanned systems (UxS): the FlexCSR Security/Cyber Module (SCM) End Cryptographic Unit (ECU). To deal with possible loss of unmanned...

READ MORE

Functionality and security co-design environment for embedded systems

Published in:
IEEE High Performance Extreme Computing Conf., HPEC, 25-27 September 2018.

Summary

For decades, embedded systems, ranging from intelligence, surveillance, and reconnaissance (ISR) sensors to electronic warfare and electronic signal intelligence systems, have been an integral part of U.S. Department of Defense (DoD) mission systems. These embedded systems are increasingly the targets of deliberate and sophisticated attacks. Developers thus need to focus equally on functionality and security in both hardware and software development. For critical missions, these systems must be entrusted to perform their intended functions, prevent attacks, and even operate with resilience under attacks. The processor in a critical system must thus provide not only a root of trust, but also a foundation to monitor mission functions, detect anomalies, and perform recovery. We have developed a Lincoln Asymmetric Multicore Processing (LAMP) architecture, which mitigates adversarial cyber effects with separation and cryptography and provides a foundation to build a resilient embedded system. We will describe a design environment that we have created to enable the co-design of functionality and security for mission assurance.
READ LESS

Summary

For decades, embedded systems, ranging from intelligence, surveillance, and reconnaissance (ISR) sensors to electronic warfare and electronic signal intelligence systems, have been an integral part of U.S. Department of Defense (DoD) mission systems. These embedded systems are increasingly the targets of deliberate and sophisticated attacks. Developers thus need to focus...

READ MORE

Mission assurance: beyond secure processing

Published in:
18th IEEE Int. Conf. on Software Quality, Reliability, and Security, QRS 2018, 16-20 July 2018, pp. 593-8.

Summary

The processor of a drone runs essential functions of sensing, communications, coordination, and control. This is the conventional view. But in today's cyber environment, the processor must also provide security to assure mission completion. We have been developing a secure processing architecture for mission assurance. A study on state-of-the-art secure processing technologies has revealed that no one-size-fits-all solution can fully meet our requirements. In fact, we have concluded that the provision of a secure processor as a mission assurance foundation must be holistic and should be approached from a systems perspective. We have thus applied a systems analysis approach to create a secure base for the system. This paper describes our journey of adapting and synergizing various secure processing technologies into a baseline asymmetric multicore processing architecture. We will also describe a functional and security co-design environment, created to customize and optimize the architecture in a design space consisting of hardware, software, performance, and assurance.
READ LESS

Summary

The processor of a drone runs essential functions of sensing, communications, coordination, and control. This is the conventional view. But in today's cyber environment, the processor must also provide security to assure mission completion. We have been developing a secure processing architecture for mission assurance. A study on state-of-the-art secure...

READ MORE

Showing Results

1-3 of 3