Publications

Refine Results

(Filters Applied) Clear All

Convective weather avoidance modeling in low-altitude airspace

Published in:
AIAA Modeling and Simulation Technologies Conf., 8-11 August 2011.

Summary

Thunderstorms are a leading cause of delay in the National Airspace System (NAS), and significant research has been conducted to predict the areas pilots will avoid during a storm. An example of such research is the Convective Weather Avoidance Model (CWAM), which provides the likelihood of pilot deviation due to convective weather in a given area. This paper extends the scope of CWAM to include low-altitude flights, which typically occur below the tops of convective weather and have slightly different operational constraints. In general, the set of low-altitude flights includes short-hop routes and low-altitude escape routes used to reduce the impact of convective weather in the terminal area. This paper will discuss the classification procedure, present the performance of low-altitude CWAM on observed and forecasted weather, analyze areas of poor performance, and suggest potential improvements to the model.
READ LESS

Summary

Thunderstorms are a leading cause of delay in the National Airspace System (NAS), and significant research has been conducted to predict the areas pilots will avoid during a storm. An example of such research is the Convective Weather Avoidance Model (CWAM), which provides the likelihood of pilot deviation due to...

READ MORE

Uses for field communication data in designing air traffic management decision support

Published in:
10th Conf. on Naturalistic Decision Making, 31 May 2011.

Summary

In this paper, example uses of field communication data are provided and how these data impact the evolution of the Route Availability Planning Tool (RAPT) for air traffic management is introduced. Simple communications analyses are provided that illustrate how communications can be used to improve what decision support is provided, who it is provided to, and in what context to present the support. Communications data is also shown to aid in contextualizing the decision support to better fit within the decision support framework in existence, which is critical to the success of situation awareness systems.
READ LESS

Summary

In this paper, example uses of field communication data are provided and how these data impact the evolution of the Route Availability Planning Tool (RAPT) for air traffic management is introduced. Simple communications analyses are provided that illustrate how communications can be used to improve what decision support is provided...

READ MORE

Convective weather avoidance modeling for low-altitude routes

Published in:
MIT Lincoln Laboratory Report ATC-376

Summary

Thunderstorms are a leading cause of delay in the National Airspace System (NAS), and significant research has been conducted to predict the areas pilots will avoid during a storm. An example of such research is the Convective Weather Avoidance Model (CWAM), which provides the likelihood of pilot deviation due to convective weather in a given area. This report extends the scope of CWAM to include low-altitude flights, which typically occur below the tops of convective weather and have slightly differentoperational constraints. In general, the set of low-altitude flights include short-hop routes and low-altitude escape routes used to reduce the impact of convective weather in the termnial area. For classification, low altitude flights are identified as either deviations or non-deviations, and the corresponding weather features are analyzed. Precipitation intensity is observed to be the best predictor of deviation in the low-altitude flight regime, as compared to the differenc ein altitude between the flight and the echo tops for en route flights. Additionally, the low-altitude CWAM performs better than the departure CWAM currently used in the Route Availability Planning Tool (RAPT) when tested on deterministic weather data.
READ LESS

Summary

Thunderstorms are a leading cause of delay in the National Airspace System (NAS), and significant research has been conducted to predict the areas pilots will avoid during a storm. An example of such research is the Convective Weather Avoidance Model (CWAM), which provides the likelihood of pilot deviation due to...

READ MORE

Estimation of potential IDRP benefits during convective weather SWAP

Published in:
MIT Lincoln Laboratory Report ATC-381

Summary

This document presents a preliminary analysis of potential departure delay reduction benefits in New York as the result of the use of the Integrated Departure Route Planning (IDRP) tool during convective severe weather avoidance programs (SWAP). The analysis is based on weather impact and air traffic data from operations between May and September 2010 in the New York metroplex region. Two methodologies were employed in the analysis: "flight pool" and "resource pool." In the flight pool methodology, individual flights with excessive taxi times were identified, and opportunities to find potential alternative reroutes using information that IDRP will provide were assessed. In the resource pool methodology, route impact minutes were tallied over several days, based on the judgment of a human analysis, and opportunities to recover capacity lost to route impacts via IDRP-identified reroutes were estimated. The flight pool methodology estimated that approximately 156 hours of delay could be saved through the use of IDRP over a full SWAP season. The resource pool methodology estimated that approximately 15% of capacity lost to convective weather impacts could be recovered via IDRP-based reroutes. It should be noted that the potential benefits are based on several assumptions that are described in detail in the text of the report. The estimation of delay savings due to reroute is also speculative. It is very difficult to ascertain when the assignment of a reroute actually makes use of underutilized capacity and when the reroute simply shifts the problem from one congested resource to another. Further research is needed to develop reliable metrics that can guide the assessment of reroute impacts on overall traffic management performance.
READ LESS

Summary

This document presents a preliminary analysis of potential departure delay reduction benefits in New York as the result of the use of the Integrated Departure Route Planning (IDRP) tool during convective severe weather avoidance programs (SWAP). The analysis is based on weather impact and air traffic data from operations between...

READ MORE

Making departure management weather impact models airspace-adaptable: adapting the New York Route Availability Planning Tool (RAPT) to Chicago departure airspace

Summary

The Route Availability Planning Tool (RAPT) operational prototype was deployed to Chicago in the summer of 2010, the first RAPT deployment outside of the New York departure airspace for which it was originally developed. The goal of the deployment was to evaluate the adaptability of RAPT's airspace definition, departure management and weather impact models to different terminal areas throughout the National Airspace System (NAS). This report presents the results of a summer-long evaluation of the Chicago RAPT operational prototype, in which the performance of RAPT algorithms and the effectiveness of the RAPT Concept of Operations were assessed. The evaluation included observations made by researchers simultaneously stationed at O'Hare terminal (ORD), the Chicago TRACON (C90), and the Chicago Air Route Traffic Control Center (ZAU) during several days of convective weather impact and post-event analysis of air traffic data from the Enhanced Traffic Management System (ETMS) and RAPT weather impact predictions and departure management guidance. The study found that significant departure delay reduction could be achieved through the use of RAPT in Chicago, and that RAPT effectiveness in "typical" corner post airspaces like Chicago could be further increased with some modifications to the Concept of Operations, user training, and site adaptation.
READ LESS

Summary

The Route Availability Planning Tool (RAPT) operational prototype was deployed to Chicago in the summer of 2010, the first RAPT deployment outside of the New York departure airspace for which it was originally developed. The goal of the deployment was to evaluate the adaptability of RAPT's airspace definition, departure management...

READ MORE

Route availability planning tool evaluation vizualizations for the New York and Chigaco departure flows

Published in:
AIAA Infotech at Aerospace Conf. and Exhibit, 29-31 March 2011.

Summary

When operationally significant weather affects a region of the National Airspace System (NAS) a Severe Weather Avoidance Program (SWAP) is initiated for that region. Each SWAP event is a unique mix of demand, weather conditions, traffic flow management (TFM) initiatives and traffic movement. On the day following a SWAP, the SWAP events are reviewed by FAA and airline representatives as part of the daily planning teleconference, and the TFM initiatives used are evaluated to understand their impact on the traffic flows, benefits, and disadvantages. Due to the complexity of the situation various exploratory visualizations were designed in order to evaluate aspects of the aviation environment and the responsive actions of the NAS during outbreaks of convective weather as well as to gain insights on the interaction of weather and traffic operations. From these visualizations, analyses and metrics were developed that could be used to objectively evaluate the effectiveness of TMIs. This paper will present three visualizations that have directly resulted in the development of analyses for TMIs or lead to insights into air traffic operations.
READ LESS

Summary

When operationally significant weather affects a region of the National Airspace System (NAS) a Severe Weather Avoidance Program (SWAP) is initiated for that region. Each SWAP event is a unique mix of demand, weather conditions, traffic flow management (TFM) initiatives and traffic movement. On the day following a SWAP, the...

READ MORE

Modeling convective weather avoidance of arrivals in the terminal airspace

Published in:
2nd Aviation, Range, and Aerospace Meteorology Special Symp. on Weather-Air Traffic Management Integration, 22-27 January 2011.

Summary

For several years the NASA sponsored Convective Weather Avoidance Model (CWAM) has been under development at Lincoln Lab to correlate pilot behavior with observable weather parameters available from convective weather systems. To date, the current CWAM has focused primarily on the enroute airspace used by aircraft at cruise altitude. At these altitudes there is a strong correlation between the observable echo tops from the Corridor Integrated Weather System (CIWS) and the probability that a pilot will deviate around weather. The CWAM has lead to the development of a Weather Avoidance Field (WAF) that combines the echo tops and vertically integrated liquid (VIL) into a probabilistic forecast of the likelihood of pilot deviation. In recent years the WAF has become widely acceptance as a reliable indicator of the impact of convective weather on air traffic operations. This paper will explore the adaptation of the CWAM into the terminal airspace with a focus on the weather impact on arrival decision making. A database of convective weather impacts on several major terminals from 2009 has been collected and identification of the impact on arriving aircraft has begun. Past studies of terminal weather impact have identified aircraft that penetrated severe weather or made clear deviations around convective cells within the terminal. This study will expand the definition of an impact to identify pilot decision making occurring outside of the terminal with regard to the expected weather impact upon arrival in the terminal. Examples include rerouting to an alternate corner post, holding in enroute airspace, or diverting to an alternate airport when weather is expected along the planned terminal trajectory. These types of terminal weather avoidance decisions can often be made many miles outside of the terminal. The enroute CWAM uses spatial filters applied to the echo tops and VIL to obtain the best correlation between the weather and pilot behavior. This paper will evaluate the current CWAM filters and identify alternate spatial filters or additional weather products that may best correlate pilot decision making in the terminal. Ultimately the goal of this work is provide ATC managers and automated decision supports tools with a weather avoidance field for effective management of convective weather in terminal airspace.
READ LESS

Summary

For several years the NASA sponsored Convective Weather Avoidance Model (CWAM) has been under development at Lincoln Lab to correlate pilot behavior with observable weather parameters available from convective weather systems. To date, the current CWAM has focused primarily on the enroute airspace used by aircraft at cruise altitude. At...

READ MORE

Assessment and interpretation of en route Weather Avoidance Fields from the Convective Weather Avoidance Model

Published in:
ATIO 2010: 10th AIAA Aviation Technology Integration and Operations Conf., 13-15 September 2010.

Summary

This paper presents the results of a study to quantify the performance of Weather Avoidance Fields in predicting the operational impact of convective weather on en route airspace. The Convective Weather Avoidance Model identifies regions of convective weather that pilots are likely to avoid based upon an examination of the planned and actual flight trajectories in regions of weather impact. From this model and a forecast of convective weather from the Corridor Integrated Weather System a probabilistic Weather Avoidance Field can be provided to automated decision support systems of the future impact of weather on the air traffic control system. This paper will present three alternative spatial filters for the Convective Weather Avoidance Model, quantify their performance, address deficiencies in performance, and suggest potential improvements by looking at the ATC environment and common situational awareness between the cockpit and air traffic control.
READ LESS

Summary

This paper presents the results of a study to quantify the performance of Weather Avoidance Fields in predicting the operational impact of convective weather on en route airspace. The Convective Weather Avoidance Model identifies regions of convective weather that pilots are likely to avoid based upon an examination of the...

READ MORE

An algorithm to identify robust convective weather avoidance polygons in en route airspace

Published in:
ATIO 2010: 10th AIAA Aviation Technology Integration and Operations Conf., 13-15 September 2010.

Summary

The paper describes an algorithm for constructing convective weather avoidance polygons. The algorithm combines weather avoidance fields (WAF) from the en route convective weather avoidance model (CWAM) with edges automatically detected in the echo tops field, clustering, convex hull fitting and wind data to build weather avoidance polygons. Results for 2 case days with significantly different weather patterns were classified and studied.
READ LESS

Summary

The paper describes an algorithm for constructing convective weather avoidance polygons. The algorithm combines weather avoidance fields (WAF) from the en route convective weather avoidance model (CWAM) with edges automatically detected in the echo tops field, clustering, convex hull fitting and wind data to build weather avoidance polygons. Results for...

READ MORE

Predictive modeling of forecast uncertainty in the Route Availability Planning Tool (RAPT)

Published in:
2010 Intl. Conf. on Scientific Computing, CSC, 12-15 July 2010.

Summary

MIT Lincoln Laboratory has developed the Route Availability Planning Tool (RAPT), which provides automated convective weather guidance to air traffic managers of the NYC metro region. Prior studies of RAPT have shown high-accuracy guidance from forecast weather, but further refinements to prevent forecast misclassification is still desirable. An attribute set of highly correlated predictors for forecast misclassification is identified. Using this attribute set, a variety of prediction models for forecast misclassification are generated and evaluated. Rule-based models, decision trees, multi-layer perceptrons, and Bayesian prediction model techniques are used. Filtering, resampling, and attribute selection methods are applied to refine model generation. Our results show promising accuracy rates for multi-layer perceptrons trained on full attribute sets.
READ LESS

Summary

MIT Lincoln Laboratory has developed the Route Availability Planning Tool (RAPT), which provides automated convective weather guidance to air traffic managers of the NYC metro region. Prior studies of RAPT have shown high-accuracy guidance from forecast weather, but further refinements to prevent forecast misclassification is still desirable. An attribute set...

READ MORE