Publications

Refine Results

(Filters Applied) Clear All

Weather information requirements for terminal air traffic control automation

Published in:
Fourth Int. Conf. on Aviation Weather Systems, 24-28 June 1991, pp. 208-214.

Summary

Aviation operations in the airport terminal area, where flights converge from a number of directions onto one or two active runways, create a fundamental limitation on the capacity of the national airspace system. The U.S. Federal Aviation Administration (FAA) has recognized that the throughput of existing terminals can be increased significantly by providing the terminal air traffic control team with Terminal Air Traffic Control Automation (TATCA) tools that increase the efficiency of individual controller tasks and provide a dynamic, overall plan for traffic management throughout the terminal control region (Andrews and Welch, 1989). This latter function relies on accurate projection of traffic flow into the future (0-30 minutes) in order to automatically examine the many possible permutations of control actions. The result is a coordinated plan for the multiple (four to ten) control positions involved in the decision making processes that determine end-capacity at the runways. The FAA has launched an intensive effort to develop and implement TATCA capabilities by taking advantage of preparatory work done at NASA Ames Research Center, MITRE Corporation, and M.I.T. Lincoln Laboratory. An initial TATCA configuration, the Final Approach Spacing Tool (FAST), will be evaluated in the field beginning in 1993 and will be scheduled for possible national implementation two years later. Estimates of the economic value of TATCA-generated operational improvements, when implemented at major airports nationwide, are expected to be over $1 billion yearly by the year 2000 in reduced fuel consumption, other air carrier operating costs, and passenger time (Boswell et al., 1990). Since TATCA is first and foremost a planning system, the primary impacts of weather upon T ATCA performance involve disruption of planning. This can occur because of sudden or unexpected changes in routing, runway availability, or separation standards. In addition, errors in estimated wind produce errors in time-to-fly predictions made by the TATCA planning logic. The TATCA system must be robust with respect to weather events that commonly occur in its region of operation. This paper describes an initial study of the weather information requirements for TATCA, and their relationship to current and future systems for measurement, integration, forecasting and dissemination of meteorological data in the terminal area. A major goal is to stress the need for close coupling between ongoing initiatives in weather sensing/forecasting in the airport terminal area, and air-space capacity enhancement programs.
READ LESS

Summary

Aviation operations in the airport terminal area, where flights converge from a number of directions onto one or two active runways, create a fundamental limitation on the capacity of the national airspace system. The U.S. Federal Aviation Administration (FAA) has recognized that the throughput of existing terminals can be increased...

READ MORE

Vertical reflectivity profiles: averaged storm structures and applications to fan-beam radar weather detection in the U.S.

Published in:
16th Conf. on Severe Local Storms/Conf. on Atmospheric Electricity, 22-26 October 1990, pp. 213-218.

Summary

The FAA is deploying over 100 next generation airport surveillance radars (ASR-9) at selected major airports across the country. Like previous ASRs, the ASR-9 utilizes dual broad elevation fan beams Figure 1) along with a rapid scan rate (12.5 RPM to exercise its primary function of detecting aircraft over a 60 nmi radius. In addition, the ASR-9 has a separate dedicated weather reflectivity channel which allows air traffic controllers to display quantitative precipitation intensity reports corresponding to the NWS six-level intensity scale on their PPI display. The 30 second update rate of the weather channel coupled with the large sample volume swept by the ASR-9 fan-beam combine to provide timely and useful indications of precipitation intensity within the terminal airspace. The PPI display of precipitation intensity which is presented to the air traffic controller is essentially a 2-D representation of the 3-D reflectivity field sampled by the fan-shaped beam of the ASR-9. Since the antenna gain varies with elevation angle (Figure 1), the parameter reopned by the ASR-9 weather channel represents a beam-weighted, vertically averaged estimate of storm intensity. Previous research has shown that the vertically integrated reflectivity automatically reported by fan-beam radars such as the ASR-9 correlates well with estimates of vertically integrated liquid water content (VIL), a useful meteorological parameter which is a measure of overall storm intensity. Dobson found a linear relationship between W and fan-beam reflectivity from 30 to 60 dBZ assuming the beam is filled with precipitation (see discussion in Section 4). If the beam is non-uniformly or only partially filled with precipitation, then the inherent vertical integration introduced by the fan-beam may cause an underestimation of the storm intensity. This beam filling loss is most acute at long range, where the vertical extent of the beam intercepts more than 10 km of altitude. The magnitude of this error depends on the complex interaction between the vertical reflectivity structure of the storm and its interception by the fan-shaped beam. If the shape and altitude extent of the vertical reflectivity profile (such as could be provided by a pencil-beam radar) are known, then a suitable adjustment can be calculated and applied to the fan-beam reflectivity estimate in order to produce the desired reflectivity report. The six-level weather thresholds are stored in processor memory for each range sate as functions of receive beam (high or low). The thresholds can be adjusted to compensate for beam filling losses. The adjustments initially implemented in the ASR-9 were derived using a reflectivity profile model which assumes the maximum reflectivity of the storm is distributed constantly from the surface up to 4 km, and then falls off at 3 dBZ per km above 4 km. The success of the reflectivity correction depends on how well the model profile matches actual storm profiles. If regional variations in general storm morphology are significant, then different beam filling loss correction models may need to be developed for specific regions. Understanding the significance of these regional variations in storm vertical reflectivity structure and their impact on ASR-9 weather report accuracy provided the motivation for this study.
READ LESS

Summary

The FAA is deploying over 100 next generation airport surveillance radars (ASR-9) at selected major airports across the country. Like previous ASRs, the ASR-9 utilizes dual broad elevation fan beams Figure 1) along with a rapid scan rate (12.5 RPM to exercise its primary function of detecting aircraft over a...

READ MORE

Beam filling loss adjustments for ASR-9 weather channel reflectivity estimates

Published in:
MIT Lincoln Laboratory Report ATC-177

Summary

The FAA is deploying over 100 new ariport surveillance radars (ASR-9) across the country. In contrast to earlier ASRs, the ASR-9 utilized a separate digital weather processing channel to provide air traffic controllers with timely, calibrated displays of precipitation intensity. The ASR-9 utilizes dual selectable fan-shaped elevation beams designed to track aircraft over a large volume. As a consequence, weather echoes received from these fan-shaped beams represent vertically-averaged quantities. If the precipitation only partially or nonuniformly fills the beam, then the vertically integrated reflectivity may underestimate the actual intensity of the storm. The ASR-9 weather channel corrects for this by adjusting the range-dependent six-level relfectivity thresholds. The appropriateness of the currently implemented correction has not been carefully examined and may require modification to take into account regional and morphological variability in storm structure. This report discusses the method used to derive new beam filling loss adjustments. An extensive database of volumetric pencil-beam radar data were used in conjunction with our ASR-9 simulation facility to derive adjustments aimed at calibrating the precipitation intensity reports to the maximum perceived hazard. The new corrections yield substantially improved results over the current corrections in producing these reflectivity reports.
READ LESS

Summary

The FAA is deploying over 100 new ariport surveillance radars (ASR-9) across the country. In contrast to earlier ASRs, the ASR-9 utilized a separate digital weather processing channel to provide air traffic controllers with timely, calibrated displays of precipitation intensity. The ASR-9 utilizes dual selectable fan-shaped elevation beams designed to...

READ MORE

ASR-9 weather channel test report

Published in:
MIT Lincoln Laboratory Report ATC-165

Summary

The ASR-9, the next generation airport surveillance radar, will be deployed by the FAA at over 100 locations throughout the United States. The system includes a weather channel designed to provide ATC personnel with timely and accurate weather reflectivity information as a supplement to normal aircraft information. This report presents results of an assessment of the ASR-9 weather channel performance. Two issues addressed are: (1) whether the ASR-9 weather channel performs according to FAA specifications, and (2) whether the ASR-9 weather channel adequately represents weather reflectivity for ATC purposes. These measurement results are intended to support the FAA in developing the operational use of ASR-9 weather information. Comparisons between data from an ASR-9 in Huntsville, Alabama, recorded during design qualification and testing, and data from two other "reference" radars were used as the basis for the assessment. Several storm cases were analyzed, comprised of stratiform rain, isolated convective storms, squall lines, and cold fronts containing multiple simultaneous convective storms. Results suggest that, with the exception of an apparent 3 dB discrepancy between the weather products of the ASR-9 and the "reference" radars, the ASR-9 weather channel seems to perform according to FAA specifications. Although the ASR-9 products give a reasonable representation of the extent and severity of potentially hazardous weather in Huntsville, the results suggest that the static storm model used to determine beamfill corrections for the ASR-9 should be optimized for the particular climatic region in which an ASR-9 will be operated.
READ LESS

Summary

The ASR-9, the next generation airport surveillance radar, will be deployed by the FAA at over 100 locations throughout the United States. The system includes a weather channel designed to provide ATC personnel with timely and accurate weather reflectivity information as a supplement to normal aircraft information. This report presents...

READ MORE

ASR-9 weather channel test report, executive summary

Author:
Published in:
MIT Lincoln Laboratory Report ATC-168

Summary

The ASR-9, the next generation Airport surveillance radar, will be deployed by the FAA at over 100 locations throughout the United States. The system includes a weather channel designed to provide ATC personnel with timely and accurate weather reflectivity information as a supplement to normal aircraft information. Comparisons between data from an ASR-9 in Huntsville, Alabama, recorded during design qualification and testing, and data from two other "reference" radars, were used as the basis for assessment of ASR-9 weather channel performance. Results suggest that, with the exception of an apparent 3 dB discrepancy between the weather products of the ASR-9 and the "reference" radars, the ASR-9 weather channel seems to perform according to FAA specifications.
READ LESS

Summary

The ASR-9, the next generation Airport surveillance radar, will be deployed by the FAA at over 100 locations throughout the United States. The system includes a weather channel designed to provide ATC personnel with timely and accurate weather reflectivity information as a supplement to normal aircraft information. Comparisons between data...

READ MORE