Publications

Refine Results

(Filters Applied) Clear All

Reliable large format arrays of Geiger-mode avalanche photodiodes

Published in:
IPRM 2008, 20th Int. Conf. on Indium Phosphide and Related Materials, 25-29 May 2008.
Topic:

Summary

The fabrication of reliable InP-based Geigermode avalanche photodiode arrays is described. Arrays of up to 256 x 64 elements have been produced and mated to silicon read-out circuits forming single-photon infrared focal plane imagers for 1.06 and 1.5 mum applications.
READ LESS

Summary

The fabrication of reliable InP-based Geigermode avalanche photodiode arrays is described. Arrays of up to 256 x 64 elements have been produced and mated to silicon read-out circuits forming single-photon infrared focal plane imagers for 1.06 and 1.5 mum applications.

READ MORE

Slab-coupled optical waveguide photodiode

Published in:
CLEO-QELS, 2008 Conf. on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conf., 4-9 May 2008.
Topic:

Summary

We report the first high-current photodiode based on the slab-coupled optical waveguide concept. The device has a large mode (5.8 x 7.6 um) and ultra-low optical confinement ([] ~ 0.05%), allowing a 2-mm absorption length. The maximum photocurrent obtained was 250 mA (R = 0.8-A/W) at 1.55 um.
READ LESS

Summary

We report the first high-current photodiode based on the slab-coupled optical waveguide concept. The device has a large mode (5.8 x 7.6 um) and ultra-low optical confinement ([] ~ 0.05%), allowing a 2-mm absorption length. The maximum photocurrent obtained was 250 mA (R = 0.8-A/W) at 1.55 um.

READ MORE

Arrays of InP-based avalanche photodiodes for photon counting

Summary

Arrays of InP-based avalanche photodiodes (APDs) with InGaAsP absorber regions have been fabricated and characterized in the Geiger mode for photon-counting applications. Measurements of APDs with InGaAsP absorbers optimized for 1.06 um wavelength show dark count rates (DCRs)
READ LESS

Summary

Arrays of InP-based avalanche photodiodes (APDs) with InGaAsP absorber regions have been fabricated and characterized in the Geiger mode for photon-counting applications. Measurements of APDs with InGaAsP absorbers optimized for 1.06 um wavelength show dark count rates (DCRs)

READ MORE

Afterpulsing in Geiger-mode avalanche photodiodes for 1.06um wavelength

Summary

We consider the phenomenon of afterpulsing in avalanche photodiodes (APDs) operating in gated and free-running Geiger mode. An operational model of afterpulsing and other noise characteristics of APDs predicts the noise behavior observed in the free-running mode. We also use gated-mode data to investigate possible sources of afterpulsing in these devices. For 30-um-diam, 1.06-um-wavelength InGaAsP/InP APDs operated at 290 K and 4 V overbias, we obtained a dominant trap lifetime of td=0.32 us, a trap energy of 0.11 eV, and a baseline dark count rate 245 kHz.
READ LESS

Summary

We consider the phenomenon of afterpulsing in avalanche photodiodes (APDs) operating in gated and free-running Geiger mode. An operational model of afterpulsing and other noise characteristics of APDs predicts the noise behavior observed in the free-running mode. We also use gated-mode data to investigate possible sources of afterpulsing in these...

READ MORE

InGaAsP/InP quantum-well electrorefractive modulators with sub-volt V[pi]

Published in:
SPIE Vol. 5435, Enabling Photonic Technologies for Aerospace Applications VI, 12-16 April 2004, pp. 53-63.

Summary

Advanced analog-optical sensor, signal processing and communication systems could benefit significantly from wideband (DC to > 50 GHz) optical modulators having both low half-wave voltage (V[pi]) and low optical insertion loss. An important figure-of-merit for modulators used in analog applications is TMAX/V[pi], where TMAX is the optical transmission of the modulator when biased for maximum transmission. Candidate electro-optic materials for realizing these modulators include lithium niobate (LiNbO3), polymers, and semiconductors, each of which has its own set of advantages and disadvantages. In this paper, we report the development of 1.5-um-wavelength Mach-Zehnder modulators utilizing the electrorefractive effect in InGaAsP/InP symmetric, uncoupled semiconductor quantum-wells. Modulators with 1-cm-long, lumped-element electrodes are found to have a push-pull V[pi] of 0.9V (V[pi]L = 9 V-mm) and 18-dB fiber-to-fiber insertion loss (TMAX/V[pi] = 0.018). Fabry-Perot cutback measurements reveal a waveguide propagation loss of 7 dB/cm and a waveguide-to-fiber coupling loss of 5 dB/facet. The relatively high propagation loss results from a combination of below-bandedge absorption and scattering due to waveguide-sidewall roughness. Analyses show that most of the coupling loss can be eliminated though the use of monolithically integrated invertedtaper optical-mode converters, thereby allowing these modulators to exceed the performance of commercial LiNbO3 modulators (TMAX/V[pi] ~ 0.1). We also report the analog modulation characteristics of these modulators.
READ LESS

Summary

Advanced analog-optical sensor, signal processing and communication systems could benefit significantly from wideband (DC to > 50 GHz) optical modulators having both low half-wave voltage (V[pi]) and low optical insertion loss. An important figure-of-merit for modulators used in analog applications is TMAX/V[pi], where TMAX is the optical transmission of the...

READ MORE