Publications

Refine Results

(Filters Applied) Clear All

Coherent beam-combining of quantum cascade amplifier arrays

Summary

We present design, packaging and coherent beam combining of quantum cascade amplifier (QCA) arrays, measurements of QCA phase noise, the drive-current-to-optical-phase transfer function, and the small signal gain for QCAs.
READ LESS

Summary

We present design, packaging and coherent beam combining of quantum cascade amplifier (QCA) arrays, measurements of QCA phase noise, the drive-current-to-optical-phase transfer function, and the small signal gain for QCAs.

READ MORE

Model of turn-on characteristics of InP-based Geiger-mode avalanche photodiodes suitable for circuit simulations

Published in:
SPIE, Vol. 9492, Advanced Photon Counting Techniques IX, 28 May 2015.

Summary

A model for the turn-on characteristics of separate-absorber-multiplier InP-based Geiger-mode Avalanche Photodiodes (APDs) has been developed. Verilog-A was used to implement the model in a manner that can be incorporated into circuit simulations. Rather than using SPICE elements to mimic the voltage and current characteristics of the APD, Verilog-A can represent the first order nonlinear differential equations that govern the avalanche current of the APD. This continuous time representation is fundamentally different than the piecewise linear characteristics of other models. The model is based on a driving term for the differential current, which is given by the voltage overbias minus the voltage drop across the device?s space-charge resistance RSC. This drop is primarily due to electrons transiting the separate absorber. RSC starts off high and decreases with time as the initial breakdown filament spreads laterally to fill the APD. With constant bias voltage, the initial current grows exponentially until space charge effects reduce the driving function. With increasing current the driving term eventually goes to zero and the APD current saturates. On the other hand, if the APD is biased with a capacitor, the driving term becomes negative as the capacitor discharges, reducing the current and driving the voltage below breakdown. The model parameters depend on device design and are obtained from fitting the model to Monte-Carlo turn-on simulations that include lateral spreading of the carriers of the relevant structure. The Monte-Carlo simulations also provide information on the probability of avalanche, and jitter due to where the photon is absorbed in the APD.
READ LESS

Summary

A model for the turn-on characteristics of separate-absorber-multiplier InP-based Geiger-mode Avalanche Photodiodes (APDs) has been developed. Verilog-A was used to implement the model in a manner that can be incorporated into circuit simulations. Rather than using SPICE elements to mimic the voltage and current characteristics of the APD, Verilog-A can...

READ MORE

Optical phased-array ladar

Published in:
Appl. Opt., Vol. 53, No. 31, 1 November 2014, pp. 7551-5.

Summary

We demonstrate a ladar with 0.5 m class range resolution obtained by integrating a continuous-wave optical phased-array transmitter with a Geiger-mode avalanche photodiode receiver array. In contrast with conventional ladar systems, an array of continuous-wave sources is used to effectively pulse illuminate a target by electro-optically steering far-field fringes. From the reference frame of a point in the far field, a steered fringe appears as a pulse. Range information is thus obtained by measuring the arrival time of a pulse return from a target to a receiver pixel. This ladar system offers a number of benefits, including broad spectral coverage, high efficiency, small size, power scalability, and versatility.
READ LESS

Summary

We demonstrate a ladar with 0.5 m class range resolution obtained by integrating a continuous-wave optical phased-array transmitter with a Geiger-mode avalanche photodiode receiver array. In contrast with conventional ladar systems, an array of continuous-wave sources is used to effectively pulse illuminate a target by electro-optically steering far-field fringes. From...

READ MORE

Development of CCDs for REXIS on OSIRIS-REx

Summary

The Regolith x-ray Imaging Spectrometer (REXIS) is a coded-aperture soft x-ray imaging instrument on the OSIRIS-REx spacecraft to be launched in 2016. The spacecraft will fly to and orbit the near-Earth asteroid Bennu, while REXIS maps the elemental distribution on the asteroid using x-ray fluorescence. The detector consists of a 2x2 array of back-illuminated 1kX1k frame transfer CCDs with a flight heritage to Suzaku and Chandra. The back surface has a thing p+-doped layer deposited by molecular-beam epitaxy (MBE) for maximum quantum efficiency and energy resolution at low x-ray energies. The CCDs also feature an integrated optical-blocking filter (OBF) to suppress visible and near-infrared light. The OBF is an aluminum film deposited directly on the CCD back surface and is mechanically more robust and less absorptive of x-rays than the conventional free-standing aluminum-coated polymer films. The CCDs have charge transfer inefficiencies of less than 10^-6, and dark current of le-/pixel/second at the REXIS operating temperature of -60 degrees C. The resulting spectral resolution is 115 eV at 2 KeV. The extinction ratio of the filter is ~10^12 at 625 nm.
READ LESS

Summary

The Regolith x-ray Imaging Spectrometer (REXIS) is a coded-aperture soft x-ray imaging instrument on the OSIRIS-REx spacecraft to be launched in 2016. The spacecraft will fly to and orbit the near-Earth asteroid Bennu, while REXIS maps the elemental distribution on the asteroid using x-ray fluorescence. The detector consists of a...

READ MORE

Active hyperspectral imaging using a quantum cascade laser (QCL) array and digital-pixel focal plane array (DFPA) camera

Summary

We demonstrate active hyperspectral imaging using a quantum-cascade laser (QCL) array as the illumination source and a digital-pixel focal-plane-array (DFPA) camera as the receiver. The multi-wavelength QCL array used in this work comprises 15 individually addressable QCLs in which the beams from all lasers are spatially overlapped using wavelength beam combining (WBC). The DFPA camera was configured to integrate the laser light relfected from the sample and to perform on-chip subtraction of the passive thermal background. A 27-frame hyperspectral image was acquired of a liquid contaminant on a diffuse gold surface at a range of 5 meters. The measured spectral reflectance closely matches the calculated reflectance. Furthermore, the high-speed capabilities of the system were demonstrated by capturing differential reflectance images of sand and KClO3 particles that were moving at speeds of up to 10 m/s.
READ LESS

Summary

We demonstrate active hyperspectral imaging using a quantum-cascade laser (QCL) array as the illumination source and a digital-pixel focal-plane-array (DFPA) camera as the receiver. The multi-wavelength QCL array used in this work comprises 15 individually addressable QCLs in which the beams from all lasers are spatially overlapped using wavelength beam...

READ MORE

Digital pixel CMOS focal plane array with on-chip multiply accumulate units for low-latency image processing

Published in:
SPIE, Vol. 9070, Infrared Technology and Applications XL, 5 May 2014, 90703B.

Summary

A digital pixel CMOS focal plane array has been developed to enable low latency implementations of image processing systems such as centroid trackers, Shack-Hartman wavefront sensors, and Fitts correlation trackers through the use of in-pixel digital signal processing (DSP) and generic parallel pipelined multiply accumulate (MAC) units. Light intensity digitization occurs at the pixel level, enabling in-pixel DSP and noiseless data transfer from the pixel array to the peripheral processing units. The pipelined processing of row and column image data prior to off chip readout reduces the required output bandwidth of the image sensor, thus reducing the latency of computations necessary to implement various image processing systems. Data volume reductions of over 80% lead to sub 10us latency for completing various tracking and sensor algorithms. This paper details the architecture of the pixel-processing imager (PPI) and presents some initial results from a prototype device fabricated in a standard 65nm CMOS process hybridized to a commercial off-the-shelf short-wave infrared (SWIR) detector array.
READ LESS

Summary

A digital pixel CMOS focal plane array has been developed to enable low latency implementations of image processing systems such as centroid trackers, Shack-Hartman wavefront sensors, and Fitts correlation trackers through the use of in-pixel digital signal processing (DSP) and generic parallel pipelined multiply accumulate (MAC) units. Light intensity digitization...

READ MORE

Impact ionization in AlxGa1-xASySb1-y avalanche photodiodes

Summary

Avalanche photodiodes (APDs) have been fabricated in order to determine the impact ionization coefficients of electrons (alpha) and holes (beta) in AlxGa1-xAsySb1-y lattice matched to GaSb for three alloy compositions: (x=0.40, y=0.035), (x=0.55, y=0.045), and (x=0.65, y=0.054). The impact ionization coefficients were calculated from photomultiplication measurements made on specially designed APDs, which allowed for both pure electron and pure hole injection in the same device. Photo-multiplication measurements were made at temperatures ranging from 77K to 300K for all three alloys. A quasi-physical model with an explicit temperature dependence was used to express the impact ionization coefficients as a function of electric-field strength and temperature. For all three alloys, it was found that alpha < beta at any given temperature. In addition, the values of the impact ionization coefficients were found to decrease as the aluminum concentration of the AlGaAsSb alloy was increased. A value between 1.2 and 4.0 was found for beta/x, which is dependent on temperature, alloy composition, and electric-field strength.
READ LESS

Summary

Avalanche photodiodes (APDs) have been fabricated in order to determine the impact ionization coefficients of electrons (alpha) and holes (beta) in AlxGa1-xAsySb1-y lattice matched to GaSb for three alloy compositions: (x=0.40, y=0.035), (x=0.55, y=0.045), and (x=0.65, y=0.054). The impact ionization coefficients were calculated from photomultiplication measurements made on specially designed...

READ MORE

Cryogenically cooled, 149 W, Q-switched, YbLiYF4 laser

Published in:
Opt. Lett., Vol. 38, No. 20, 15 October 2013, pp. 4260-1.

Summary

We demonstrate a 149 W Yb:LiYF4 laser with diffraction-limitation beam quality at 995 nm. The laser, Q-switched at 10 kHz pulse repetition frequency, produces linearly polarized 52 ns pulses with a slope efficiency of 73%. The combination of cryogenic cooling and a low (3.5%) quantum defect results in minimal thermo-optic effects and high thermal efficiency. The measured heat load to the cryogen is 0.15 W per watt of output. These results show the potential for significant power scaling of Q-switched Yb:YLF lasers with excellent beam quality.
READ LESS

Summary

We demonstrate a 149 W Yb:LiYF4 laser with diffraction-limitation beam quality at 995 nm. The laser, Q-switched at 10 kHz pulse repetition frequency, produces linearly polarized 52 ns pulses with a slope efficiency of 73%. The combination of cryogenic cooling and a low (3.5%) quantum defect results in minimal thermo-optic...

READ MORE

Pixel-processing imager development for directed energy applications

Summary

Tactical high-energy laser (HEL) systems face a range of imaging-related challenges in wavefront sensing, acquiring and tracking targets, selecting the HEL aimpoint, and assessing lethality. Accomplishing these functions in a timely fashion may be limited by competing requirements on total field of regard, target resolution, signal to noise, and focal plane readout bandwidth. In this paper, we explore the applicability of an emerging pixel-processing imager (PPI) technology to these challenges. The on-focal-plane signal processing capabilities of the MIT Lincoln Laboratory PPI technology have recently been extended in support of directed energy applications. We describe this work as well as early results from a new PPI-based short-wave-infrared focal plane readout capable of supporting diverse applications such as low-latency Shack-Hartmann wavefront sensing, centroid computation, and Fitts correlation tracking.
READ LESS

Summary

Tactical high-energy laser (HEL) systems face a range of imaging-related challenges in wavefront sensing, acquiring and tracking targets, selecting the HEL aimpoint, and assessing lethality. Accomplishing these functions in a timely fashion may be limited by competing requirements on total field of regard, target resolution, signal to noise, and focal...

READ MORE

Single-mode tapered quantum cascade lasers

Published in:
Appl. Phys. Lett., Vol. 102, No. 18, 6 May 2013.

Summary

We demonstrate tapered quantum cascade lasers monolithically integrated with a distributed Bragg reflector acting as both a wavelength-selective back mirror and a transverse mode filter. Each of the 14 devices operates at a different wavelength between 9.2 and 9.7 um, where nine devices feature single-mode operation at peak powers between 0.3 and 1.6W at room temperature. High output power and excellent beam quality with peak brightness values up to 1.6MW cm^-2 sr^-1 render these two-terminal devices highly suitable for stand-off spectroscopy applications.
READ LESS

Summary

We demonstrate tapered quantum cascade lasers monolithically integrated with a distributed Bragg reflector acting as both a wavelength-selective back mirror and a transverse mode filter. Each of the 14 devices operates at a different wavelength between 9.2 and 9.7 um, where nine devices feature single-mode operation at peak powers between...

READ MORE