Publications

Refine Results

(Filters Applied) Clear All

COVID-19 exposure notification in simulated real-world environments

Summary

Privacy-preserving contact tracing mobile applications, such as those that use the Google-Apple Exposure Notification (GAEN) service, have the potential to limit the spread of COVID-19 in communities, but the privacy-preserving aspects of the protocol make it difficult to assess the performance of the apps in real-world populations. To address this gap, we exercised the CovidWatch app on both Android and iOS phones in a variety of scripted realworld scenarios, relevant to the lives of university students and employees. We collected exposure data from the app and from the lower-level Android service, and compared it to the phones' actual distances and durations of exposure, to assess the sensitivity and specificity of the GAEN service configuration as of February 2021. Based on the app's reported ExposureWindows and alerting thresholds for Low and High alerts, our assessment is that the chosen configuration is highly sensitive under a range of realistic scenarios and conditions. With this configuration, the app is likely to capture many long-duration encounters, even at distances greater than six feet, which may be desirable under conditions with increased risk of airborne transmission.
READ LESS

Summary

Privacy-preserving contact tracing mobile applications, such as those that use the Google-Apple Exposure Notification (GAEN) service, have the potential to limit the spread of COVID-19 in communities, but the privacy-preserving aspects of the protocol make it difficult to assess the performance of the apps in real-world populations. To address this...

READ MORE

Bluetooth Low Energy (BLE) Data Collection for COVID-19 Exposure Notification

Summary

Privacy-preserving contact tracing mobile applications, such as those that use the Google-Apple Exposure Notification (GAEN) service, have the potential to limit the spread of COVID-19 in communities; however, the privacy-preserving aspects of the protocol make it difficult to assess the performance of the Bluetooth proximity detector in real-world populations. The GAEN service configuration of weights and thresholds enables hundreds of thousands of potential configurations, and it is not well known how the detector performance of candidate GAEN configurations maps to the actual "too close for too long" standard used by public health contact tracing staff. To address this gap, we exercised a GAEN app on Android phones at a range of distances, orientations, and placement configurations (e.g., shirt pocket, bag, in hand), using RF-analogous robotic substitutes for human participants. We recorded exposure data from the app and from the lower-level Android service, along with the phones' actual distances and durations of exposure.
READ LESS

Summary

Privacy-preserving contact tracing mobile applications, such as those that use the Google-Apple Exposure Notification (GAEN) service, have the potential to limit the spread of COVID-19 in communities; however, the privacy-preserving aspects of the protocol make it difficult to assess the performance of the Bluetooth proximity detector in real-world populations. The...

READ MORE

Geographic source estimation using airborne plant environmental DNA in dust

Summary

Information obtained from the analysis of dust, particularly biological particles such as pollen, plant parts, and fungal spores, has great utility in forensic geolocation. As an alternative to manual microscopic analysis of dust components, we developed a pipeline that utilizes the airborne plant environmental DNA (eDNA) in settled dust to estimate geographic origin. Metabarcoding of settled airborne eDNA was used to identify plant species whose geographic distributions were then derived from occurrence records in the USGS Biodiversity in Service of Our Nation (BISON) database. The distributions for all plant species identified in a sample were used to generate a probabilistic estimate of the sample source. With settled dust collected at four U.S. sites over a 15-month period, we demonstrated positive regional geolocation (within 600 km2 of the collection point) with 47.6% (20 of 42) of the samples analyzed. Attribution accuracy and resolution was dependent on the number of plant species identified in a dust sample, which was greatly affected by the season of collection. In dust samples that yielded a minimum of 20 identified plant species, positive regional attribution was achieved with 66.7% (16 of 24 samples). For broader demonstration, citizen-collected dust samples collected from 31 diverse U.S. sites were analyzed, and trace plant eDNA provided relevant regional attribution information on provenance in 32.2% of samples. This showed that analysis of airborne plant eDNA in settled dust can provide an accurate estimate regional provenance within the U.S., and relevant forensic information, for a substantial fraction of samples analyzed.
READ LESS

Summary

Information obtained from the analysis of dust, particularly biological particles such as pollen, plant parts, and fungal spores, has great utility in forensic geolocation. As an alternative to manual microscopic analysis of dust components, we developed a pipeline that utilizes the airborne plant environmental DNA (eDNA) in settled dust to...

READ MORE

Showing Results

1-3 of 3