Publications

Refine Results

(Filters Applied) Clear All

Autoregressive HMM speech synthesis

Author:
Published in:
Proc. IEEE Int. Conf. on Acoustics, Speech and Signal Processing, ICASSP, 25-30 March 2012, pp. 4021-4.

Summary

Autoregressive HMM modeling of spectral features has been proposed as a replacement for standard HMM speech synthesis. The merits of the approach are explored, and methods for enforcing stability of the estimated predictor coefficients are presented. It appears that rather than directly estimating autoregressive HMM parameters, greater synthesis accuracy is obtained by estimating the autoregressive HMM parameters by using a more traditional HMM recognition system to compute state-level posterior probabilities that are then used to accumulate statistics to estimate predictor coefficients. The result is a simplified mathematical framework that requires no modeling of derivatives and still provides smooth synthesis without unnatural spectral discontinuities. The resulting synthesis algorithm involves no matrix solves and may be formulated causally, and appears to result in quality very similar to that of more traditional HMM synthesis approaches. This paper describes the implementation of a complete Autoregressive HMM LVCSR system and its application for synthesis, and describes the preliminary synthesis results.
READ LESS

Summary

Autoregressive HMM modeling of spectral features has been proposed as a replacement for standard HMM speech synthesis. The merits of the approach are explored, and methods for enforcing stability of the estimated predictor coefficients are presented. It appears that rather than directly estimating autoregressive HMM parameters, greater synthesis accuracy is...

READ MORE

Preserving the character of perturbations in scaled pitch contours

Published in:
Proc. IEEE Int. Conf. on Acoustics, Speech, and Signal Processing, ICASSP, 5 March 2010, pp. 417-420.

Summary

The global and fine dynamic components of a pitch contour in voice production, as in the speaking and singing voice, are important for both the meaning and character of an utterance. In speech, for example, slow pitch inflections, rapid pitch accents, and irregular regions all comprise the pitch contour. In applications where all components of a pitch contour are stretched or compressed in the same way, as for example in time-scale modification, an unnatural scaled contour may result. In this paper, we develop a framework for scaling pitch contours, motivated by the goal of maintaining naturalness in time-scale modification of voice. Specifically, we develop a multi-band algorithm to independently modify the slow trajectory and fast perturbation components of a contour for a more natural synthesis, and we present examples where pitch contours representative of speaking and singing voice are lengthened. In the speaking voice, the frequency content of flutter or irregularity is maintained, while slow pitch inflection is simply stretched or compressed. In the singing voice, rapid vibrato is preserved while slower note-to-note variation is scaled as desired.
READ LESS

Summary

The global and fine dynamic components of a pitch contour in voice production, as in the speaking and singing voice, are important for both the meaning and character of an utterance. In speech, for example, slow pitch inflections, rapid pitch accents, and irregular regions all comprise the pitch contour. In...

READ MORE

Kalman filter based speech synthesis

Author:
Published in:
Proc. IEEE Int. Conf. on Acoustics, Speech, and Signal Processing, ICASSP, 15 March 2010, pp. 4618-4621.

Summary

Preliminary results are reported from a very simple speech-synthesis system based on clustered-diphone Kalman Filter based modeling of line-spectral frequency based features. Parameters were estimated using maximum-likelihood EM training, with a constraint enforced that prevented eigenvalue magnitudes in the transition matrix from exceeding 1. Frames of training data were assigned diphone unit labels by forced alignment with an HMM recognition system. The HMM cluster tree was also used for Kalman Filter unit cluster assignments. The result is a simple synthesis system that has few parameters, synthesizes intelligible speech without audible discontinuities, and that can be adapted using MLLR techniques to support synthesis of a broad panoply of speakers from a single base model with small amounts of training data. The result is interesting for embedded synthesis applications.
READ LESS

Summary

Preliminary results are reported from a very simple speech-synthesis system based on clustered-diphone Kalman Filter based modeling of line-spectral frequency based features. Parameters were estimated using maximum-likelihood EM training, with a constraint enforced that prevented eigenvalue magnitudes in the transition matrix from exceeding 1. Frames of training data were assigned...

READ MORE

Cognitive services for the user

Published in:
Chapter 10, Cognitive Radio Technology, 2009, pp. 305-324.

Summary

Software-defined cognitive radios (CRs) use voice as a primary input/output (I/O) modality and are expected to have substantial computational resources capable of supporting advanced speech- and audio-processing applications. This chapter extends previous work on speech applications (e.g., [1]) to cognitive services that enhance military mission capability by capitalizing on automatic processes, such as speech information extraction and understanding the environment. Such capabilities go beyond interaction with the intended user of the software-defined radio (SDR) - they extend to speech and audio applications that can be applied to information that has been extracted from voice and acoustic noise gathered from other users and entities in the environment. For example, in a military environment, situational awareness and understanding could be enhanced by informing users based on processing voice and noise from both friendly and hostile forces operating in a given battle space. This chapter provides a survey of a number of speech- and audio-processing technologies and their potential applications to CR, including: - A description of the technology and its current state of practice. - An explanation of how the technology is currently being applied, or could be applied, to CR. - Descriptions and concepts of operations for how the technology can be applied to benefit users of CRs. - A description of relevant future research directions for both the speech and audio technologies and their applications to CR. A pictorial overview of many of the core technologies with some applications presented in the following sections is shown in Figure 10.1. Also shown are some overlapping components between the technologies. For example, Gaussian mixture models (GMMs) and support vector machines (SVMs) are used in both speaker and language recognition technologies [2]. These technologies and components are described in further detail in the following sections. Speech and concierge cognitive services and their corresponding applications are covered in the following sections. The services covered include speaker recognition, language identification (LID), text-to-speech (TTS) conversion, speech-to-text (STT) conversion, machine translation (MT), background noise suppression, speech coding, speaker characterization, noise management, noise characterization, and concierge services. These technologies and their potential applications to CR are discussed at varying levels of detail commensurate with their innovation and utility.
READ LESS

Summary

Software-defined cognitive radios (CRs) use voice as a primary input/output (I/O) modality and are expected to have substantial computational resources capable of supporting advanced speech- and audio-processing applications. This chapter extends previous work on speech applications (e.g., [1]) to cognitive services that enhance military mission capability by capitalizing on automatic...

READ MORE

Sinewave analysis/synthesis based on the fan-chirp transform

Published in:
Proc. IEEE Workshop on Applications of Signal Processing to Audio and Acoustics, WASPA, 21-24 October 2007, pp. 247-250.

Summary

There have been numerous recent strides at making sinewave analysis consistent with time-varying sinewave models. This is particularly important in high-frequency speech regions where harmonic frequency modulation (FM) can be significant. One notable approach is through the Fan Chirp transform that provides a set of FM-sinewave basis functions consistent with harmonic FM. In this paper, we develop a complete sinewave analysis/synthesis system using the Fan Chirp transform. With this system we are able to obtain more accurate sinewave frequencies and phases, thus creating more accurate frequency tracks, in contrast to a system derived from the short-time Fourier transform, particularly for high-frequency regions of large-bandwidth analysis. With synthesis, we show an improvement in segmental signal-to-noise ratio with respect to waveform matching with the largest gains during rapid pitch dynamics.
READ LESS

Summary

There have been numerous recent strides at making sinewave analysis consistent with time-varying sinewave models. This is particularly important in high-frequency speech regions where harmonic frequency modulation (FM) can be significant. One notable approach is through the Fan Chirp transform that provides a set of FM-sinewave basis functions consistent with...

READ MORE

Pitch-scale modification using the modulated aspiration noise source

Published in:
INTERSPEECH, 17-21 September 2006.

Summary

Spectral harmonic/noise component analysis of spoken vowels shows evidence of noise modulations with peaks in the estimated noise source component synchronous with both the open phase of the periodic source and with time instants of glottal closure. Inspired by this observation of natural modulations and of fullband energy in the aspiration noise source, we develop an alternate approach to high-quality pitch-scale modification of continuous speech. Our strategy takes a dual processing approach, in which the harmonic and noise components of the speech signal are separately analyzed, modified, and re-synthesized. The periodic component is modified using standard modification techniques, and the noise component is handled by modifying characteristics of its source waveform. Since we have modeled an inherent coupling between the periodic and aspiration noise sources, the modification algorithm is designed to preserve the synchrony between temporal modulations of the two sources. The reconstructed modified signal is perceived in informal listening to be natural-sounding and typically reduces artifacts that occur in standard modification techniques.
READ LESS

Summary

Spectral harmonic/noise component analysis of spoken vowels shows evidence of noise modulations with peaks in the estimated noise source component synchronous with both the open phase of the periodic source and with time instants of glottal closure. Inspired by this observation of natural modulations and of fullband energy in the...

READ MORE

Synthesis, analysis, and pitch modification of the breathy vowel

Published in:
2005 Workshop on Applications of Signal Processing to Audio and Acoustics (WASPAA), 16-19 October 2005, pp. 199-202.

Summary

Breathiness is an aspect of voice quality that is difficult to analyze and synthesize, especially since its periodic and noise components are typically overlapping in frequency. The decomposition and manipulation of these two components is of importance in a variety of speech application areas such as text-to-speech synthesis, speech encoding, and clinical assessment of disordered voices. This paper first investigates the perceptual relevance of a speech production model that assumes the speech noise component is modulated by the glottal airflow waveform. After verifying the importance of noise modulation in breathy vowels, we use the modulation model to address the particular problem of pitch modification of this signal class. Using a decomposition method referred to as pitch-scaled harmonic filtering to extract the additive noise component, we introduce a pitch modification algorithm that explicitly modifies the modulation characteristic of this noise component. The approach applies envelope shaping to the noise source that is derived from the inverse-filtered noise component. Modification examples using synthetic and real breathy vowels indicate promising performance with spectrally-overlapping periodic and noise components.
READ LESS

Summary

Breathiness is an aspect of voice quality that is difficult to analyze and synthesize, especially since its periodic and noise components are typically overlapping in frequency. The decomposition and manipulation of these two components is of importance in a variety of speech application areas such as text-to-speech synthesis, speech encoding...

READ MORE

'Perfect reconstruction' time-scaling filterbanks

Published in:
Proc. IEEE Int. Conf. on Acoustics, Speech and Signal Processing, ICASSP, Vol. III, 15-19 March 1999, pp. 945-948.

Summary

A filterbank-based method of time-scale modification is analyzed for elemental signals including clicks, sines, and AM-FM sines. It is shown that with the use of some basic properties of linear systems, as well as FM-to-AM filter transduction, "perfect reconstruction" time-scaling filterbanks can be constructed for these elemental signal classes under certain conditions on the filterbank. Conditions for perfect reconstruction time-scaling are shown analytically for the uniform filterbank case, while empirically for the nonuniform constant-Q (gammatone) case. Extension of perfect reconstruction to multi-component signals is shown to require both filterbank and signal-dependent conditions and indicates the need for a more complete theory of "perfect reconstruction" time-scaling filterbanks.
READ LESS

Summary

A filterbank-based method of time-scale modification is analyzed for elemental signals including clicks, sines, and AM-FM sines. It is shown that with the use of some basic properties of linear systems, as well as FM-to-AM filter transduction, "perfect reconstruction" time-scaling filterbanks can be constructed for these elemental signal classes under...

READ MORE

Audio signal processing based on sinusoidal analysis/synthesis

Published in:
Chapter 9 in Applications of Digital Signal Processing to Audio and Acoustics, 1998, pp. 343-416.

Summary

Based on a sinusoidal model, an analysis/synthesis technique is developed that characterizes audio signals, such as speech and music, in terms of the amplitudes, frequencies, and phases of the component sine waves. These parameters are estimated by applying a peak-picking algorithm to the short-time Fourier transform of the input waveform. Rapid changes in the highly resolved spectral components are tracked by using a frequency-matching algorithm and the concept of "birth" and "death" of the underlying sine waves. For a given frequency track, a cubic phase function is applied to the sine-wave generator, whose output is amplitude-modulated and added to sines for other frequency tracks. The resulting synthesized signal preserves the general wave form shape and is nearly perceptually indistinguishable from the original, thus providing the basis for a variety of applications including signal modification, sound splicing, morphing and extrapolation, and estimation of sound characteristics such as vibrato. Although this sine-wave analysis/synthesis is applicable to arbitrary signals, tailoring the system to a specific sound class can improve performance. A source/filter phase model is introduced within the sine-wave representation to improve signal modification, as in time-scale and pitch change and dynamic range compression, by attaining phase coherence where sinewave phase relations are preserved or controlled. A similar method of achieving phase coherence is also applied in revisiting the classical phase vocoder to improve modification of certain signal classes. A second refinement of the sine-wave analysis/synthesis invokes an additive deterministic/stochastic representation of sounds consisting of simultaneous harmonic and aharmonic contributions. A method of frequency tracking is given for the separation of these components, and is used in a number of applications. The sinewave model is also extended to two additively combined signals for the separation of simultaneous talkers or music duets. Finally, the use of sine-wave analysis/synthesis in providing insight for FM synthesis is described, and remaining challenges, such as an improved sine-wave representation of rapid attacks and other transient events, are presented.
READ LESS

Summary

Based on a sinusoidal model, an analysis/synthesis technique is developed that characterizes audio signals, such as speech and music, in terms of the amplitudes, frequencies, and phases of the component sine waves. These parameters are estimated by applying a peak-picking algorithm to the short-time Fourier transform of the input waveform...

READ MORE

A subband approach to time-scale expansion of complex acoustic signals

Published in:
IEEE Trans. Speech Audio Process., Vol. 3, No. 6, November 1995, pp. 515-519.

Summary

A new approach to time-scale expansion of short-duration complex acoustic signals is introduced. Using a subband signal representation, channel phases are selected to preserve a desired time-scaled temporal envelope. The phase representation is derived from locations of events that occur within filter bank outputs. A frame-based generalization of the method imposes phase consistency across consecutive synthesis frames. The method is applied to synthetic and actual complex acoustic signals consisting of closely spaced rapidly damped sine wave. Time-frequency resolution limitations are discussed.
READ LESS

Summary

A new approach to time-scale expansion of short-duration complex acoustic signals is introduced. Using a subband signal representation, channel phases are selected to preserve a desired time-scaled temporal envelope. The phase representation is derived from locations of events that occur within filter bank outputs. A frame-based generalization of the method...

READ MORE

Showing Results

1-10 of 15