Publications

Refine Results

(Filters Applied) Clear All

Analyzing Mission Impacts of Cyber Actions (AMICA)

Published in:
Proc. NATO S&T Workshop on Cyber Attack, Detection, Forensics and Attribution for Assessment of Mission Impact, 15 June 2015.

Summary

This paper describes AMICA (Analyzing Mission Impacts of Cyber Actions), an integrated approach for understanding mission impacts of cyber attacks. AMICA combines process modeling, discrete-event simulation, graph-based dependency modeling, and dynamic visualizations. This is a novel convergence of two lines of research: process modeling/simulation and attack graphs. AMICA captures process flows for mission tasks as well as cyber attacker and defender tactics, techniques, and procedures (TTPs). Vulnerability dependency graphs map network attack paths, and mission-dependency graphs define the hierarchy of high-to-low-level mission requirements mapped to cyber assets. Through simulation of the resulting integrated model, we quantify impacts in terms of mission-based measures, for various mission and threat scenarios. Dynamic visualization of simulation runs provides deeper understanding of cyber warfare dynamics, for situational awareness in the context of simulated conflicts. We demonstrate our approach through a prototype tool that combines operational and systems views for rapid analysis.
READ LESS

Summary

This paper describes AMICA (Analyzing Mission Impacts of Cyber Actions), an integrated approach for understanding mission impacts of cyber attacks. AMICA combines process modeling, discrete-event simulation, graph-based dependency modeling, and dynamic visualizations. This is a novel convergence of two lines of research: process modeling/simulation and attack graphs. AMICA captures process...

READ MORE

Planted clique detection below the noise floor using low-rank sparse PCA

Published in:
Proc. IEEE Int. Conf. on Acoustics, Speech and Signal Processing, ICASSP, 19-24 April 2015.

Summary

Detection of clusters and communities in graphs is useful in a wide range of applications. In this paper we investigate the problem of detecting a clique embedded in a random graph. Recent results have demonstrated a sharp detectability threshold for a simple algorithm based on principal component analysis (PCA). Sparse PCA of the graph's modularity matrix can successfully discover clique locations where PCA-based detection methods fail. In this paper, we demonstrate that applying sparse PCA to low-rank approximations of the modularity matrix is a viable solution to the planted clique problem that enables detection of small planted cliques in graphs where running the standard semidefinite program for sparse PCA is not possible.
READ LESS

Summary

Detection of clusters and communities in graphs is useful in a wide range of applications. In this paper we investigate the problem of detecting a clique embedded in a random graph. Recent results have demonstrated a sharp detectability threshold for a simple algorithm based on principal component analysis (PCA). Sparse...

READ MORE

Global pattern search at scale

Summary

In recent years, data collection has far outpaced the tools for data analysis in the area of non-traditional GEOINT analysis. Traditional tools are designed to analyze small-scale numerical data, but there are few good interactive tools for processing large amounts of unstructured data such as raw text. In addition to the complexities of data processing, presenting the data in a way that is meaningful to the end user poses another challenge. In our work, we focused on analyzing a corpus of 35,000 news articles and creating an interactive geovisualization tool to reveal patterns to human analysts. Our comprehensive tool, Global Pattern Search at Scale (GPSS), addresses three major problems in data analysis: free text analysis, high volumes of data, and interactive visualization. GPSS uses an Accumulo database for high-volume data storage, and a matrix of word counts and event detection algorithms to process the free text. For visualization, the tool displays an interactive web application to the user, featuring a map overlaid with document clusters and events, search and filtering options, a timeline, and a word cloud. In addition, the GPSS tool can be easily adapted to process and understand other large free-text datasets.
READ LESS

Summary

In recent years, data collection has far outpaced the tools for data analysis in the area of non-traditional GEOINT analysis. Traditional tools are designed to analyze small-scale numerical data, but there are few good interactive tools for processing large amounts of unstructured data such as raw text. In addition to...

READ MORE

Agent-based simulation for assessing network security risk due to unauthorized hardware

Published in:
SpringSim 2015: Spring Simulation Multiconference, 12-15 April 2015.

Summary

Computer networks are present throughout all sectors of our critical infrastructure and these networks are under a constant threat of cyber attack. One prevalent computer network threat takes advantage of unauthorized, and thus insecure, hardware on a network. This paper presents a prototype simulation system for network risk assessment that is intended for use by administrators to simulate and evaluate varying network environments and attacker/defender scenarios with respect to authorized and unauthorized hardware. The system is built on the agent-based modeling paradigm and captures emergent system dynamics that result from the interactions of multiple network agents including regular and administrator users, attackers, and defenders in a network environment. The agent-based system produces both metrics and visualizations that provide insights into network security risk and serve to guide the search for efficient policies and controls to protect a network from attacks related to unauthorized hardware. The simulation model is unique in the current literature both for its network threat model and its visualized agent-based approach. We demonstrate the model via a case study that evaluates risk for several candidate security policies on a representative computer network.
READ LESS

Summary

Computer networks are present throughout all sectors of our critical infrastructure and these networks are under a constant threat of cyber attack. One prevalent computer network threat takes advantage of unauthorized, and thus insecure, hardware on a network. This paper presents a prototype simulation system for network risk assessment that...

READ MORE

Spectral anomaly detection in very large graphs: Models, noise, and computational complexity(92.92 KB)

Published in:
Proceedings of Seminar 14461: High-performance Graph Algorithms and Applications in Computational Science, Wadern, Germany

Summary

Anomaly detection in massive networks has numerous theoretical and computational challenges, especially as the behavior to be detected becomes small in comparison to the larger network. This presentation focuses on recent results in three key technical areas, specifically geared toward spectral methods for detection.
READ LESS

Summary

Anomaly detection in massive networks has numerous theoretical and computational challenges, especially as the behavior to be detected becomes small in comparison to the larger network. This presentation focuses on recent results in three key technical areas, specifically geared toward spectral methods for detection.

READ MORE

Robust keys from physical unclonable functions

Published in:
Proc. 2014 IEEE Int. Symp. on Hardware-Oriented Security and Trust, HOST, 6-7 May 2014.

Summary

Weak physical unclonable functions (PUFs) can instantiate read-proof hardware tokens (Tuyls et al. 2006, CHES) where benign variation, such as changing temperature, yields a consistent key, but invasive attempts to learn the key destroy it. Previous approaches evaluate security by measuring how much an invasive attack changes the derived key (Pappu et al. 2002, Science). If some attack insufficiently changes the derived key, an expert must redesign the hardware. An unexplored alternative uses software to enhance token response to known physical attacks. Our approach draws on machine learning. We propose a variant of linear discriminant analysis (LDA), called PUF LDA, which reduces noise levels in PUF instances while enhancing changes from known attacks. We compare PUF LDA with standard techniques using an optical coating PUF and the following feature types: raw pixels, fast Fourier transform, short-time Fourier transform, and wavelets. We measure the true positive rate for valid detection at a 0% false positive rate (no mistakes on samples taken after an attack). PUF LDA improves the true positive rate from 50% on average (with a large variance across PUFs) to near 100%. While a well-designed physical process is irreplaceable, PUF LDA enables system designers to improve the PUF reliability-security tradeoff by incorporating attacks without redesigning the hardware token.
READ LESS

Summary

Weak physical unclonable functions (PUFs) can instantiate read-proof hardware tokens (Tuyls et al. 2006, CHES) where benign variation, such as changing temperature, yields a consistent key, but invasive attempts to learn the key destroy it. Previous approaches evaluate security by measuring how much an invasive attack changes the derived key...

READ MORE

Spectral subgraph detection with corrupt observations

Published in:
Proc. IEEE Int. Conf. on Acoustics, Speech and Signal Processing, ICASSP, 4-9 May 2014.

Summary

Recent work on signal detection in graph-based data focuses on classical detection when the signal and noise are both in the form of discrete entities and their relationships. In practice, the relationships of interest may not be directly observable, or may be observed through a noisy mechanism. The effects of imperfect observations add another layer of difficulty to the detection problem, beyond the effects of typical random fluctuations in the background graph. This paper analyzes the impact on detection performance of several error and corruption mechanisms for graph data. In relatively simple scenarios, the change in signal and noise power is analyzed, and this is demonstrated empirically in more complicated models. It is shown that, with enough side information, it is possible to fully recover performance equivalent to working with uncorrupted data using a Bayesian approach, and a simpler cost-optimization approach is shown to provide a substantial benefit as well.
READ LESS

Summary

Recent work on signal detection in graph-based data focuses on classical detection when the signal and noise are both in the form of discrete entities and their relationships. In practice, the relationships of interest may not be directly observable, or may be observed through a noisy mechanism. The effects of...

READ MORE

Strategic evolution of adversaries against temporal platform diversity active cyber defenses

Published in:
2014 Spring Simulation Multi-Confernece, SpringSim 2014, 13-16 April 2014.

Summary

Adversarial dynamics are a critical facet within the cyber security domain, in which there exists a co-evolution between attackers and defenders in any given threat scenario. While defenders leverage capabilities to minimize the potential impact of an attack, the adversary is simultaneously developing countermeasures to the observed defenses. In this study, we develop a set of tools to model the adaptive strategy formulation of an intelligent actor against an active cyber defensive system. We encode strategies as binary chromosomes representing finite state machines that evolve according to Holland's genetic algorithm. We study the strategic considerations including overall actor reward balanced against the complexity of the determined strategies. We present a series of simulation results demonstrating the ability to automatically search a large strategy space for optimal resultant fitness against a variety of counter-strategies.
READ LESS

Summary

Adversarial dynamics are a critical facet within the cyber security domain, in which there exists a co-evolution between attackers and defenders in any given threat scenario. While defenders leverage capabilities to minimize the potential impact of an attack, the adversary is simultaneously developing countermeasures to the observed defenses. In this...

READ MORE

A language-independent approach to automatic text difficulty assessment for second-language learners

Published in:
Proc. 2nd Workshop on Predicting and Improving Text Readability for Target Reader Populations, 4-9 August 2013.

Summary

In this paper we introduce a new baseline for language-independent text difficulty assessment applied to the Interagency Language Roundtable (ILR) proficiency scale. We demonstrate that reading level assessment is a discriminative problem that is best-suited for regression. Our baseline uses z-normalized shallow length features and TF-LOG weighted vectors on bag-of-words for Arabic, Dari, English, and Pashto. We compare Support Vector Machines and the Margin-Infused Relaxed Algorithm measured by mean squared error. We provide an analysis of which features are most predictive of a given level.
READ LESS

Summary

In this paper we introduce a new baseline for language-independent text difficulty assessment applied to the Interagency Language Roundtable (ILR) proficiency scale. We demonstrate that reading level assessment is a discriminative problem that is best-suited for regression. Our baseline uses z-normalized shallow length features and TF-LOG weighted vectors on bag-of-words...

READ MORE

Estimation of Causal Peer Influence Effects

Author:
Published in:
International Conference on Machine Learning, 17-19 June 2013

Summary

The broad adoption of social media has generated interest in leveraging peer influence for inducing desired user behavior. Quantifying the causal effect of peer influence presents technical challenges, however, including how to deal with social interference, complex response functions and network uncertainty. In this paper, we extend potential outcomes to allow for interference, we introduce welldefined causal estimands of peer-influence, and we develop two estimation procedures: a frequentist procedure relying on a sequential randomization design that requires knowledge of the network but operates under complicated response functions, and a Bayesian procedure which accounts for network uncertainty but relies on a linear response assumption to increase estimation precision. Our results show the advantages and disadvantages of the proposed methods in a number of situations.
READ LESS

Summary

The broad adoption of social media has generated interest in leveraging peer influence for inducing desired user behavior. Quantifying the causal effect of peer influence presents technical challenges, however, including how to deal with social interference, complex response functions and network uncertainty. In this paper, we extend potential outcomes to...

READ MORE