MIT Lincoln Laboratory, in collaboration with the NASA Earth Science Technology Office and NASA Goddard Space Flight Center, developed a compact imaging spectrometer that maintains state-of-the-art optical and signal-to-noise performance in a unit that has a volume more than an order of magnitude smaller than that of other spectrometer designs.

KEY FEATURES

- Compact optical form employs a doublet lens with a reflective back surface and a flat immersed grating to minimize volume and simplify optical alignment
- Grating facets optimize the optical efficiency and signal-to-noise ratio
- Optical form supports >3,000 spatial samples and the 380–2500 nm (VNIR/SWIR) spectral range
- Modular design supports wide-field applications via multiple spectrometers coupled with a freeform telescope
While high-performing, state-of-the-art imaging spectrometers have reached near-perfect aberration control and high signal-to-noise ratios (SNRs), the CCVIS maintains optimal performance in a package that has reduced size, weight, and power (SWaP).

Advantages of the Chrisp Compact VNIR/SWIR Imaging Spectrometer (CCVIS)

- The CCVIS can be readily deployed on airborne platforms, such as unmanned aircraft systems, and on small satellites.
- The CCVIS can be implemented as modules that, when coupled with a freeform telescope, may offer fields of view as large as 40 degrees or more.
- Local control of surfaces enables the optimization of complex surfaces with optical designs that have the high degree of aberration control necessary for a spectrometer capable of imaging over a wide optical field. This control is enabled by a freeform telescope design that uses the Lincoln Laboratory Fast Accurate NURBS Optimization code, which employs nonuniform rational basis-spline (NURBS) surfaces.
- The CCVIS flat grating is easier and faster to manufacture than the convex or concave gratings of other high-performing imaging spectrometers. The flat grating with dual-angle facets exploits grayscale lithography to produce 3D microstructures.

(a) The catadioptric lens is a combination of refractive optics with a reflective back surface. The CCVIS is 11 times smaller than the nearest compact optical form that covers the same spectral range. (b) The CCVIS modular design, when combined with a freeform telescope, enables a wide-field implementation. Available VNIR/SWIR focal plane arrays can have as many as 3,000 spatial samples. (c) Each dual-facet blazed diffraction grating has two planes, or blaze angles, designed to optimize the optical efficiency across the full spectral range.

INTERESTED IN ACCESSING THIS TECHNOLOGY?

<table>
<thead>
<tr>
<th>Contact the MIT Technology Licensing Office</th>
</tr>
</thead>
<tbody>
<tr>
<td>https://tlo.mit.edu/</td>
</tr>
<tr>
<td>tlo-inquiries@mit.edu 617-253-6966</td>
</tr>
</tbody>
</table>

U.S. PATENT #9,689,744

More Information

INTERESTED IN WORKING WITH MIT LINCOLN LABORATORY?

https://www.ll.mit.edu/partner-us

<table>
<thead>
<tr>
<th>Contact the Technology Ventures Office</th>
</tr>
</thead>
<tbody>
<tr>
<td>tv@ll.mit.edu</td>
</tr>
</tbody>
</table>

Approved for public release; distribution is unlimited. This material is based upon work supported by the National Aeronautics and Space Administration under Air Force Contract No. FA8702-15-D-0001. Any opinions, findings, conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the National Aeronautics and Space Administration.

© 2021 Massachusetts Institute of Technology