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FIGURE 14. Two humans are imaged through a 10 cm thick, 
solid concrete wall (a), through a 20 cm thick, solid concrete 
wall (b), and through a cinder-block wall (c).
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FIGURE 15. A single human standing still can still be easily 
detected behind a 10 cm, solid concrete wall (a), behind a 20 
cm, solid concrete wall (b), and behind a cinder-block wall (c).
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Through-Wall Imagery of Humans Standing Still

Even when standing still, a human could be detected 

through the concrete walls because the human body 

moves slightly when breathing and while trying to remain 

upright. Results for one human standing still behind 

10 cm and 20 cm thick, solid concrete walls and a cinder-

block wall are shown in Figure 15. The location of the 

human behind the 10 cm thick, solid concrete wall was 

clearly observed (Figure 15a). Similarly, the location of the 

human target through the cinder-block wall was clearly 

visible (Figure 15c) with a slight increase in clutter, prob-

ably caused by air gaps within the blocks.

To reveal the location of the human behind the 20 cm 

thick, solid concrete wall, the frame-to-frame, coherent, 

change-detection algorithm had to subtract from the 

tenth frame back. The person's location is clearly shown 

after this analysis was applied (Figure 15b). For cases 

in which there is a weak return, an adaptive, frame-to-

frame, coherent subtraction algorithm that can decide if 

it is necessary to coherently subtract from one to many 

frames back should be developed.

Performance Summary
A number of through-wall scenarios were tested and 

compared to the same scenario in free space. Results are 

summarized in Table 1. Green, yellow, and red indicate 

that the target is detectable in the vast majority of image 

frames, approximately half of the image frames, or none 

of the image frames, respectively. This table shows that a 

human target is detectable in all scenarios in free space. 

When the radar images through a 10 cm thick, solid con-

crete wall, human targets can be located even if they are 

standing still and holding their breath but not while sit-

ting still and holding their breath. In the case of the cin-

der-block wall, human targets can be detected if standing 

still and holding their breath but not sitting still and hold-

ing their breath. Detection and location are sometimes 

difficult when two humans are walking because of the 

elevated clutter induced by air gaps in the blocks. A mar-

ginal image also occurs when the human is sitting still. 

Behind the 20 cm thick, solid concrete wall, a human can 

be detected only if he/she is walking around. The same 

human can be detected sometimes when standing still, 

but not standing still and holding his/her breath.

In summary, this radar sensor can locate human tar-

gets most of the time through 10 cm and 20 cm thick, 

solid concrete and cinder-block walls even if the people 

are standing still but not if they are sitting or holding 

their breath.

Detection Algorithm
Although radar imagery, as shown in this paper, may pro-

vide actionable information to a radar engineer, the field 

operator prefers to view discrete detections rather than 

blobs on a radar screen. A radar display that provides 

detections is valuable because it reduces the observer/

analyst training time and generally simplifies decision 

making. The signal-to-clutter ratio and the point-spread 

function for most through-wall imagery shown here is 

sufficient to merit the application of a detection algo-

rithm, with the objective of locating and counting the 

individual moving targets behind the wall.

A clustering technique that combines detections in 

adjacent range and cross-range bins into a single human 

detection is used to detect the number of humans pres-

ent in an image. The number of bins that are clustered is 

chosen to correspond to the approximate size expected 

from a radar return on a human.

Figure 16a shows the radar image of a scene contain-

ing two people. Figure 16b shows the range and cross-

range bins that exceeded our detection threshold, which 

we set to 15 dB below the peak SNR in the image. Fig-

ure 16c shows the result of clustering the detections, using 

a + to mark the center of each human detection.

In order to maintain an estimate of the number of 

humans in a scene over time, we are currently performing 

Wall type
20 cm concrete

10 cm concrete
Free space

Cinder block

Standing 
still holding

breath
Sitting

still
Standing

stillTwo walkingOne walking

Sitting 
still holding

breath
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research on the Gaussian-mixture probability hypothesis 

density (GM-PHD) [9] filter to form tracks on the human 

detections. The GM-PHD will aid rejection of spurious 

detections caused by radar calibration error and false-

alarm detections. The filter will provide a running esti-

mate of the number of humans detected. Alternatively, 

an M of N type of detection scheme, whereby we aver-

age the number of detections found over a given number 

of radar images, may also provide an adequate estimate 

of the number of humans in the scene. This is currently 

under investigation.

Next Steps
The next steps are to test this system on an adobe mud-

brick wall and to complete development of a detection 

algorithm. If these steps are successful, this radar will be 

tested on walls of an actual building. Results of those tests 

may lead to fielding a prototype. Other applications for 

which the through-wall system may be used include real-

time radar imaging of natural phenomenon or high-speed 

radar cross-section measurements.
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FIGURE 16. The raw data of a through-wall scene contain-
ing two humans are shown in (a), when range and cross-
range bins exceeding detection threshold are selected (b), 
and the result of clustering detections into individual detec-
tions, which are marked with a + (c).
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