
60 LINCOLN LABORATORY JOURNAL n VOLUME 22, NUMBER 2, 2017

Autonomous Robot
Control via Autonomy
Levels
Lawrence A.M. Bush and Andrew Wang

In the future, unmanned systems will
gain decision-making intelligence that
enables them to autonomously operate
in clusters to perform collaborative tasks.

For successful field deployment of unmanned systems,
operators will need confidence that autonomous decision
making leads to optimal behaviors in uncertain environ-
ments. Adjustable autonomy technologies, concepts, and
simulation environments evaluating teaming behaviors
will enable researchers to develop these systems. Net-
work and sensing advances have created the opportunity
for increased mission performance, but at the expense of
greater complexity in sensor coordination and analysis.
Current unmanned systems are typically teleoperated and
are labor intensive, relying on human operators and their
decision-making capabilities to perform mission tasks.

Today, mission and sensing complexity that are man-
aged through increased automation of lower-level func-
tions (e.g., mechanical-system controls) help operators
focus on higher-level decisions. The lower-order decision-
making algorithms under development include those for
waypoint following and collision detection and avoidance.
Some of these algorithms have been incorporated in oper-
ational platforms.

Deployment
A team of unmanned aerial and ground vehicles might be
deployed in a natural disaster relief scenario as depicted
in Figure 1. In this example, a major earthquake has dam-
aged buildings, roads, and bridges, and disrupted commu-
nication, power, and water distribution services. A nuclear

Autonomous systems need to exhibit intelligent
behaviors while performing complex operations.
These systems will be deployed in clusters to
perform collaborative missions with human
supervisors. Autonomous systems will take on
expanded roles, requiring higher-order decision-
making capabilities supporting autonomous
mission planning, resource allocation, route
planning, and scheduling and execution of
coordinated tasks.

»

 VOLUME 22, NUMBER 2, 2017 n LINCOLN LABORATORY JOURNAL 61

LAWRENCE A.M. BUSH AND ANDREW WANG

platform route plans for optimum survey coverage, and
scheduling algorithms would determine flight or road
plans for autonomous scout vehicles to follow. The exe-
cution manager algorithm would see that the mission is
performed and goals are met.

It is the job of the logistics planner algorithm to
choose the actual sequence of waypoints so that it bal-
ances and reduces the risk among each component of the
mission. However, to make well-informed decisions, the
planner will need the scouts to gather additional data on
areas the logistics vehicle may cross in the future. The
scout dispatcher algorithm determines where to send
the scouts, given the plans currently considered by the
logistics planner algorithms. The execution of each plan
carries with it some risk uncertainty, which is trans-
formed into map uncertainty. In other words, the scout
dispatcher determines map locations that contribute

energy facility also requires an immediate response. Relief
convoys need to deliver supplies throughout the affected
area. A team of autonomous aerial and ground scouts
supervised by operators in a mission logistics vehicle is
dispatched to survey the damage. The algorithms need to
determine the safest path for the relief convoy to travel to
reach its destination in the minimum amount of time.

Figure 2 presents an architecture for functions that a
multiagent autonomous team would need to perform in
this scenario. Human mission operators in the logistics
vehicle would enter high-level goals, system constraints,
and policies into the system. Resource allocation algo-
rithms would be employed to develop a system composi-
tion based on the mission objectives and the appropriate
available resources, including which platforms to deploy
and their sensor payloads, processors, and communica-
tion capabilities. Planning algorithms would develop

Supply
convoy

Mission
logistics vehicle

Autonomous
aerial scouts

Autonomous
ground scout

C
ro

ss
 c

ue
in

g
an

d
ta

sk
in

g

Destination
Destination

X
X

FIGURE 1. In this earthquake relief scenario, a convoy needs to deliver supplies to those in need by the safest path.
A team of aerial and ground scouts supervised by operators in a mission logistics vehicle is dispatched to survey the
damage and provide real-time route safety information.

62 LINCOLN LABORATORY JOURNAL n VOLUME 22, NUMBER 2, 2017

AUTONOMOUS ROBOT CONTROL VIA AUTONOMY LEVELS

most to uncertainty. It then tasks scouts to survey these
areas to disambiguate candidate plans. Each scout’s
planner accepts as inputs these areas and a time limit
for reporting results on each area. The executive must
also receive the current risk estimate or “belief ” for the
relevant area. The planner runs an adaptive sampling
algorithm that is trained to calculate the flight path
that achieves the highest expected information gain
within the time allotted. As sensor measurements are
analyzed and shared, the belief update module incor-
porates them into the risk belief, and at the end of a
sensing task, the scout reports the updated risk belief
to the logistics executive.

For successful system field deployment, operators
need confidence that autonomous decision making
leads to optimal behaviors, especially when carried
out in uncertain environments. A number of concepts

and technologies are the subjects of current research
to optimize planning in uncertain environments. As
shown in Figure 2, one strategy is to equip functional
modules with risk-assessment capabilities. This strat-
egy would allow adjustment of the system’s autonomy
levels according to individual risk acceptance. At any
time, an operator can monitor autonomy algorithm
decisions, augment or modify algorithm inputs, or take
over full manual control of selected logistics vehicles.

Another strategy is the incorporation of rigorous
verification processes within the autonomous system
algorithm architecture. Algorithm results or plan fea-
sibility would be verified against operator risk accep-
tance as well as mission resource costs and system
performance or autonomous behavior expectations. If
conditions are not met, the system may request new
plans or request/task subgoals to reduce uncertainty,

FIGURE 2. Within the generalized multiagent autonomy architecture of the Autonomous Robot Control via Autonomy
Levels (ARCAL) system, the logistics executive contains several submodules. Two of them are the high-level logistics
planner and the low-level road-map planner, each containing a risk-assessment functionality that operates on the risk-
belief map. Together, these submodules determine the course of action for the logistics vehicle. The logistics planner
accepts mission goals from the operator and generates sequences of waypoints, producing a high-level road map that
will achieve the mission goals. Then, the road-map planner finds the actual path taken between waypoints.

ARCAL algorithms

Logistics vehicle commands
Situational
awareness

Risk
info

Scout
vehicle

commands

Scout
vehicle

Sensor measurements

Mission
vehicle

Mission
goals

Operator
interface

Scout
belief

update

Logistics executive

Belief
updateRoad-map

planner

Scout
planner

Tasked
areaScout

dispatcher

Proposed
plansLogistics

planner

Adjustable
autonomy

Scout executive

Risk-belief
map

Risk
monitoring

 VOLUME 22, NUMBER 2, 2017 n LINCOLN LABORATORY JOURNAL 63

LAWRENCE A.M. BUSH AND ANDREW WANG

including tasking additional scout runs for surveillance
information, satellite imagery, or other sensor data.

The performance of unmanned systems in collab-
orative tasks has not been thoroughly tested in uncertain
environments. In fact, such testing requires entirely new
methods. Accurate behavioral simulation and metrics
(currently unavailable) are both vital to completing a
successful mission. The Autonomous Robot Control via
Autonomy Levels (ARCAL) project seeks to establish a
robust planning architecture for collaborative, multi-
vehicle autonomous systems by testing system perfor-
mance in uncertain environments.

Autonomous Robot Control via Autonomy Levels
ARCAL brings together researchers and engineers
from MIT campus and Lincoln Laboratory. Research-
ers from the Model-based Embedded and Robotic Sys-
tems (MERS) Group at MIT have developed risk-based
adjustable autonomy and task-directed adaptive sensing
systems—two fundamental components of ARCAL—that
can autonomously coordinate multivehicle missions with
an overriding human operator. Engineers from Lincoln
Laboratory’s Tactical Networks Group developed a simu-
lation environment to evaluate autonomous collaborative
behaviors and to determine how well adjustable auton-
omy operations meet operator expectations.

The project specifically tests risk-based adjustable
autonomy with task-directed adaptive sensing technolo-
gies and concepts to determine how tasks can be com-
pleted at different levels of autonomy. ARCAL utilizes
a novel simulation environment to test collaborative
autonomous algorithms and team behaviors prior to
field deployment. Adjustable autonomy algorithms and
functions drive simulated unmanned systems in three-
dimensional (3D) platform models that include dynamic
environments similar to real-world conditions.

Adjustable Autonomy with Risk Assessment
Adjustable autonomy hopefully combines the best ele-
ments of human intuition with computational prag-
matism. Challenges in creating a truly synergistic
relationship between humans and computers and sen-
sors, given human variability and the limitations of com-
puter logic, have tended to obscure an exact definition
of adjustable autonomy as a concept. In its most basic
form, an adjustable autonomy system makes two kinds

of decisions: what future actions are optimal and how
can the human operator best be engaged? Both of these
decisions depend on risk estimates and mission objec-
tives, with risk explicitly incorporated in the planning
process. Given the mission’s logistical plan, risks posed
along each step of the plan are probabilities integrated
over each mission goal. The configuration and distri-
butions of these risks should inform optimal human
engagement. An adjustable autonomy architecture
optimizes the risk assessment and mission planning
process to provide situational awareness (SA), keeping
the human involved at the appropriate level of detail for
each mission component.

ARCAL’s contribution to adjustable autonomy is to
encode risk throughout the decision-making process.
In practice, scout aerial vehicles and other sensors can
improve risk awareness throughout the mission. Scouts
are specifically deployed to improve risk mapping and
refine decision making. Algorithms guide scouts toward
high-value information that will help identify the low-
risk pathways for future components of the mission. The
scouts are first tasked with informational reconnaissance
relative to the logistics planning. ARCAL performs some
tasks offline (learning and simulation) to minimize the
amount of online optimization needed.

Architecture
Algorithmic modules within the artificial intelligence
architecture enable the incorporation of risk informa-
tion and the involvement of a human operator. Modules
include the logistics executive, the scout executive, and
the adjustable autonomy module. These components
interact with the logistics vehicle, the scout vehicles, and
the human operator, as depicted in Figure 2.

The logistics executive planner chooses the actual
sequence of waypoints to reduce risk within each compo-
nent of the mission. To make well-informed decisions, the
planner needs the scouts’ information on potential vehicle
paths. The scout executive dispatcher determines where to
send the scouts, given plans currently under consideration
by the logistics planner. Scouts then survey these areas to
disambiguate candidate plans. The planner runs an adap-
tive sampling algorithm trained to traverse the path that
achieves the highest expected information gain within the
time allotted. As sensor measurements arrive, the belief
update module incorporates them into the risk belief.

64 LINCOLN LABORATORY JOURNAL n VOLUME 22, NUMBER 2, 2017

AUTONOMOUS ROBOT CONTROL VIA AUTONOMY LEVELS

a risk distribution for each path. Finally, we explain how
the scout measures and updates the risk-belief map. For
further information on mission time constraint risks, see
the appendix titled “Temporal Risk Assessment.”

The belief map is represented by a grid of square
cells. Each cell contains a distribution over the prob-
ability of success if the vehicle traverses that cell in
any direction, independently of all other cells. This
interpretation allows us to use the Markov assump-
tion (described below) when constructing paths from
sequential cells. In our belief map, we parameterize
each cell with a mean and variance to represent a beta
distribution. Not only does the beta distribution admit
an intuitive interpretation, but its parameterization is
also appealing for real-time calculation.

The belief map’s form makes it relatively straight-
forward to compose paths from cells; the distribution of
the resulting path is an approximation. We rely on the
Markov assumption that the probability of successfully
traversing a certain cell is independent of the probabili-
ties for other cells. Then, given a path of cells for which
successful traversal is a random variable, the success
probability for the entire path becomes the product
of each of the independent cell traversal probabilities.
Unfortunately, the true distribution for the entire path
is not a beta distribution and cannot be analytically
computed, so we approximate it as a Gaussian distri-
bution, parameterized by a mean and variance.

The testing simulation must also incorporate envi-
ronmental obstacles into the belief map. The sensor has
algorithms for detecting and characterizing features
of the environment. The scout’s camera, for example,
would be interfaced with a pattern-recognition appli-
cation for road fissures that would then communicate
the fissure parameters to the probability of success
estimate. If the camera’s resolution is characterized
by a variance, then the fissure’s risk distribution can be
characterized, and the information is encoded into the
occupied grid cells, effectively distributing the fissure’s
risk over the area it occupies.

In summary, the simulation formulates risk as a
distribution over a path, given a risk-belief map. The
map is gridded into cells, each of which contains a beta
distribution. Paths are sequences of adjacent cells,
with risk distributions represented as truncated and
scaled Gaussians.

In a nonadjustable autonomy architecture, the
human operator would interface directly with the logistics
executive; here, the adjustable autonomy module medi-
ates their interaction. This module continuously moni-
tors the risk associated with each mission component
according to the entire state of the logistics executive. It
tracks the possibility that each component’s risk might
exceed user-specified thresholds. As these risks evolve
because of additional planning and updated risk beliefs,
adjustable autonomy may request human intervention for
particular mission components. Thus, while the human
operator still specifies mission goals to the logistics plan-
ner, he or she now has an interface to override different
components of the logistics executive at varying levels of
control. Together, all of these modules provide a rational,
risk-based operator interface.

Risk Assessment
A key capability of our system is assessing risk relative to
the overall mission goals. Here, risk is defined as the
likelihood that a logistical plan will or will not achieve
each and every goal, where a goal may involve driving
an emergency, utility, or personnel transport vehicle to
a needed location. Plan success is provisionally defined
as the probability of success in all parts of a plan. The
risk assessment problem then becomes as follows:

Given a path plan that nominally achieves
overall mission goals and a belief map of the
environment, we compute a distribution over
a path’s success probability, that is, the prob-
ability that a ground vehicle can successfully
traverse that path. We cannot know the true
path-success probability because we do not have
a true map of the environment. However, we
possess a belief map that models the location of
features and obstacles within the environment
as well as our uncertainty about them. We may
know, for example, that a certain type of obsta-
cle exists in a general vicinity but not know its
precise location and threat level. Thus, we must
compute, and our algorithms must operate on,
a probability distribution over the success prob-
ability, i.e., a risk distribution.
Given this definition of risk distribution, we describe

below how to represent risk in a belief map. With this
definition, we can build paths over the map and devise

 VOLUME 22, NUMBER 2, 2017 n LINCOLN LABORATORY JOURNAL 65

LAWRENCE A.M. BUSH AND ANDREW WANG

Scout Executive and Planner
The scout executive obtains more detailed scans of
certain areas that could yield safe routes for the logis-
tics vehicle, as illustrated in Figure 3. While the logis-
tics executive tasks the scouts with examining certain
areas, it would be inefficient for scouts to equitably
traverse each area (i.e., by spending the same amount
of time in each area). For example, a human opera-
tor would immediately fly/drive a vehicle to the most
uncertain areas in order to gain the most value from
reconnaissance. The scout has only limited time to
complete reconnaissance and report back to the logis-
tics executive. The scout planner algorithm incorpo-
rates scout observations and directs scouts to collect
data that optimally reduce risk uncertainty for the
logistics vehicle.

Figure 4 highlights the scout planner portion of
the ARCAL architecture and various components of
the scout planner algorithm. The scout planner dic-
tates the policy that governs paths the scout should
take. The policy is typically encoded as a value func-
tion. A typical scout scenario, however, is so computa-
tionally intensive that the value function would require
the processor to have unreasonable volumes of stor-
age space. The iteration process thus approximates
the value function to yield nonoptimal but reasonable
solutions. Calculations are performed offline, and the
approximate solution is stored in an approximate value
function. When the time comes for the scout to execute
online actions, it further reoptimizes the value func-
tion according to its particular situation, given com-
putational constraints.

ARCAL’s scout planning problem is formulated as
follows:
• The scout dispatcher tells the scout which subset of

the full map needs to be surveyed to reduce uncer-
tainty in the risk belief.

• This subset is represented as a set of grid cells. Each
grid cell is associated with a prior risk distribution.

• The scout’s goal is to fly a path over the area in an
allotted time such that it maximizes the total reduc-
tion in variance over these grid cells. (The total vari-
ance reduction is the sum of all variance reductions
in each grid cell.)

ARCAL uses the general framework of the Mar-
kov decision process (MDP) to model the problem and
approximate dynamic programming (ADP) to solve
it [1, 2]. MDPs operate on discrete time steps. When
an MDP executes an action from a “current” state,
there is a probability of transitioning to a “next” state
in the next time step, and the expected reward associ-
ated with that transition is calculated. The ADP algo-
rithms generate policy solutions that assign an action
to each state of the MDP. The value of a state under a
specific policy is the expected sum of rewards obtained
when the policy is followed. The objective is to find an
optimal policy that maximizes the value of every state.

For a policy to be optimal, it must choose actions
that maximize the expected value of the subsequent
state. In other words, the optimal action moves to the
next-best state, and then plans from that new state.
The optimal policy derives from solving for the opti-
mal value function. For the scout planning problem,
we define the following components of an MDP:

FIGURE 3. In this rescue scenario, the logistics executive tasks a three-unit aerial scout team to identify
traversable paths from a set of possible paths. The scout planner algorithm allocates resources in response
to the need for locating a safe route and quantifying the path risks to the rescue vehicle and the mission.

66 LINCOLN LABORATORY JOURNAL n VOLUME 22, NUMBER 2, 2017

AUTONOMOUS ROBOT CONTROL VIA AUTONOMY LEVELS

• The state includes the vehicle location and belief
map (i.e., risk distributions over the relevant grid
cells).

• The action set refers to scout vehicle movement op-
tions. In our problem, the available actions are left,
right, and straight for any grid cell.

• Reward is defined as the total reduction in uncer-
tainty for the relevant grid cells. It is calculated by
taking the sum over all reductions in variance re-
sulting from the Kalman filter–based updating of
the state from the scout’s observations.

It should be noted that the state space includes the
belief map in addition to the location and pose (three loca-
tion dimensions plus the “pointing” direction of the scout).
This information is a necessary part of the state because
the reward in transitioning between states is solely defined
by the reduction in variance. Given high initial uncertainty,
traversing new cells decreases variance more than moving
between cells whose uncertainty is already low. Including
the belief map makes the state space continuous.

Figure 5 shows the offline scout algorithm. The
scouts use ADP to create a policy for acting in the world.

A policy interlaces states and actions by instructing scouts
in given situations. The scout’s state space includes not
only location, pose, and risk but also uncertainty in the
risk-belief map. Computing the value function is com-
putationally intensive, so ARCAL approximates it offline
through value iteration before the mission starts. The
approximation simulates scout reconnaissance of high-
value areas and saves snapshots of the simulation as data
points in a table (Q table or Q function). We then gener-
ate an approximation architecture on each iteration by
regressing over these data points, taking representational
uncertainty into account [3].

Action-Selection Algorithm
A central question is how to choose which actions to reeval-
uate. As stated previously, the offline algorithms generate
a state-action value function and a tree of paths. The
simulation then decides how deeply (the number of
steps forward) and broadly (the number of actions)
and the number of samples per action the reevaluation
should be. We assume that we do not have enough
time to reevaluate every action over the planning

FIGURE 4. The scout executive architecture shows that the goal is to identify paths that maximize information. Scouts
model the problem and goal as a Markov decision process (MDP) and learn an offline policy in the form of a value function.
Policy dictates what the scout will do next. The policy may be improved online during the mission.

ARCAL algorithms

Logistics vehicle commands
Situational
awareness

Risk
info

Scout
vehicle

commands

Scout
vehicle

Sensor measurements

Mission
vehicle

Mission
goals

Operator
interface

Scout
belief

update

Logistics executive

Belief
updateRoad-map

planner

Tasked
areaScout

dispatcher

Proposed
plansLogistics

planner

Adjustable
autonomy

Scout executive

Risk-belief
map

Risk
monitoring

Scout
planner

Scout
MDP

Online
optimal
policy

O�line policy
learning

algorithm

Value
function

Online path
reoptimization

 VOLUME 22, NUMBER 2, 2017 n LINCOLN LABORATORY JOURNAL 67

LAWRENCE A.M. BUSH AND ANDREW WANG

horizon and thus only evaluate actions with promising
outcomes, given uncertainty about those outcomes.
This selection uses the offline state-action value func-
tion. The function provides an estimate of the value
(future cumulative reward) for each action, assum-
ing the current state. The estimate actually includes
a distribution described by a mean and variance. The
distribution captures how well we know a given value:
a high variance distribution means that we do not
know the value very well, and a low variance distri-
bution means that we know it precisely. We select a
sample from these distributions, one for each action,
and then choose the action with the highest sample
value. If one of the action distributions consistently
produces a high sample value, we know we have little
reason to evaluate other options. However, if there is
a state-action value distribution with an especially
high variance, the action will sometimes produce a
sample with the highest value even though its mean is
lower. This phenomenon mirrors the probability that
said action is the best, given what we know. In other
words, we explore the actions in proportion to their
optimality and to our certainty about this parameter
(i.e., we determine which actions to reevaluate by
representing the uncertainty about their true value).
This uncertainty distribution is used to select actions

(Figure 6) for reevaluation that appear to be good, but
uncertain. We may also evaluate less optimal plans
whose true value is subject to high variance.

To summarize, our method allows us to use
offline knowledge and processing to guide our scouts
online—the offline policy informs the additional
online processing. We can exploit both online and
offline control processing in a complementary way.

The action-selection process describes a fam-
ily of algorithms because changing the search hori-
zon and branching factor fundamentally changes
the algorithm. For example, if we use a very small
branching factor with a long horizon, the algorithm
closely resembles the rollout algorithm. Rollout, a
long-standing algorithmic method originally devel-
oped to evaluate moves in the game of backgammon,
was repurposed to evaluate MDP policies in general
[4, 5]. On the other hand, using a short horizon with
a large branching factor closely resembles model pre-
dictive control. The optimality of different configura-
tions depends on different applications and the stage
of the mission. For example, toward the end of a mis-
sion, it could be helpful to use a wider search (larger
branching factor) to make sure that we appropriately
consider the end goal. Further extensions to our algo-
rithm may include using different branching factors
at different levels of the search tree. For example, it is
easier for a function to capture long-term objectives
than short-term details. This small extension would

FIGURE 6. Some steps need to be evaluated in a timely in-
flight manner online. The online process describes a family of
algorithms that change the search horizon and branching fac-
tor and determine which steps need to be reevaluated online.

FIGURE 5. The scouts use approximate dynamic
programming to learn a policy by simulating reconnais-
sance and updating the value of each action. Here, a
decision to turn left would follow the black arrow that
might eventually follow the gray route; going straight
would follow red paths and turning right would follow
the yellow paths.

1. Which collection path contributes the most to
 keeping the rescue vehicle safe?
2. Are we sure?
3. Reevaluate uncertain and viable alternatives.

a. Learn scout policy
before mission (o�line) b. Simulate flying the scout and

exploring the reward landscape

c. Use approximate dynamic
programming for e�iciency

Estimate the value (accumulated future
reward) of each collective action

68 LINCOLN LABORATORY JOURNAL n VOLUME 22, NUMBER 2, 2017

AUTONOMOUS ROBOT CONTROL VIA AUTONOMY LEVELS

therefore allow the algorithm to rely more on offline
knowledge in the middle of the mission (when long-
term evaluation is sufficient) and more on simulation
at the beginning and end of the mission (when short-
term information is critical). Configuration parame-
ters thus determine the appropriate algorithm among
the possible alternatives. Selecting algorithms in this
way enables us to design systems that are broadly
applicable to many situations.

Demonstration of Results
At this stage, we are currently designing and imple-
menting ARCAL’s logistics executive and adjustable
autonomy components. We have implemented the
scout path-planning algorithm, which includes the
path-planning problem, the offline value iteration
procedure, and the online search for decision mak-
ing. Overall, the scenarios task the scout to reduce
variance within a 10-by-10 gridded area, but the areas
of high variance differ across scenarios. To show how
our scout finds efficient sensing paths, we focus on
scenario A, which includes high variance across the
entire map, thus simulating a setting of incomplete
prior information for a region.

Scenario A runs with a mission length of 25 time
steps. Within the scenario’s context, we first illustrate
the evolution and convergence of the approximate val-
ues function during value iteration. We use 100 sam-
ples to represent the state subset. The scout can be
within any of 100 unique grid cells, with four possible
orientations in each, and an infinite number of pos-
sible map beliefs. Our value function representation
is thus extremely sparse relative to the actual state
space. We display paths constructed during online
execution to show how the scout chooses to survey
areas with higher uncertainty that are within the time
constraints. The tree search algorithm is limited to 20
node traversals of computation, but searches down to
a depth of 7 nodes.

State Space Sampling
Figure 7 depicts the state-action value function evolving
over 10 sets of value iteration. The x-axis represents dif-
ferent sampled states in our lookup table, and the y-axis
shows the values associated with those states. When que-
rying the value of a state, we are not actually querying
but rather representing the estimation architecture that
interpolates over the sample states in the table. However,

FIGURE 7. The approximate dynamic programming (ADP) iterates through the state-action value functions. The
above graphs, taken at the zeroth, fifth, and tenth time points (of the ten iteration steps) in the policy learning process,
depict the value of each action (left, straight, right) in a series of policy-driven trajectories through the state space. The
objective of the repetitive reinforcement learning process is to generate a function that attributes (maps) a value to
the three actions for every state in the state space. However, only a subset of the states can be sampled because of the
very large state-space size. The middle and right graphs show four spikes for four trajectories. The values are higher
at these mission start points because there is more information to collect and lower at the ends of missions because
there is less information remaining. In the inset, position 1 indicates that the unmanned system should move straight
(red), position 2 shows a slightly better choice of moving right (yellow) over straight, and position 3 clearly indicates
that left (black) is not the best direction.

Left
Straight
Right

Left
Straight
Right

Left
Straight
Right

ADP iteration 0 ADP iteration 10ADP iteration 5

5

0

15

10

Es
tim

at
ed

 v
al

ue
 (
×1

0
5)

Sample state index
0 12010080604020

Sample state index
0 12010080604020

Sample state index
0 12010080604020

1

3

2

 VOLUME 22, NUMBER 2, 2017 n LINCOLN LABORATORY JOURNAL 69

LAWRENCE A.M. BUSH AND ANDREW WANG

to aid conceptual convenience and transparency, we will
refer to the plots as the value-function plots. The sample
states were constructed by initializing a simulated sce-
nario four times and letting the scout fly a predetermined
raster pattern that sweeps across the area for the 25-step
length of the mission [6]. To avoid gathering the exact
same data each time, we introduced stochasticity into the
path and increased it with each subsequent pass.

Our method samples a state “trajectory,” which is a
path through the state space during a representative mis-
sion. Give a mission starting point, we employ a default, or
initial, policy in order to choose initial actions. This “on-
policy” approach tends to explore states that are likely to
occur. Injecting some random decisions into the policy
allows the system to explore actions (and the associated
states) that are “outside of the envelope.”

The result of this sampling is shown as a sequence of
value function plots in Figure 7. At first, the values for each
sample state are initialized with low random noise (not
visible at the scale shown). In subsequent iterations, the
values accrue at each step because each state “looks ahead”
to the next best state and adds that state’s value to its own
reward (i.e., variance reduction) for taking the action
leading into that state. The values gradually converge
(i.e., the increase at each step gets smaller) since accrual

is increasingly discounted over subsequent iterations.
However, the most interesting parts of these plots are
the four peaks that correspond to when the scout passes
over high-variance areas and realizes large rewards. The
reward subsequently decreases for these areas. The plots
illustrate how the value function effectively encodes and
exploits the structure of belief variance.

Figure 8 shows the algorithm’s path construction at
time steps 1, 10, 17, and 25. The upper plot in each frame
shows belief variance with a color scale, while the lower
plot shows the scout’s path for the given time step. The
diagram shows that the scout travels south into the area
of highest uncertainty and traverses it until the end of
the mission. Note how the scout systematically whittles
away the belief variance in the top plots. We rescaled
the colors so that areas with the highest remaining vari-
ance always appear yellow, and thus show how those
locations guide and attract the scout. The scale changes
significantly by the end of the mission, demonstrating
the extent of variance reduction.

This example shows that our scout planning algo-
rithm finds a path through an area such that it purpose-
fully surveys the most uncertain features, thus generating
the most valuable data for the logistics planner through
a combination of the offline value iteration and online

FIGURE 8. Row one and two respectively show the belief uncertainty and scout path for our scenario.
The top row visualizes the belief uncertainty (variance) map at time steps 1, 10, 17, and 25; the yellow
reflects a higher uncertainty, and red reflects a lower uncertainty. The bottom row visualizes the data-
collection path. Loc indicates the current location of the scout.

Belief variance

Path map

10
8

4

6

2

1084 62

1084 62
10
8

4

6

2

8000

4000

6000

2000

1.0

0.8

0.4

0.6

0.2

0
1084 621084 62

1084 62 1084 62

1084 62

1084 62

Time: 1/25;
Loc: (2, 3); k = 1

Time: 25/25;
Loc: (9, 4); k = 3

Time: 17/25;
Loc: (7, 10); k = 2

Time: 10/25;
Loc: (3, 8); k = 2

70 LINCOLN LABORATORY JOURNAL n VOLUME 22, NUMBER 2, 2017

AUTONOMOUS ROBOT CONTROL VIA AUTONOMY LEVELS

FIGURE 9. The autonomy simulation environment architecture leverages and integrates two powerful simulation tools:
MÄK Technology’s VR-Forces simulation framework for computer-generated forces and OPNET’s Modeler simulation
for high-fidelity communications. A well-defined interface is then specified to drive autonomous vehicles and to simulate
communication and other interactions within a dynamic environment.

search procedures. The flexibility of our algorithm arises
from the MDP framework, which easily adapts to any
given scenario. An important detail of our approach
is that, because we cannot exactly represent the value
function, we acknowledge this problem by introducing
stochasticity into our decision making. Thus, our nonde-
terministic solutions, while rarely optimal, are robust in
the presence of this uncertainty. When integrated within
the ARCAL system, the scouts can thus effectively con-
tribute to real-time logistical planning.

Autonomy Simulation Environment
To further assess autonomous behaviors in changing
environments, the ARCAL project is also developing

an autonomy simulation environment (Figure 9). This
environment includes a software infrastructure in
which collaborative autonomy algorithms and system
behaviors can be evaluated according to physical, envi-
ronmental, and network effects. Accelerated 3D visual-
ization of the simulation provides demonstrative context
for the candidate algorithms. Metrics are being devel-
oped to assess proper autonomous decision-making
behavior in multivehicle and hierarchical configurations.

Environment Framework and Components
MÄK Technology’s VR-Forces (VRF) is a simulation
framework for computer-generated forces (CGF),
allowing for scenario generation and behavioral

Autonomy Simulation Environment

ARCAL

VR-Forces OPNET Modeler Risk-guided adjustable autonomy

• Visualization of autonomy
 behaviors
• Interaction with changing
 environment
• Mission e�ectiveness
 measurements
• Algorithm comparisons
• Performance with multiple
 scenarios

• Networking models
• Radio waveforms
• Channel characteristics

• Unmanned system teaming
 architecture
• Risk-based autonomy
• Task-directed adaptive search
 algorithms

• Volumetric models
• Platform dynamics
• Terrain models
• Scenario generator

Supply
convoy

Mission
logistics vehicle

Autonomous
aerial scouts

Autonomous
ground scout

C
ro

ss
 c

ue
in

g
an

d
ta

sk
in

g

Destination
Destination

X
X

ARCAL algorithms

Logistics vehicle commands
Situational
awareness

Risk
info

Scout
vehicle

commands

Scout
vehicle

Sensor measurements

Mission
vehicle

Mission
goals

Operator
interface

Scout
belief

update

Logistics executive

Belief
updateRoad map

planner

Scout
planner

Tasked
areaScout

dispatcher

Proposed
plansLogistics

planner

Adjustable
autonomy

Scout executive

Risk belief
map

Risk
monitoring

 VOLUME 22, NUMBER 2, 2017 n LINCOLN LABORATORY JOURNAL 71

LAWRENCE A.M. BUSH AND ANDREW WANG

modeling of ground, air, and sea entities (ground vehi-
cles, aerial vehicles, autonomous ocean sensors) [7, 8].
Entities in VRF have 3D volumetric representations
that interact with a specified terrain or the overall
environment. Each entity has a parameter database
that describes its physical and behavioral characteris-
tics. The simulation engine uses these parameters as it
interacts with the terrain and other entities. Scenario
generation consists of generating a terrain and all sim-
ulation entities, which are assigned a plan consisting
of small tasks. Similar to robotic systems, VRF uses
a component architecture made up of sensors, con-
trollers, and actuators. These components combine to
form behavioral systems. The Laboratory’s framework
uses a customized application programming interface
(API) to provide input to the autonomy algorithms.
The object states of VRF are outputted over a dis-
tributed high-level architecture (HLA) for computer
simulation systems. This HLA is similar to a Common
Object Request Broker Architecture (CORBA) mid-
dleware that allows for federated applications using
the same simulated objects. VRF includes a detailed
graphical user interface front end that subscribes to
objects over an HLA and renders them, along with the
terrain, in an accelerated 3D environment.

It is important to model accurate network effects
because of their relevance in algorithm design. Lever-
aging the fact that, in VRF communication, effects
can be exported to an external server, we were able to
integrate OPNET Modeler, a separate discrete-event
simulator that excels in network simulations [9–11].
Communications between entities are sent over an
HLA to an OPNET simulation whose timing is syn-
chronized with VRF. By using VRF with customized
component systems to provide behavioral modeling of
unmanned aerial vehicles (UAV) within a 3D terrain,
along with a front-end graphical visualization engine
and OPNET Modeler to provide communication
effects, we have a high-fidelity combination of soft-
ware technologies and APIs with which we can test
and evaluate candidate autonomy algorithms [12].

In order to support the ARCAL search and res-
cue scenario description, we needed the ability to dis-
criminate terrain by using low-flying platforms. We
assume that our UAVs are equipped with sensors that
are able to discriminate between various terrain types

(e.g., paved road, shallow to deep water, grass, boul-
ders). In addition to identifying these terrain patches,
we must determine whether a given area has been dis-
turbed from its previous terrain type. We introduce
a terrain “flag” that represents a drastic change to a
cell’s terrain. The sensors on the UAV detect terrain
conditions and upload them to their overhead view
of the area.

Sensor Modeling
We equip the model in VRF with a custom coarse-
grained sensor that uses the terrain API to read what
type of terrain exists in each cell as the UAV flies
over it. For each terrain patch, two values are stored
in a matrix: a “prior,” which represents the risk of a
given terrain (e.g., paved road is low risk, deep water
is high risk), and a “variance,” which represents the
sensor’s certainty of detection. A fine-grained sensor
is integrated on a second UAV. It detects disrupted
terrain and supplies updated variance values to fur-
ther reduce uncertainty.

The UAV with the lower-resolution sensor flies in
a simple raster pattern over an area of interest, forming
the initial matrix of priors and variances. This low-res-
olution reconnaissance is a bootstrapping phase that
can be cached. The scenarist can then apply calamity
effects to the terrain by dropping a flag that represents
a disruption of that terrain patch. Alternatively, a ran-
dom application of calamity effects can be generated
and overlaid onto the terrain. At this point, the priors
matrix is split up into units for further refinement. For
visualizing the sensed area, each sensor has a visual
cone angle that captures the ground state as the UAV
flies over the terrain. For the fine-grained sensor, ter-
rain cells are initialized with values that represent a
function of their priors and variances. The dynamic
program uses the priors matrix to instruct UAVs with
high-resolution sensors on where to go to improve the
priors matrix, narrow variances, and otherwise detect
the terrain’s real state.

As the UAVs refine the priors matrix, communi-
cation occurs by sending data from the UAVs to the
OPNET simulation, subjecting the data to the wire-
less effects of the configured channel and terrain, and
to the communication effects of the configured radio.
We are currently using a single candidate autonomy

72 LINCOLN LABORATORY JOURNAL n VOLUME 22, NUMBER 2, 2017

AUTONOMOUS ROBOT CONTROL VIA AUTONOMY LEVELS

The texture value enumerations that were recorded
correspond to one of several supported surface types
(e.g., asphalt, grass, deep lake, boulder). Next, the
algorithm is run on the priors matrix to determine
flight paths for the UAVs. These flight paths are then
imported back into VRF. The high-resolution sensor
will follow these paths with the “terrain-painting” cus-
tomized graphical user interface plugin enabled (Fig-
ure 10). The terrain will be mapped in order to reduce
variances. Ultimately, this processing will integrate
with the simulation itself, and the aforementioned
communications processing with OPNET will be used
to exchange information among entities.

Looking Forward
In the future, unmanned platforms will gain higher-
order decision-making intelligence, form teams, and
perform collaborative tasks. The ARCAL project rep-
resents two complementary areas of research that
increase operator confidence in future autonomous

algorithm in the ARCAL simulation framework, but
most of the framework development itself is agnostic
with respect to the candidate algorithms.

As development of the Lincoln Laboratory
ARCAL simulation framework continues, we are
putting together an initial demonstration of some
of the capabilities that will ultimately be integrated
into the full infrastructure. Offline processing that
uses the MIT scout path-planning algorithm inputs
terrain characteristics into the ARCAL simulation
environment to generate algorithm decisions. The
demonstration will showcase the ability of the coarse-
grained sensor to create a priors matrix for a given
terrain and the fine-grained sensor’s ability to further
reduce variances by flying paths determined offline by
the dynamic program of the algorithm developed by
MIT’s MERS Group.

The simulation assumes a single UAV rastering a
given swath of terrain. The priors matrix is written to a
file processed by a MATLAB script provided by MERS.

FIGURE 10. In this simulation, high-resolution sensors “paint” the terrain as the variances are reduced via data collection.
The circles mark the locations of the UAVs and the yellow lines indicate the direction of the UAV sensors.

 VOLUME 22, NUMBER 2, 2017 n LINCOLN LABORATORY JOURNAL 73

LAWRENCE A.M. BUSH AND ANDREW WANG

system behaviors. The first incorporates concepts of
risk-based adjustable autonomy with risk verification
within system functions and task-directed adaptive
search techniques. An operator can adjust the auton-
omy level, employ autonomy functions, or revert to
fully manual control at any time. The second involves
new methods to effectively test and evaluate collab-
orative autonomous team behaviors prior to field
deployment via a high-fidelity, interactive simulation
environment with 3D visualization.

Natural disaster relief scenarios were used to
develop and validate the concepts and technologies
used in this project. In these simulations, a team of
unmanned aerial and ground scouts is dispatched
to determine the most efficient path for a logistics
vehicle. The autonomous algorithms, concepts, and
technologies can be used with the autonomy simula-
tion environment and for other situations.

This article also introduced the theoretical basis
for adjustable autonomy used during control and
supervision of a team of scouts performing a collab-
orative task. Task-directed search algorithms for UAV
scout path planning improved knowledge of the risks
to the mission. An algorithm test battery was devel-
oped and used to run tests on the scout path-planning
algorithms. The ARCAL system’s architecture incor-
porates autonomy algorithms that were tested with
the natural disaster recovery scenario. Initial results
show that the algorithm performs effectively.

The autonomy simulation environment integrates
commercial state-of-the-art simulation and model-
ing products. It serves as a software infrastructure
for evaluating candidate collaborative autonomy
algorithms and system behaviors under very specific
physical, environmental, and network conditions.
An initial concept capabilities demonstration under
development uses task-directed search algorithms for
planning paths for unmanned scout vehicles to follow
to update a terrain risk-belief map. This map is used
in the ARCAL system architecture so that adjustable
autonomy algorithms can plan efficient pathways.

This technology requires risk-based reasoning
developed through formal models and algorithms.
The architecture for such reasoning (in a context
of path planning) must include characterization of
temporal risk. Temporal coordination is an essential

aspect of any mission that requires multiple activities
to be executed in sequence or simultaneously, with
future tasks depending on the completion of earlier
tasks. The problem of assessing temporal risk is sched-
uling the activities such that they are probabilistically
robust against scheduling uncertainty. This article
formally described two algorithmic approaches to this
problem, demonstrating one approach through experi-
ments.

Today, both mission and sensing complexity are
managed through increased automation that allows
operators to abstract away from lower-level functions
and focus on higher-level goals. The operator specifies
goals at a certain level of abstraction and then relies
on automation to achieve them. The result is a signifi-
cant collaboration between humans and automation.
Decisions traditionally made by humans are now auto-
mated and significantly improve the probability of a
successful mission.

Sensing advances have increased mission per-
formance in terms of faster execution and greater
complexity. By providing relevant data with great
immediacy, the sensors can immensely accelerate
mission planning and execution. However, improved
mission performance also requires greater sensing
complexity in sensor coordination and analysis. Sens-
ing an environmental feature may, for example, require
a network of sensors operating in a coordinated man-
ner. Trade-offs between coverage and resolution must
be considered, and further trade-offs for resource
scarcity are magnified if heterogeneous sensors are
involved. To interpret the data from multiple sensors,
data would need to be integrated and analyzed. Finally,
rapid response requires real-time sensor coordination
and data analysis.

Networked sensing systems are enabling unprec-
edented levels of mission performance through
significant collaboration between human opera-
tors and advanced automation. In the last decade,
advances in low-cost computation and networking
have transformed single-instrumented sensors into
networked systems of mobile elements. For example,
aerial surveillance is progressing from being a mis-
sion conducted by a single, piloted aircraft to a con-
tinuous operation maintained by teams of smaller
and less expensive UAVs. The result has been a dra-

74 LINCOLN LABORATORY JOURNAL n VOLUME 22, NUMBER 2, 2017

AUTONOMOUS ROBOT CONTROL VIA AUTONOMY LEVELS

matic increase in the observational capabilities and
response times of sensing systems. The multitude and
mobility of sensors can yield not only greater coverage
but also greater depth and precision than achieved
previously. Sensor networks can also offer redun-
dancy and immediacy (i.e., repeated “looks” at and
quick response to critical areas). Rather than being
a single point of failure, sensing becomes a service
whose performance improves or degrades gracefully
with the number of sensing assets.

Acknowledgments
To carry out this work, researchers and engineers from
MIT campus and MIT Lincoln Laboratory collaborated.
Researchers (Lawrence Bush, Andrew Wang, and Prof.
Brian Williams) from the MERS Group at MIT developed
the theoretical basis for risk-based adjustable autonomy
and task-directed adaptive sensing in order to autono-
mously coordinate multivehicle missions while keeping
the operator in the loop. Jeffrey McLamb of Lincoln Lab-
oratory developed the simulation environment to under-
stand and evaluate autonomous collaborative teaming
behaviors, with an emphasis on facilitating operator con-
fidence for supervisory control. The authors would also
like to acknowledge Michael Boulet, Bernadette Johnson,
Jerry Jaeger, and Matthew Kercher for their encourage-
ment of this research. n

References
1. D.P. Bertsekas, Dynamic Programming and Optimal Con-

trol, vol. 1, ed. 3. Cambridge, Mass.: MIT Press, 2005.
2. D.P. Bertsekas, Dynamic Programming and Optimal Con-

trol, vol. 2, ed. 3. Cambridge, Mass.: MIT Press, 2007.
3. J.N. Tsitsiklis and B. Van Roy, “Feature-Based Methods for

Large Scale Dynamic Programming,” Machine Learning, vol.
22, no. 1, 1996, pp. 59–94.

4. D.P. Bertsekas and D. A. Castanon, “Rollout Algorithms for
Stochastic Scheduling Problems,” Journal of Heuristics, vol.
5, no. 1, 1999, pp. 89–108.

5. G. Tesauro, “Temporal Difference Learning and TD-Gam-
mon,” Communications of the ACM, vol. 30, no. 3, 1995,
pp. 58–68.

6. R.S. Sutton and A.G. Barto, Reinforcement Learning: An
Introduction. Cambridge, Mass.: MIT Press, 1998.

7. “VR-Forces: Computer Generated Forces and Simulator
Development,” http://www.mak.com/products/simulate/vr-
forces.html.

8. H. Gao, Z. Li, and X. Zhao, “The User-defined and Function-
strengthened for CGF of VR-Forces,” Computer Simulation,
vol. 6, 2007, pp. 212–215.

9. “OPNET,” Wikipedia, the free encyclopedia, http://
en.wikipedia.org/wiki/OPNET#Corporate_history.

10. G.F. Lucio, M. Paredes-Farrera, E. Jammeh, M. Fleury, and
M. Reed, “OPNET Modeler and Ns-2: Comparing the Accu-
racy of Network Simulators for Packet-Level Analysis Using
a Network Testbed,” WSEAS Transactions on Computers, vol.
2, no. 3, 2003, pp. 700–707.

11. B. Meenakshi, R. Rajput, and G. Gupta, “Mobile Ad Hoc
Networking (MANET): Routing Protocol Performance
Issues and Evaluation Considerations,” The Internet Society,
1999.

12. I.S. Hammoodi, “A Comprehensive Performance Study of
OPNET Modeler for ZigBee Wireless Sensor Networks,” Pro-
ceedings of the 3rd International Conference on Next Genera-
tion Mobile Applications, Services and Technologies, 2009,
pp. 357–362.

 VOLUME 22, NUMBER 2, 2017 n LINCOLN LABORATORY JOURNAL 75

LAWRENCE A.M. BUSH AND ANDREW WANG

In many transport scenarios, it is critical not only
to fulfill the goals but also to complete them “on time.”
The risk assessment tools for autonomous robot con-
trol discussed in the main article must be extended to
assess the timeliness of proposed paths. Robots need to
be sent to locations where information on route acces-
sibility is missing and to pathways where the traverse
times are uncertain.

Scenario
A transport convoy responding to a natural disas-
ter consists of teams of ground vehicles with trained
responders that must traverse unknown terrain to
reach people in need. The mission goals are to
• Deliver provisions, administer medical care, trans-

port victims to hospitals or shelters, repair infra-
structure, and set up field stations;

• Transport responders throughout the affected re-
gion, performing each task according to its priority;

• Task robotic aerial scouts to study terrain.
The role of automation is to coordinate these goals by
planning navigation for ground vehicles while human
responders focus on their tasks.

Figure A1 illustrates a disaster relief scenario. A

team waiting at a depot has been tasked with picking
up a patient at location A, transporting him to the hos-
pital, and unloading supplies at the shelter at B along
the way. The navigation planner generates possible
paths along roads from the depot to A, A to B, and B to
the hospital. The risk threshold, which pertains to the
patient transport task, may not exceed, for example,
5%. The total risk specifically includes the risk of suc-
cessful traversal across damaged roads on a one-hour
deadline. The depot, A, and the hospital are on one
side of a river while B is on the other side. The only
feasible paths to and from B (given the deadline) tra-
verse bridges that may have been critically damaged.
A longer path that avoids these bridges leads from the
depot to B and incurs the least traversal risk. The final
stage from B to the hospital may require aerial scouts
to survey three candidate bridges.

While the transport team is picking up the patient
at A, scouts relay the information that only one of the
bridges is traversable and, furthermore, the roads from
this bridge to B pose a 10% risk to the patient. Opera-
tors can either accept the additional risk or take the
patient to the hospital first and then visit the shelter at
B, but the longer path and nightfall will make it harder

Appendix

Temporal Risk Assessment

A
B

Depot

FIGURE A1. A transport
scenario may include mul-
tiple tasks with associ-
ated risks. For example,
a patient at location A
needs to reach a hospi-
tal within one hour, while
people at location B need
supplies and access to
shelter before nightfall.

76 LINCOLN LABORATORY JOURNAL n VOLUME 22, NUMBER 2, 2017

AUTONOMOUS ROBOT CONTROL VIA AUTONOMY LEVELS

to drive safely through damaged roads.
The architecture can also incorporate unforeseen

developments (both positive and negative) that affect
the risk distribution. A person on the response team, for
example, may be able to perform some sort of triage on
the patient en route, giving the team a longer window to
reach the hospital. With the deadline extension, the auto-
mation is able to find a plan that addresses the task at B
and results in 6% risk to the overall mission completion.

Scheduling
In assessing the mission risk, the automation must con-
sider (1) the uncertainty of whether one can traverse roads
successfully and in a timely manner relative to other mis-
sion segments, and (2) the possible repercussions if roads
are not passable within the risk tolerances. For instance,
two of the bridges in the scenario are untraversable, and
the third has traffic or requires more care in traversing
and therefore more time. The simulation considers an off-
road alternative in the absence of traversable roads. This
iteration of the simulation would send scouts to assess the
off-road terrain in a timely manner, so that the risk map is
current by the time the patient at A is picked up. Multiple
vehicles were not considered in this scenario, but in a plan
that involves a rendezvous point, vehicles would ideally
converge simultaneously to conserve resources, stream-
line other tasks, and minimize risk.

The main article describes how to plan and model
the success probability of a planned path through a land-
scape affected by a natural disaster or crisis. The algo-
rithm calculates the risk-belief distribution of a path
according to risks encountered. Once risks for each
potential path are known and the optimal path has been
determined, responders still face the challenge of mini-
mizing and prioritizing response times for different cri-
sis-related tasks. Response time and the coordination
of tasks according to temporal constraints are essen-
tial aspects of the planning architecture. A mission may
call for multiple activities to be executed in sequence or
simultaneously. Temporal risk management requires the
coordination of tasks in a way that is probabilistically
robust against temporal uncertainty.

Previous research has shown that an iterative risk
reallocation algorithm capitalizes on the structure of the
desired temporal coordination (e.g., identifying sched-
uling conflicts and trying to solve them) to better serve

the operator in real-time temporal risk management.
Risk reallocation requires an algorithm that makes local,
iterative adjustments but has global guarantees of iden-
tifying a schedule that meets the risk criteria. As with
other forms of risk, the adaptive sampling algorithm can
reduce temporal risk by evaluating it within the mission
model and evaluating risk estimates according to overall
mission risk thresholds. The planner determines a task
ordering (i.e., schedule) that satisfies the mission’s tem-
poral goals with a certain probability.

Risk Allocation
Calculating the exact risk becomes increasingly difficult
with more complex mission structures. Finding the opti-
mal schedule is not typically a tractable approach. The
most practical approach finds a feasible schedule that
obeys some minimum failure rate. First, we formally
define the scheduling problem through a specification of
chance-constrained temporal goals and temporal uncer-
tainty. Then, we restrict the solution space to scheduling
strategies that are strongly controllable (i.e., a complete
schedule that is robust against future uncertainty).

After defining the problem, we reformulate it as a
temporal problem with uncertainty. This reformulation
decouples chance and temporal constraints, and maps
the strong controllability condition into strong control-
lability for a previously studied problem. The principle
behind our reformulation is to allocate temporal risk
to each activity’s duration. Each allocation reduces an
activity’s probabilistic model of temporal uncertainty
into an interval bound. Thus, satisfaction of the chance
constraint depends wholly on the risk allocation, while
temporal constraints are evaluated solely on the struc-
ture of the interval bounds for duration. We choose an
interval-bounded reformulation because it transforms
the structure of temporal uncertainty into one that is
addressable by efficient, controllability-checking algo-
rithms. A strong controllability version of these algo-
rithms is described and exploited by our algorithm. The
problem can then be reformulated into a solvable form.

Given a simple temporal network, find a schedule
that satisfies its chance constraint:
• Drive to A. Pick up patient.
• Drive to B. Deliver shelter supplies.
• Drive to hospital. Unload patient.

We assume that the transit components of each task

 VOLUME 22, NUMBER 2, 2017 n LINCOLN LABORATORY JOURNAL 77

LAWRENCE A.M. BUSH AND ANDREW WANG

are uncontrollable because of road conditions, while the
rest of the tasks are controllable but have specific tem-
poral requirements. Operator-imposed temporal con-
straints begin upon arrival at an accident scene. In the
ongoing operational example, the constraint might be
that once the patient has been moved, the transport team
must reach an emergency room within 60 minutes or
the patient dies, immediately nullifying the value of the
operation.

Figure A2 illustrates the encoding of this scenario as a
probabilistic simple temporal network (pSTN). Uncon-
trollable events are squares and represent arrival times.
Uncontrollable durations are represented by dotted
arrows; controllable durations and temporal constraints
are represented by solid arrows. Each arrow is labeled
with its respective constraint (in minutes). Each con-
trollable duration and simple temporal constraint has a
lower and upper temporal bound (in the figures, this is
unknown) as follows:
• Start from location D' (depot).
• Picking up and loading the patient at A takes at least

5 minutes.
• Delivering shelter supplies at B takes at least 10

minutes.
• Unloading the patient at H (hospital) takes at least

1 minute.
• Finally, the patient must reach the hospital within 60

minutes of the pickup time.
Each uncontrollable duration has a continuous

probability distribution built from the awareness of
road conditions. Constraint satisfaction problems can
be represented as graphs with variables as vertices and
constraints as edges. Graphs elucidate the dependency
structure among constraints based on the constraints’
shared variables.

Risk allocation distributes the chance constraint’s
specified failure probability over the various sources of
uncertainty. In our case, these sources are the uncon-
trollable durations. Assuming an interval bound as a
duration’s domain effectively assigns risk to that dura-
tion (i.e., the probability that the realized duration
will fall outside the interval). The combination of each
duration’s assumed interval then becomes the macro
interval under consideration.

This type of risk allocation enforces structure,
which enables evaluation of both variables and con-

straints. Specifically, the structure becomes a rectilin-
ear parallelepiped, with the axes aligned within the
uncontrollable outcome space. The assumption that all
durations are independent of each other means that
conditions may be evaluated as the product of probabil-
ities for each duration and strong controllability can be
easily verified. Placing interval bounds on each uncon-
trollable duration reformulates the pSTN as a simple
temporal network with uncertainty (STNU). In con-
trast to probability distributions with infinite domains,
these hard-bounded assumptions of temporal uncer-
tainty simplify the controllability-checking criteria.
Thanks to previous research, efficient algorithms exist
to check both the strong and dynamic forms of STNU
controllability. Risk allocation effectively restricts the
solution to a series of small components (i.e., dura-
tions) that are easy to adjust to satisfy the conditions
of the scenario.

Figure A3 shows the disaster relief scenario in
reformulated form. Note that the temporal structure
remains virtually unchanged. Events, nodes, and dura-
tions remain in their original locations. However, each
uncontrollable duration now has a lower-bound vari-
able and an upperbound variable. The highlighted
probability mass is the likelihood that the duration will
land in between these bounds or between the inverse of
the risk assigned to that duration.

FIGURE A2. The probabilistic simple temporal net-
work (pSTN) encodes the disaster relief scenario and
the timing risks in seconds. The process comprises a set
of uncontrollable events (squares) between locations
(circles), uncontrollable durations (dotted arrows), and
controllable durations (solid arrows). In a pSTN, each
uncontrollable duration is described by a probablistic
distribution. The brackets indicate the fixed time limit—
no longer than 60 minutes total time—and the known
minimum time for a given path. The parentheses indi-
cate that the maximum times are currently unknown.

[0, 60]

[10, +∞) [1, +∞)[5, +∞)
D' H'B'A'

HBA

78 LINCOLN LABORATORY JOURNAL n VOLUME 22, NUMBER 2, 2017

AUTONOMOUS ROBOT CONTROL VIA AUTONOMY LEVELS

Controllability can then be checked by using a
specific grounded disaster relief scenario. Checks can
identify events that become uncontrollable under
certain constraints, thus removing those events from
consideration within scenarios. After cycling through
certain constraints, the overall STNU can itself be
evaluated for controllability.

About the Authors
Lawrence A.M. Bush is a senior per-
ception software engineer at Autonomous
Solutions Inc., where he is responsible
for providing technical direction on the
development of the design and algorithms
for an autonomous ground vehicle percep-
tion system. He leads the research and
development of algorithms for indoor and
outdoor GPS-denied localization (e.g.,

cleaning and orchard applications) and develops algorithms for
object and void detection and for terrain characterization for min-
ing, drilling, and military convoy systems. He designs fail-safe
system verification processes for autonomous road vehicles. Pre-
viously, at Lincoln Laboratory, he led machine learning algorithm
development and autonomous system design work. Specifically,
he conducted research in the areas of sensor data analytics for
decision support; battle management, command, and control;
human-machine interaction; and vehicle autonomy. He developed
and led a human-in-the-loop experiment investigating the utility of
decision support algorithms, integrating radar data and unmanned
aerial vehicle–based optical imagery. He holds a doctorate in
autonomous systems from MIT. His doctoral thesis research, per-
formed in the MIT Computer Science and Artificial Intelligence
Laboratory (CSAIL) in collaboration with the Monterey Bay
Aquarium Research Institute and the NASA Ames Research Cen-
ter, focused on autonomy for sensing missions. He has published
papers on underwater vehicle control and autonomous air combat.
He also advises the Utah State University Autonomous Vehicle
Competition team.

Andrew Wang is a doctoral candidate at
MIT, studying automated reasoning. His
work focuses on modeling and assessing
the risk of plans to improve the safety of
robotic task execution. He is interested
in scheduling algorithms that anticipate
upcoming failures during execution and
respond with dynamic updates to pre-
serve safety. His work has been applied to

designing space probe missions, underwater robotic surveys, and
urban transportation logistics. He earned bachelor’s degrees in
aerospace engineering and in electrical engineering and computer
science (EECS), and a master’s degree in EECS, all from MIT. He
has received fellowship offers from the Department of Defense and
NASA.

FIGURE A3. The original pSTN scenario is now refor-
mulated as a simple temporal network with uncertainty
(STNU). An STNU problem representation bounds each
individual uncontrollable duration (with probable time I and
uncertanity μ), reducing the effect of the broad uncertainty
on route selection.

[0, 60]

[10, +∞) [1, +∞)[5, +∞)
D' H'B'A'

HBA

[lA, μA] [lB, μB] [lH, μH]

