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Autonomous Robot 
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Levels
Lawrence A.M. Bush and Andrew Wang

In the future, unmanned systems will 
gain decision-making intelligence that 
enables them to autonomously operate 
in clusters to perform collaborative tasks. 

For successful field deployment of unmanned systems, 
operators will need confidence that autonomous decision 
making leads to optimal behaviors in uncertain environ-
ments. Adjustable autonomy technologies, concepts, and 
simulation environments evaluating teaming behaviors 
will enable researchers to develop these systems. Net-
work and sensing advances have created the opportunity 
for increased mission performance, but at the expense of 
greater complexity in sensor coordination and analysis. 
Current unmanned systems are typically teleoperated and 
are labor intensive, relying on human operators and their 
decision-making capabilities to perform mission tasks. 

Today, mission and sensing complexity that are man-
aged through increased automation of lower-level func-
tions (e.g., mechanical-system controls) help operators 
focus on higher-level decisions. The lower-order decision-
making algorithms under development include those for 
waypoint following and collision detection and avoidance. 
Some of these algorithms have been incorporated in oper-
ational platforms.

Deployment
A team of unmanned aerial and ground vehicles might be 
deployed in a natural disaster relief scenario as depicted 
in Figure 1. In this example, a major earthquake has dam-
aged buildings, roads, and bridges, and disrupted commu-
nication, power, and water distribution services. A nuclear 

Autonomous systems need to exhibit intelligent 
behaviors while performing complex operations. 
These systems will be deployed in clusters to 
perform collaborative missions with human 
supervisors. Autonomous systems will take on 
expanded roles, requiring higher-order decision-
making capabilities supporting autonomous 
mission planning, resource allocation, route 
planning, and scheduling and execution of 
coordinated tasks. 

»
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platform route plans for optimum survey coverage, and 
scheduling algorithms would determine flight or road 
plans for autonomous scout vehicles to follow. The exe-
cution manager algorithm would see that the mission is 
performed and goals are met.

It is the job of the logistics planner algorithm to 
choose the actual sequence of waypoints so that it bal-
ances and reduces the risk among each component of the 
mission. However, to make well-informed decisions, the 
planner will need the scouts to gather additional data on 
areas the logistics vehicle may cross in the future. The 
scout dispatcher algorithm determines where to send 
the scouts, given the plans currently considered by the 
logistics planner algorithms. The execution of each plan 
carries with it some risk uncertainty, which is trans-
formed into map uncertainty. In other words, the scout 
dispatcher determines map locations that contribute 

energy facility also requires an immediate response. Relief 
convoys need to deliver supplies throughout the affected 
area. A team of autonomous aerial and ground scouts 
supervised by operators in a mission logistics vehicle is 
dispatched to survey the damage. The algorithms need to 
determine the safest path for the relief convoy to travel to 
reach its destination in the minimum amount of time.

Figure 2 presents an architecture for functions that a 
multiagent autonomous team would need to perform in 
this scenario. Human mission operators in the logistics 
vehicle would enter high-level goals, system constraints, 
and policies into the system. Resource allocation algo-
rithms would be employed to develop a system composi-
tion based on the mission objectives and the appropriate 
available resources, including which platforms to deploy 
and their sensor payloads, processors, and communica-
tion capabilities. Planning algorithms would develop 
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FIGURE 1. In this earthquake relief scenario, a convoy needs to deliver supplies to those in need by the safest path. 
A team of aerial and ground scouts supervised by operators in a mission logistics vehicle is dispatched to survey the 
damage and provide real-time route safety information.
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most to uncertainty. It then tasks scouts to survey these 
areas to disambiguate candidate plans. Each scout’s 
planner accepts as inputs these areas and a time limit 
for reporting results on each area. The executive must 
also receive the current risk estimate or “belief ” for the 
relevant area. The planner runs an adaptive sampling 
algorithm that is trained to calculate the flight path 
that achieves the highest expected information gain 
within the time allotted. As sensor measurements are 
analyzed and shared, the belief update module incor-
porates them into the risk belief, and at the end of a 
sensing task, the scout reports the updated risk belief 
to the logistics executive.

For successful system field deployment, operators 
need confidence that autonomous decision making 
leads to optimal behaviors, especially when carried 
out in uncertain environments. A number of concepts 

and technologies are the subjects of current research 
to optimize planning in uncertain environments. As 
shown in Figure 2, one strategy is to equip functional 
modules with risk-assessment capabilities. This strat-
egy would allow adjustment of the system’s autonomy 
levels according to individual risk acceptance. At any 
time, an operator can monitor autonomy algorithm 
decisions, augment or modify algorithm inputs, or take 
over full manual control of selected logistics vehicles.

Another strategy is the incorporation of rigorous 
verification processes within the autonomous system 
algorithm architecture. Algorithm results or plan fea-
sibility would be verified against operator risk accep-
tance as well as mission resource costs and system 
performance or autonomous behavior expectations. If 
conditions are not met, the system may request new 
plans or request/task subgoals to reduce uncertainty, 

FIGURE 2. Within the generalized multiagent autonomy architecture of the Autonomous Robot Control via Autonomy 
Levels (ARCAL) system, the logistics executive contains several submodules. Two of them are the high-level logistics 
planner and the low-level road-map planner, each containing a risk-assessment functionality that operates on the risk-
belief map. Together, these submodules determine the course of action for the logistics vehicle. The logistics planner 
accepts mission goals from the operator and generates sequences of waypoints, producing a high-level road map that 
will achieve the mission goals. Then, the road-map planner finds the actual path taken between waypoints.
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including tasking additional scout runs for surveillance 
information, satellite imagery, or other sensor data.

The performance of unmanned systems in collab-
orative tasks has not been thoroughly tested in uncertain 
environments. In fact, such testing requires entirely new 
methods. Accurate behavioral simulation and metrics 
(currently unavailable) are both vital to completing a 
successful mission. The Autonomous Robot Control via 
Autonomy Levels (ARCAL) project seeks to establish a 
robust planning architecture for collaborative, multi-
vehicle autonomous systems by testing system perfor-
mance in uncertain environments.

Autonomous Robot Control via Autonomy Levels
ARCAL brings together researchers and engineers 
from MIT campus and Lincoln Laboratory. Research-
ers from the Model-based Embedded and Robotic Sys-
tems (MERS) Group at MIT have developed risk-based 
adjustable autonomy and task-directed adaptive sensing 
systems—two fundamental components of ARCAL—that 
can autonomously coordinate multivehicle missions with 
an overriding human operator. Engineers from Lincoln 
Laboratory’s Tactical Networks Group developed a simu-
lation environment to evaluate autonomous collaborative 
behaviors and to determine how well adjustable auton-
omy operations meet operator expectations.

The project specifically tests risk-based adjustable 
autonomy with task-directed adaptive sensing technolo-
gies and concepts to determine how tasks can be com-
pleted at different levels of autonomy. ARCAL utilizes 
a novel simulation environment to test collaborative 
autonomous algorithms and team behaviors prior to 
field deployment. Adjustable autonomy algorithms and 
functions drive simulated unmanned systems in three-
dimensional (3D) platform models that include dynamic 
environments similar to real-world conditions. 

Adjustable Autonomy with Risk Assessment
Adjustable autonomy hopefully combines the best ele-
ments of human intuition with computational prag-
matism. Challenges in creating a truly synergistic 
relationship between humans and computers and sen-
sors, given human variability and the limitations of com-
puter logic, have tended to obscure an exact definition 
of adjustable autonomy as a concept. In its most basic 
form, an adjustable autonomy system makes two kinds 

of decisions: what future actions are optimal and how 
can the human operator best be engaged? Both of these 
decisions depend on risk estimates and mission objec-
tives, with risk explicitly incorporated in the planning 
process. Given the mission’s logistical plan, risks posed 
along each step of the plan are probabilities integrated 
over each mission goal. The configuration and distri-
butions of these risks should inform optimal human 
engagement. An adjustable autonomy architecture 
optimizes the risk assessment and mission planning 
process to provide situational awareness (SA), keeping 
the human involved at the appropriate level of detail for 
each mission component. 

ARCAL’s contribution to adjustable autonomy is to 
encode risk throughout the decision-making process. 
In practice, scout aerial vehicles and other sensors can 
improve risk awareness throughout the mission. Scouts 
are specifically deployed to improve risk mapping and 
refine decision making. Algorithms guide scouts toward 
high-value information that will help identify the low-
risk pathways for future components of the mission. The 
scouts are first tasked with informational reconnaissance 
relative to the logistics planning. ARCAL performs some 
tasks offline (learning and simulation) to minimize the 
amount of online optimization needed. 

Architecture 
Algorithmic modules within the artificial intelligence 
architecture enable the incorporation of risk informa-
tion and the involvement of a human operator. Modules 
include the logistics executive, the scout executive, and 
the adjustable autonomy module. These components 
interact with the logistics vehicle, the scout vehicles, and 
the human operator, as depicted in Figure 2.

The logistics executive planner chooses the actual 
sequence of waypoints to reduce risk within each compo-
nent of the mission. To make well-informed decisions, the 
planner needs the scouts’ information on potential vehicle 
paths. The scout executive dispatcher determines where to 
send the scouts, given plans currently under consideration 
by the logistics planner. Scouts then survey these areas to 
disambiguate candidate plans. The planner runs an adap-
tive sampling algorithm trained to traverse the path that 
achieves the highest expected information gain within the 
time allotted. As sensor measurements arrive, the belief 
update module incorporates them into the risk belief. 
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a risk distribution for each path. Finally, we explain how 
the scout measures and updates the risk-belief map. For 
further information on mission time constraint risks, see 
the appendix titled “Temporal Risk Assessment.”

The belief map is represented by a grid of square 
cells. Each cell contains a distribution over the prob-
ability of success if the vehicle traverses that cell in 
any direction, independently of all other cells. This 
interpretation allows us to use the Markov assump-
tion (described below) when constructing paths from 
sequential cells. In our belief map, we parameterize 
each cell with a mean and variance to represent a beta 
distribution. Not only does the beta distribution admit 
an intuitive interpretation, but its parameterization is 
also appealing for real-time calculation.

The belief map’s form makes it relatively straight-
forward to compose paths from cells; the distribution of 
the resulting path is an approximation. We rely on the 
Markov assumption that the probability of successfully 
traversing a certain cell is independent of the probabili-
ties for other cells. Then, given a path of cells for which 
successful traversal is a random variable, the success 
probability for the entire path becomes the product 
of each of the independent cell traversal probabilities. 
Unfortunately, the true distribution for the entire path 
is not a beta distribution and cannot be analytically 
computed, so we approximate it as a Gaussian distri-
bution, parameterized by a mean and variance.

The testing simulation must also incorporate envi-
ronmental obstacles into the belief map. The sensor has 
algorithms for detecting and characterizing features 
of the environment. The scout’s camera, for example, 
would be interfaced with a pattern-recognition appli-
cation for road fissures that would then communicate 
the fissure parameters to the probability of success 
estimate. If the camera’s resolution is characterized 
by a variance, then the fissure’s risk distribution can be 
characterized, and the information is encoded into the 
occupied grid cells, effectively distributing the fissure’s 
risk over the area it occupies.

In summary, the simulation formulates risk as a 
distribution over a path, given a risk-belief map. The 
map is gridded into cells, each of which contains a beta 
distribution. Paths are sequences of adjacent cells, 
with risk distributions represented as truncated and 
scaled Gaussians.

In a nonadjustable autonomy architecture, the 
human operator would interface directly with the logistics 
executive; here, the adjustable autonomy module medi-
ates their interaction. This module continuously moni-
tors the risk associated with each mission component 
according to the entire state of the logistics executive. It 
tracks the possibility that each component’s risk might 
exceed user-specified thresholds. As these risks evolve 
because of additional planning and updated risk beliefs, 
adjustable autonomy may request human intervention for 
particular mission components. Thus, while the human 
operator still specifies mission goals to the logistics plan-
ner, he or she now has an interface to override different 
components of the logistics executive at varying levels of 
control. Together, all of these modules provide a rational, 
risk-based operator interface.

Risk Assessment
A key capability of our system is assessing risk relative to 
the overall mission goals. Here, risk is defined as the 
likelihood that a logistical plan will or will not achieve 
each and every goal, where a goal may involve driving 
an emergency, utility, or personnel transport vehicle to 
a needed location. Plan success is provisionally defined 
as the probability of success in all parts of a plan. The 
risk assessment problem then becomes as follows:

Given a path plan that nominally achieves 
overall mission goals and a belief map of the 
environment, we compute a distribution over 
a path’s success probability, that is, the prob-
ability that a ground vehicle can successfully 
traverse that path. We cannot know the true 
path-success probability because we do not have 
a true map of the environment. However, we 
possess a belief map that models the location of 
features and obstacles within the environment 
as well as our uncertainty about them. We may 
know, for example, that a certain type of obsta-
cle exists in a general vicinity but not know its 
precise location and threat level. Thus, we must 
compute, and our algorithms must operate on, 
a probability distribution over the success prob-
ability, i.e., a risk distribution.
Given this definition of risk distribution, we describe 

below how to represent risk in a belief map. With this 
definition, we can build paths over the map and devise 
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Scout Executive and Planner 
The scout executive obtains more detailed scans of 
certain areas that could yield safe routes for the logis-
tics vehicle, as illustrated in Figure 3. While the logis-
tics executive tasks the scouts with examining certain 
areas, it would be inefficient for scouts to equitably 
traverse each area (i.e., by spending the same amount 
of time in each area). For example, a human opera-
tor would immediately fly/drive a vehicle to the most 
uncertain areas in order to gain the most value from 
reconnaissance. The scout has only limited time to 
complete reconnaissance and report back to the logis-
tics executive. The scout planner algorithm incorpo-
rates scout observations and directs scouts to collect 
data that optimally reduce risk uncertainty for the 
logistics vehicle.

Figure 4 highlights the scout planner portion of 
the ARCAL architecture and various components of 
the scout planner algorithm. The scout planner dic-
tates the policy that governs paths the scout should 
take. The policy is typically encoded as a value func-
tion. A typical scout scenario, however, is so computa-
tionally intensive that the value function would require 
the processor to have unreasonable volumes of stor-
age space. The iteration process thus approximates 
the value function to yield nonoptimal but reasonable 
solutions. Calculations are performed offline, and the 
approximate solution is stored in an approximate value 
function. When the time comes for the scout to execute 
online actions, it further reoptimizes the value func-
tion according to its particular situation, given com-
putational constraints.

ARCAL’s scout planning problem is formulated as 
follows:
• The scout dispatcher tells the scout which subset of 

the full map needs to be surveyed to reduce uncer-
tainty in the risk belief. 

• This subset is represented as a set of grid cells. Each 
grid cell is associated with a prior risk distribution. 

• The scout’s goal is to fly a path over the area in an 
allotted time such that it maximizes the total reduc-
tion in variance over these grid cells. (The total vari-
ance reduction is the sum of all variance reductions 
in each grid cell.) 

ARCAL uses the general framework of the Mar-
kov decision process (MDP) to model the problem and 
approximate dynamic programming (ADP) to solve 
it [1, 2]. MDPs operate on discrete time steps. When 
an MDP executes an action from a “current” state, 
there is a probability of transitioning to a “next” state 
in the next time step, and the expected reward associ-
ated with that transition is calculated. The ADP algo-
rithms generate policy solutions that assign an action 
to each state of the MDP. The value of a state under a 
specific policy is the expected sum of rewards obtained 
when the policy is followed. The objective is to find an 
optimal policy that maximizes the value of every state. 

For a policy to be optimal, it must choose actions 
that maximize the expected value of the subsequent 
state. In other words, the optimal action moves to the 
next-best state, and then plans from that new state. 
The optimal policy derives from solving for the opti-
mal value function. For the scout planning problem, 
we define the following components of an MDP:

FIGURE 3. In this rescue scenario, the logistics executive tasks a three-unit aerial scout team to identify 
traversable paths from a set of possible paths. The scout planner algorithm allocates resources in response 
to the need for locating a safe route and quantifying the path risks to the rescue vehicle and the mission.
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• The state includes the vehicle location and belief 
map (i.e., risk distributions over the relevant grid 
cells).

• The action set refers to scout vehicle movement op-
tions. In our problem, the available actions are left, 
right, and straight for any grid cell.

• Reward is defined as the total reduction in uncer-
tainty for the relevant grid cells. It is calculated by 
taking the sum over all reductions in variance re-
sulting from the Kalman filter–based updating of 
the state from the scout’s observations.

It should be noted that the state space includes the 
belief map in addition to the location and pose (three loca-
tion dimensions plus the “pointing” direction of the scout). 
This information is a necessary part of the state because 
the reward in transitioning between states is solely defined 
by the reduction in variance. Given high initial uncertainty, 
traversing new cells decreases variance more than moving 
between cells whose uncertainty is already low. Including 
the belief map makes the state space continuous. 

Figure 5 shows the offline scout algorithm. The 
scouts use ADP to create a policy for acting in the world. 

A policy interlaces states and actions by instructing scouts 
in given situations. The scout’s state space includes not 
only location, pose, and risk but also uncertainty in the 
risk-belief map. Computing the value function is com-
putationally intensive, so ARCAL approximates it offline 
through value iteration before the mission starts. The 
approximation simulates scout reconnaissance of high-
value areas and saves snapshots of the simulation as data 
points in a table (Q table or Q function). We then gener-
ate an approximation architecture on each iteration by 
regressing over these data points, taking representational 
uncertainty into account [3].

Action-Selection Algorithm
A central question is how to choose which actions to reeval-
uate. As stated previously, the offline algorithms generate 
a state-action value function and a tree of paths. The 
simulation then decides how deeply (the number of 
steps forward) and broadly (the number of actions) 
and the number of samples per action the reevaluation 
should be. We assume that we do not have enough 
time to reevaluate every action over the planning 

FIGURE 4. The scout executive architecture shows that the goal is to identify paths that maximize information. Scouts 
model the problem and goal as a Markov decision process (MDP) and learn an offline policy in the form of a value function. 
Policy dictates what the scout will do next. The policy may be improved online during the mission.
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horizon and thus only evaluate actions with promising 
outcomes, given uncertainty about those outcomes. 
This selection uses the offline state-action value func-
tion. The function provides an estimate of the value 
(future cumulative reward) for each action, assum-
ing the current state. The estimate actually includes 
a distribution described by a mean and variance. The 
distribution captures how well we know a given value: 
a high variance distribution means that we do not 
know the value very well, and a low variance distri-
bution means that we know it precisely. We select a 
sample from these distributions, one for each action, 
and then choose the action with the highest sample 
value. If one of the action distributions consistently 
produces a high sample value, we know we have little 
reason to evaluate other options. However, if there is 
a state-action value distribution with an especially 
high variance, the action will sometimes produce a 
sample with the highest value even though its mean is 
lower. This phenomenon mirrors the probability that 
said action is the best, given what we know. In other 
words, we explore the actions in proportion to their 
optimality and to our certainty about this parameter 
(i.e., we determine which actions to reevaluate by 
representing the uncertainty about their true value). 
This uncertainty distribution is used to select actions 

(Figure 6) for reevaluation that appear to be good, but 
uncertain. We may also evaluate less optimal plans 
whose true value is subject to high variance.

To summarize, our method allows us to use 
offline knowledge and processing to guide our scouts 
online—the offline policy informs the additional 
online processing. We can exploit both online and 
offline control processing in a complementary way. 

The action-selection process describes a fam-
ily of algorithms because changing the search hori-
zon and branching factor fundamentally changes 
the algorithm. For example, if we use a very small 
branching factor with a long horizon, the algorithm 
closely resembles the rollout algorithm. Rollout, a 
long-standing algorithmic method originally devel-
oped to evaluate moves in the game of backgammon, 
was repurposed to evaluate MDP policies in general 
[4, 5]. On the other hand, using a short horizon with 
a large branching factor closely resembles model pre-
dictive control. The optimality of different configura-
tions depends on different applications and the stage 
of the mission. For example, toward the end of a mis-
sion, it could be helpful to use a wider search (larger 
branching factor) to make sure that we appropriately 
consider the end goal. Further extensions to our algo-
rithm may include using different branching factors 
at different levels of the search tree. For example, it is 
easier for a function to capture long-term objectives 
than short-term details. This small extension would 

FIGURE 6. Some steps need to be evaluated in a timely in-
flight manner online. The online process describes a family of 
algorithms that change the search horizon and branching fac-
tor and determine which steps need to be reevaluated online.

FIGURE 5. The scouts use approximate dynamic  
programming to learn a policy by simulating reconnais-
sance and updating the value of each action. Here, a  
decision to turn left would follow the black arrow that 
might eventually follow the gray route; going straight 
would follow red paths and turning right would follow  
the yellow paths.
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therefore allow the algorithm to rely more on offline 
knowledge in the middle of the mission (when long-
term evaluation is sufficient) and more on simulation 
at the beginning and end of the mission (when short-
term information is critical). Configuration parame-
ters thus determine the appropriate algorithm among 
the possible alternatives. Selecting algorithms in this 
way enables us to design systems that are broadly 
applicable to many situations.

Demonstration of Results
At this stage, we are currently designing and imple-
menting ARCAL’s logistics executive and adjustable 
autonomy components. We have implemented the 
scout path-planning algorithm, which includes the 
path-planning problem, the offline value iteration 
procedure, and the online search for decision mak-
ing. Overall, the scenarios task the scout to reduce 
variance within a 10-by-10 gridded area, but the areas 
of high variance differ across scenarios. To show how 
our scout finds efficient sensing paths, we focus on 
scenario A, which includes high variance across the 
entire map, thus simulating a setting of incomplete 
prior information for a region.

Scenario A runs with a mission length of 25 time 
steps. Within the scenario’s context, we first illustrate 
the evolution and convergence of the approximate val-
ues function during value iteration. We use 100 sam-
ples to represent the state subset. The scout can be 
within any of 100 unique grid cells, with four possible 
orientations in each, and an infinite number of pos-
sible map beliefs. Our value function representation 
is thus extremely sparse relative to the actual state 
space. We display paths constructed during online 
execution to show how the scout chooses to survey 
areas with higher uncertainty that are within the time 
constraints. The tree search algorithm is limited to 20 
node traversals of computation, but searches down to 
a depth of 7 nodes.

State Space Sampling
Figure 7 depicts the state-action value function evolving 
over 10 sets of value iteration. The x-axis represents dif-
ferent sampled states in our lookup table, and the y-axis 
shows the values associated with those states. When que-
rying the value of a state, we are not actually querying 
but rather representing the estimation architecture that 
interpolates over the sample states in the table. However, 

FIGURE 7. The approximate dynamic programming (ADP) iterates through the state-action value functions. The 
above graphs, taken at the zeroth, fifth, and tenth time points (of the ten iteration steps) in the policy learning process, 
depict the value of each action (left, straight, right) in a series of policy-driven trajectories through the state space. The 
objective of the repetitive reinforcement learning process is to generate a function that attributes (maps) a value to 
the three actions for every state in the state space. However, only a subset of the states can be sampled because of the 
very large state-space size. The middle and right graphs show four spikes for four trajectories. The values are higher 
at these mission start points because there is more information to collect and lower at the ends of missions because 
there is less information remaining. In the inset, position 1 indicates that the unmanned system should move straight 
(red), position 2 shows a slightly better choice of moving right (yellow) over straight, and position 3 clearly indicates 
that left (black) is not the best direction.
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to aid conceptual convenience and transparency, we will 
refer to the plots as the value-function plots. The sample 
states were constructed by initializing a simulated sce-
nario four times and letting the scout fly a predetermined 
raster pattern that sweeps across the area for the 25-step 
length of the mission [6]. To avoid gathering the exact 
same data each time, we introduced stochasticity into the 
path and increased it with each subsequent pass.

Our method samples a state “trajectory,” which is a 
path through the state space during a representative mis-
sion. Give a mission starting point, we employ a default, or 
initial, policy in order to choose initial actions. This “on-
policy” approach tends to explore states that are likely to 
occur. Injecting some random decisions into the policy 
allows the system to explore actions (and the associated 
states) that are “outside of the envelope.”

The result of this sampling is shown as a sequence of 
value function plots in Figure 7. At first, the values for each 
sample state are initialized with low random noise (not 
visible at the scale shown). In subsequent iterations, the 
values accrue at each step because each state “looks ahead” 
to the next best state and adds that state’s value to its own 
reward (i.e., variance reduction) for taking the action 
leading into that state. The values gradually converge 
(i.e., the increase at each step gets smaller) since accrual 

is increasingly discounted over subsequent iterations. 
However, the most interesting parts of these plots are 
the four peaks that correspond to when the scout passes 
over high-variance areas and realizes large rewards. The 
reward subsequently decreases for these areas. The plots 
illustrate how the value function effectively encodes and 
exploits the structure of  belief variance.

Figure 8 shows the algorithm’s path construction at 
time steps 1, 10, 17, and 25. The upper plot in each frame 
shows belief variance with a color scale, while the lower 
plot shows the scout’s path for the given time step. The 
diagram shows that the scout travels south into the area 
of highest uncertainty and traverses it until the end of 
the mission. Note how the scout systematically whittles 
away the belief variance in the top plots. We rescaled 
the colors so that areas with the highest remaining vari-
ance always appear yellow, and thus show how those 
locations guide and attract the scout. The scale changes 
significantly by the end of the mission, demonstrating 
the extent of variance reduction.

This example shows that our scout planning algo-
rithm finds a path through an area such that it purpose-
fully surveys the most uncertain features, thus generating 
the most valuable data for the logistics planner through 
a combination of the offline value iteration and online 

FIGURE 8. Row one and two respectively show the belief uncertainty and scout path for our scenario. 
The top row visualizes the belief uncertainty (variance) map at time steps 1, 10, 17, and 25; the yellow 
reflects a higher uncertainty, and red reflects a lower uncertainty. The bottom row visualizes the data-
collection path. Loc indicates the current location of the scout. 
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FIGURE 9. The autonomy simulation environment architecture leverages and integrates two powerful simulation tools: 
MÄK Technology’s VR-Forces simulation framework for computer-generated forces and OPNET’s Modeler simulation 
for high-fidelity communications. A well-defined interface is then specified to drive autonomous vehicles and to simulate 
communication and other interactions within a dynamic environment. 

search procedures. The flexibility of our algorithm arises 
from the MDP framework, which easily adapts to any 
given scenario. An important detail of our approach 
is that, because we cannot exactly represent the value 
function, we acknowledge this problem by introducing 
stochasticity into our decision making. Thus, our nonde-
terministic solutions, while rarely optimal, are robust in 
the presence of this uncertainty. When integrated within 
the ARCAL system, the scouts can thus effectively con-
tribute to real-time logistical planning.

Autonomy Simulation Environment
To further assess autonomous behaviors in changing 
environments, the ARCAL project is also developing 

an autonomy simulation environment (Figure 9). This 
environment includes a software infrastructure in 
which collaborative autonomy algorithms and system 
behaviors can be evaluated according to physical, envi-
ronmental, and network effects. Accelerated 3D visual-
ization of the simulation provides demonstrative context 
for the candidate algorithms. Metrics are being devel-
oped to assess proper autonomous decision-making 
behavior in multivehicle and hierarchical configurations.

Environment Framework and Components 
MÄK Technology’s VR-Forces (VRF) is a simulation 
framework for computer-generated forces (CGF), 
allowing for scenario generation and behavioral 
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modeling of ground, air, and sea entities (ground vehi-
cles, aerial vehicles, autonomous ocean sensors) [7, 8]. 
Entities in VRF have 3D volumetric representations 
that interact with a specified terrain or the overall 
environment. Each entity has a parameter database 
that describes its physical and behavioral characteris-
tics. The simulation engine uses these parameters as it 
interacts with the terrain and other entities. Scenario 
generation consists of generating a terrain and all sim-
ulation entities, which are assigned a plan consisting 
of small tasks. Similar to robotic systems, VRF uses 
a component architecture made up of sensors, con-
trollers, and actuators. These components combine to 
form behavioral systems. The Laboratory’s framework 
uses a customized application programming interface 
(API) to provide input to the autonomy algorithms. 
The object states of VRF are outputted over a dis-
tributed high-level architecture (HLA) for computer 
simulation systems. This HLA is similar to a Common 
Object Request Broker Architecture (CORBA) mid-
dleware that allows for federated applications using 
the same simulated objects. VRF includes a detailed 
graphical user interface front end that subscribes to 
objects over an HLA and renders them, along with the 
terrain, in an accelerated 3D environment. 

It is important to model accurate network effects 
because of their relevance in algorithm design. Lever-
aging the fact that, in VRF communication, effects 
can be exported to an external server, we were able to 
integrate OPNET Modeler, a separate discrete-event 
simulator that excels in network simulations [9–11]. 
Communications between entities are sent over an 
HLA to an OPNET simulation whose timing is syn-
chronized with VRF. By using VRF with customized 
component systems to provide behavioral modeling of 
unmanned aerial vehicles (UAV) within a 3D terrain, 
along with a front-end graphical visualization engine 
and OPNET Modeler to provide communication 
effects, we have a high-fidelity combination of soft-
ware technologies and APIs with which we can test 
and evaluate candidate autonomy algorithms [12].

In order to support the ARCAL search and res-
cue scenario description, we needed the ability to dis-
criminate terrain by using low-flying platforms. We 
assume that our UAVs are equipped with sensors that 
are able to discriminate between various terrain types 

(e.g., paved road, shallow to deep water, grass, boul-
ders). In addition to identifying these terrain patches, 
we must determine whether a given area has been dis-
turbed from its previous terrain type. We introduce 
a terrain “flag” that represents a drastic change to a 
cell’s terrain. The sensors on the UAV detect terrain 
conditions and upload them to their overhead view 
of the area.

Sensor Modeling
We equip the model in VRF with a custom coarse-
grained sensor that uses the terrain API to read what 
type of terrain exists in each cell as the UAV flies 
over it. For each terrain patch, two values are stored 
in a matrix: a “prior,” which represents the risk of a 
given terrain (e.g., paved road is low risk, deep water 
is high risk), and a “variance,” which represents the 
sensor’s certainty of detection. A fine-grained sensor 
is integrated on a second UAV. It detects disrupted 
terrain and supplies updated variance values to fur-
ther reduce uncertainty.

The UAV with the lower-resolution sensor flies in 
a simple raster pattern over an area of interest, forming 
the initial matrix of priors and variances. This low-res-
olution reconnaissance is a bootstrapping phase that 
can be cached. The scenarist can then apply calamity 
effects to the terrain by dropping a flag that represents 
a disruption of that terrain patch. Alternatively, a ran-
dom application of calamity effects can be generated 
and overlaid onto the terrain. At this point, the priors 
matrix is split up into units for further refinement. For 
visualizing the sensed area, each sensor has a visual 
cone angle that captures the ground state as the UAV 
flies over the terrain. For the fine-grained sensor, ter-
rain cells are initialized with values that represent a 
function of their priors and variances. The dynamic 
program uses the priors matrix to instruct UAVs with 
high-resolution sensors on where to go to improve the 
priors matrix, narrow variances, and otherwise detect 
the terrain’s real state. 

As the UAVs refine the priors matrix, communi-
cation occurs by sending data from the UAVs to the 
OPNET simulation, subjecting the data to the wire-
less effects of the configured channel and terrain, and 
to the communication effects of the configured radio. 
We are currently using a single candidate autonomy 
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The texture value enumerations that were recorded 
correspond to one of several supported surface types 
(e.g., asphalt, grass, deep lake, boulder). Next, the 
algorithm is run on the priors matrix to determine 
flight paths for the UAVs. These flight paths are then 
imported back into VRF. The high-resolution sensor 
will follow these paths with the “terrain-painting” cus-
tomized graphical user interface plugin enabled (Fig-
ure 10). The terrain will be mapped in order to reduce 
variances. Ultimately, this processing will integrate 
with the simulation itself, and the aforementioned 
communications processing with OPNET will be used 
to exchange information among entities. 

Looking Forward
In the future, unmanned platforms will gain higher-
order decision-making intelligence, form teams, and 
perform collaborative tasks. The ARCAL project rep-
resents two complementary areas of research that 
increase operator confidence in future autonomous 

algorithm in the ARCAL simulation framework, but 
most of the framework development itself is agnostic 
with respect to the candidate algorithms. 

As development of the Lincoln Laboratory 
ARCAL simulation framework continues, we are 
putting together an initial demonstration of some 
of the capabilities that will ultimately be integrated 
into the full infrastructure. Offline processing that 
uses the MIT scout path-planning algorithm inputs 
terrain characteristics into the ARCAL simulation 
environment to generate algorithm decisions. The 
demonstration will showcase the ability of the coarse-
grained sensor to create a priors matrix for a given 
terrain and the fine-grained sensor’s ability to further 
reduce variances by flying paths determined offline by 
the dynamic program of the algorithm developed by 
MIT’s MERS Group.

The simulation assumes a single UAV rastering a 
given swath of terrain. The priors matrix is written to a 
file processed by a MATLAB script provided by MERS. 

FIGURE 10. In this simulation, high-resolution sensors “paint” the terrain as the variances are reduced via data collection. 
The circles mark the locations of the UAVs and the yellow lines indicate the direction of the UAV sensors.
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system behaviors. The first incorporates concepts of 
risk-based adjustable autonomy with risk verification 
within system functions and task-directed adaptive 
search techniques. An operator can adjust the auton-
omy level, employ autonomy functions, or revert to 
fully manual control at any time. The second involves 
new methods to effectively test and evaluate collab-
orative autonomous team behaviors prior to field 
deployment via a high-fidelity, interactive simulation 
environment with 3D visualization.

Natural disaster relief scenarios were used to 
develop and validate the concepts and technologies 
used in this project. In these simulations, a team of 
unmanned aerial and ground scouts is dispatched 
to determine the most efficient path for a logistics 
vehicle. The autonomous algorithms, concepts, and 
technologies can be used with the autonomy simula-
tion environment and for other situations.

This article also introduced the theoretical basis 
for adjustable autonomy used during control and 
supervision of a team of scouts performing a collab-
orative task. Task-directed search algorithms for UAV 
scout path planning improved knowledge of the risks 
to the mission. An algorithm test battery was devel-
oped and used to run tests on the scout path-planning 
algorithms. The ARCAL system’s architecture incor-
porates autonomy algorithms that were tested with 
the natural disaster recovery scenario. Initial results 
show that the algorithm performs effectively.

The autonomy simulation environment integrates 
commercial state-of-the-art simulation and model-
ing products. It serves as a software infrastructure 
for evaluating candidate collaborative autonomy 
algorithms and system behaviors under very specific 
physical, environmental, and network conditions. 
An initial concept capabilities demonstration under 
development uses task-directed search algorithms for 
planning paths for unmanned scout vehicles to follow 
to update a terrain risk-belief map. This map is used 
in the ARCAL system architecture so that adjustable 
autonomy algorithms can plan efficient pathways. 

This technology requires risk-based reasoning 
developed through formal models and algorithms. 
The architecture for such reasoning (in a context 
of path planning) must include characterization of 
temporal risk. Temporal coordination is an essential 

aspect of any mission that requires multiple activities 
to be executed in sequence or simultaneously, with 
future tasks depending on the completion of earlier 
tasks. The problem of assessing temporal risk is sched-
uling the activities such that they are probabilistically 
robust against scheduling uncertainty. This article 
formally described two algorithmic approaches to this 
problem, demonstrating one approach through experi-
ments. 

Today, both mission and sensing complexity are 
managed through increased automation that allows 
operators to abstract away from lower-level functions 
and focus on higher-level goals. The operator specifies 
goals at a certain level of abstraction and then relies 
on automation to achieve them. The result is a signifi-
cant collaboration between humans and automation. 
Decisions traditionally made by humans are now auto-
mated and significantly improve the probability of a 
successful mission.

Sensing advances have increased mission per-
formance in terms of faster execution and greater 
complexity. By providing relevant data with great 
immediacy, the sensors can immensely accelerate 
mission planning and execution. However, improved 
mission performance also requires greater sensing 
complexity in sensor coordination and analysis. Sens-
ing an environmental feature may, for example, require 
a network of sensors operating in a coordinated man-
ner. Trade-offs between coverage and resolution must 
be considered, and further trade-offs for resource 
scarcity are magnified if heterogeneous sensors are 
involved. To interpret the data from multiple sensors, 
data would need to be integrated and analyzed. Finally, 
rapid response requires real-time sensor coordination 
and data analysis.

Networked sensing systems are enabling unprec-
edented levels of mission performance through 
significant collaboration between human opera-
tors and advanced automation. In the last decade, 
advances in low-cost computation and networking 
have transformed single-instrumented sensors into 
networked systems of mobile elements. For example, 
aerial surveillance is progressing from being a mis-
sion conducted by a single, piloted aircraft to a con-
tinuous operation maintained by teams of smaller 
and less expensive UAVs. The result has been a dra-
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matic increase in the observational capabilities and 
response times of sensing systems. The multitude and 
mobility of sensors can yield not only greater coverage 
but also greater depth and precision than achieved 
previously. Sensor networks can also offer redun-
dancy and immediacy (i.e., repeated “looks” at and 
quick response to critical areas). Rather than being 
a single point of failure, sensing becomes a service 
whose performance improves or degrades gracefully 
with the number of sensing assets.
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In many transport scenarios, it is critical not only 
to fulfill the goals but also to complete them “on time.” 
The risk assessment tools for autonomous robot con-
trol discussed in the main article must be extended to 
assess the timeliness of proposed paths. Robots need to 
be sent to locations where information on route acces-
sibility is missing and to pathways where the traverse 
times are uncertain.

Scenario
A transport convoy responding to a natural disas-
ter consists of teams of ground vehicles with trained 
responders that must traverse unknown terrain to 
reach people in need. The mission goals are to
• Deliver provisions, administer medical care, trans-

port victims to hospitals or shelters, repair infra-
structure, and set up field stations;

• Transport responders throughout the affected re-
gion, performing each task according to its priority; 

• Task robotic aerial scouts to study terrain. 
The role of automation is to coordinate these goals by 
planning navigation for ground vehicles while human 
responders focus on their tasks. 

Figure A1 illustrates a disaster relief scenario. A 

team waiting at a depot has been tasked with picking 
up a patient at location A, transporting him to the hos-
pital, and unloading supplies at the shelter at B along 
the way. The navigation planner generates possible 
paths along roads from the depot to A, A to B, and B to 
the hospital. The risk threshold, which pertains to the 
patient transport task, may not exceed, for example, 
5%. The total risk specifically includes the risk of suc-
cessful traversal across damaged roads on a one-hour 
deadline. The depot, A, and the hospital are on one 
side of a river while B is on the other side. The only 
feasible paths to and from B (given the deadline) tra-
verse bridges that may have been critically damaged. 
A longer path that avoids these bridges leads from the 
depot to B and incurs the least traversal risk. The final 
stage from B to the hospital may require aerial scouts 
to survey three candidate bridges.

While the transport team is picking up the patient 
at A, scouts relay the information that only one of the 
bridges is traversable and, furthermore, the roads from 
this bridge to B pose a 10% risk to the patient. Opera-
tors can either accept the additional risk or take the 
patient to the hospital first and then visit the shelter at 
B, but the longer path and nightfall will make it harder 

Appendix

Temporal Risk Assessment

A
B

Depot

FIGURE A1. A transport 
scenario may include mul-
tiple tasks with associ-
ated risks. For example, 
a patient at location A 
needs to reach a hospi-
tal within one hour, while 
people at location B need 
supplies and access to 
shelter before nightfall. 
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to drive safely through damaged roads.
The architecture can also incorporate unforeseen 

developments (both positive and negative) that affect 
the risk distribution. A person on the response team, for 
example, may be able to perform some sort of triage on 
the patient en route, giving the team a longer window to 
reach the hospital. With the deadline extension, the auto-
mation is able to find a plan that addresses the task at B 
and results in 6% risk to the overall mission completion. 

Scheduling
In assessing the mission risk, the automation must con-
sider (1) the uncertainty of whether one can traverse roads 
successfully and in a timely manner relative to other mis-
sion segments, and (2) the possible repercussions if roads 
are not passable within the risk tolerances. For instance, 
two of the bridges in the scenario are untraversable, and 
the third has traffic or requires more care in traversing 
and therefore more time. The simulation considers an off-
road alternative in the absence of traversable roads. This 
iteration of the simulation would send scouts to assess the 
off-road terrain in a timely manner, so that the risk map is 
current by the time the patient at A is picked up. Multiple 
vehicles were not considered in this scenario, but in a plan 
that involves a rendezvous point, vehicles would ideally 
converge simultaneously to conserve resources, stream-
line other tasks, and minimize risk.

The main article describes how to plan and model 
the success probability of a planned path through a land-
scape affected by a natural disaster or crisis. The algo-
rithm calculates the risk-belief distribution of a path 
according to risks encountered. Once risks for each 
potential path are known and the optimal path has been 
determined, responders still face the challenge of mini-
mizing and prioritizing response times for different cri-
sis-related tasks. Response time and the coordination 
of tasks according to temporal constraints are essen-
tial aspects of the planning architecture. A mission may 
call for multiple activities to be executed in sequence or 
simultaneously. Temporal risk management requires the 
coordination of tasks in a way that is probabilistically 
robust against temporal uncertainty.

Previous research has shown that an iterative risk 
reallocation algorithm capitalizes on the structure of the 
desired temporal coordination (e.g., identifying sched-
uling conflicts and trying to solve them) to better serve 

the operator in real-time temporal risk management. 
Risk reallocation requires an algorithm that makes local, 
iterative adjustments but has global guarantees of iden-
tifying a schedule that meets the risk criteria. As with 
other forms of risk, the adaptive sampling algorithm can 
reduce temporal risk by evaluating it within the mission 
model and evaluating risk estimates according to overall 
mission risk thresholds. The planner determines a task 
ordering (i.e., schedule) that satisfies the mission’s tem-
poral goals with a certain probability.

Risk Allocation
Calculating the exact risk becomes increasingly difficult 
with more complex mission structures. Finding the opti-
mal schedule is not typically a tractable approach. The 
most practical approach finds a feasible schedule that 
obeys some minimum failure rate. First, we formally 
define the scheduling problem through a specification of 
chance-constrained temporal goals and temporal uncer-
tainty. Then, we restrict the solution space to scheduling 
strategies that are strongly controllable (i.e., a complete 
schedule that is robust against future uncertainty).

After defining the problem, we reformulate it as a 
temporal problem with uncertainty. This reformulation 
decouples chance and temporal constraints, and maps 
the strong controllability condition into strong control-
lability for a previously studied problem. The principle 
behind our reformulation is to allocate temporal risk 
to each activity’s duration. Each allocation reduces an 
activity’s probabilistic model of temporal uncertainty 
into an interval bound. Thus, satisfaction of the chance 
constraint depends wholly on the risk allocation, while 
temporal constraints are evaluated solely on the struc-
ture of the interval bounds for duration. We choose an 
interval-bounded reformulation because it transforms 
the structure of temporal uncertainty into one that is 
addressable by efficient, controllability-checking algo-
rithms. A strong controllability version of these algo-
rithms is described and exploited by our algorithm. The 
problem can then be reformulated into a solvable form.

Given a simple temporal network, find a schedule 
that satisfies its chance constraint:
• Drive to A. Pick up patient.
• Drive to B. Deliver shelter supplies.
• Drive to hospital. Unload patient.

We assume that the transit components of each task 
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are uncontrollable because of road conditions, while the 
rest of the tasks are controllable but have specific tem-
poral requirements. Operator-imposed temporal con-
straints begin upon arrival at an accident scene. In the 
ongoing operational example, the constraint might be 
that once the patient has been moved, the transport team 
must reach an emergency room within 60 minutes or 
the patient dies, immediately nullifying the value of the 
operation.

Figure A2 illustrates the encoding of this scenario as a 
probabilistic simple temporal network (pSTN). Uncon-
trollable events are squares and represent arrival times. 
Uncontrollable durations are represented by dotted 
arrows; controllable durations and temporal constraints 
are represented by solid arrows. Each arrow is labeled 
with its respective constraint (in minutes). Each con-
trollable duration and simple temporal constraint has a 
lower and upper temporal bound (in the figures, this is 
unknown) as follows:
• Start from location D' (depot).
• Picking up and loading the patient at A takes at least 

5 minutes.
• Delivering shelter supplies at B takes at least 10 

minutes.
• Unloading the patient at H (hospital) takes at least  

1 minute.
• Finally, the patient must reach the hospital within 60 

minutes of the pickup time.
Each uncontrollable duration has a continuous 

probability distribution built from the awareness of 
road conditions. Constraint satisfaction problems can 
be represented as graphs with variables as vertices and 
constraints as edges. Graphs elucidate the dependency 
structure among constraints based on the constraints’ 
shared variables.

Risk allocation distributes the chance constraint’s 
specified failure probability over the various sources of 
uncertainty. In our case, these sources are the uncon-
trollable durations. Assuming an interval bound as a 
duration’s domain effectively assigns risk to that dura-
tion (i.e., the probability that the realized duration 
will fall outside the interval). The combination of each 
duration’s assumed interval then becomes the macro 
interval under consideration.

This type of risk allocation enforces structure, 
which enables evaluation of both variables and con-

straints. Specifically, the structure becomes a rectilin-
ear parallelepiped, with the axes aligned within the 
uncontrollable outcome space. The assumption that all 
durations are independent of each other means that 
conditions may be evaluated as the product of probabil-
ities for each duration and strong controllability can be 
easily verified. Placing interval bounds on each uncon-
trollable duration reformulates the pSTN as a simple 
temporal network with uncertainty (STNU). In con-
trast to probability distributions with infinite domains, 
these hard-bounded assumptions of temporal uncer-
tainty simplify the controllability-checking criteria. 
Thanks to previous research, efficient algorithms exist 
to check both the strong and dynamic forms of STNU 
controllability. Risk allocation effectively restricts the 
solution to a series of small components (i.e., dura-
tions) that are easy to adjust to satisfy the conditions 
of the scenario.

Figure A3 shows the disaster relief scenario in 
reformulated form. Note that the temporal structure 
remains virtually unchanged. Events, nodes, and dura-
tions remain in their original locations. However, each 
uncontrollable duration now has a lower-bound vari-
able and an upperbound variable. The highlighted 
probability mass is the likelihood that the duration will 
land in between these bounds or between the inverse of 
the risk assigned to that duration.

FIGURE A2. The probabilistic simple temporal net-
work (pSTN) encodes the disaster relief scenario and 
the timing risks in seconds. The process comprises a set 
of uncontrollable events (squares) between locations 
(circles), uncontrollable durations (dotted arrows), and 
controllable durations (solid arrows). In a pSTN, each 
uncontrollable duration is described by a probablistic 
distribution. The brackets indicate the fixed time limit—
no longer than 60 minutes total time—and the known 
minimum time for a given path. The parentheses indi-
cate that the maximum times are currently unknown.
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Controllability can then be checked by using a 
specific grounded disaster relief scenario. Checks can 
identify events that become uncontrollable under 
certain constraints, thus removing those events from 
consideration within scenarios. After cycling through 
certain constraints, the overall STNU can itself be 
evaluated for controllability.
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FIGURE A3. The original pSTN scenario is now refor-
mulated as a simple temporal network with uncertainty 
(STNU). An STNU problem representation bounds each 
individual uncontrollable duration (with probable time I and 
uncertanity μ), reducing the effect of the broad uncertainty 
on route selection. 
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